
Paging
CSE 4001

Content
• Virtual address space

• Basic paging mechanism

• Limitations

• Protection

• Shared pages

Example address space

THE ABSTRACTION: ADDRESS SPACES 3

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Figure 13.3: An Example Address Space

In the diagram, there are three processes (A, B, and C) and each of
them have a small part of the 512KB physical memory carved out for
them. Assuming a single CPU, the OS chooses to run one of the processes
(say A), while the others (B and C) sit in the ready queue waiting to run.

As time sharing became more popular, you can probably guess that
new demands were placed on the operating system. In particular, allow-
ing multiple programs to reside concurrently in memory makes protec-
tion an important issue; you don’t want a process to be able to read, or
worse, write some other process’s memory.

13.3 The Address Space

However, we have to keep those pesky users in mind, and doing so
requires the OS to create an easy to use abstraction of physical memory.
We call this abstraction the address space, and it is the running program’s
view of memory in the system. Understanding this fundamental OS ab-
straction of memory is key to understanding how memory is virtualized.

The address space of a process contains all of the memory state of the
running program. For example, the code of the program (the instruc-
tions) have to live in memory somewhere, and thus they are in the ad-
dress space. The program, while it is running, uses a stack to keep track
of where it is in the function call chain as well as to allocate local variables
and pass parameters and return values to and from routines. Finally, the
heap is used for dynamically-allocated, user-managed memory, such as
that you might receive from a call to malloc() in C or new in an object-
oriented language such as C++ or Java. Of course, there are other things
in there too (e.g., statically-initialized variables), but for now let us just
assume those three components: code, stack, and heap.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

http://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

Types of memory
THE ABSTRACTION: ADDRESS SPACES 3

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Figure 13.3: An Example Address Space

In the diagram, there are three processes (A, B, and C) and each of
them have a small part of the 512KB physical memory carved out for
them. Assuming a single CPU, the OS chooses to run one of the processes
(say A), while the others (B and C) sit in the ready queue waiting to run.

As time sharing became more popular, you can probably guess that
new demands were placed on the operating system. In particular, allow-
ing multiple programs to reside concurrently in memory makes protec-
tion an important issue; you don’t want a process to be able to read, or
worse, write some other process’s memory.

13.3 The Address Space

However, we have to keep those pesky users in mind, and doing so
requires the OS to create an easy to use abstraction of physical memory.
We call this abstraction the address space, and it is the running program’s
view of memory in the system. Understanding this fundamental OS ab-
straction of memory is key to understanding how memory is virtualized.

The address space of a process contains all of the memory state of the
running program. For example, the code of the program (the instruc-
tions) have to live in memory somewhere, and thus they are in the ad-
dress space. The program, while it is running, uses a stack to keep track
of where it is in the function call chain as well as to allocate local variables
and pass parameters and return values to and from routines. Finally, the
heap is used for dynamically-allocated, user-managed memory, such as
that you might receive from a call to malloc() in C or new in an object-
oriented language such as C++ or Java. Of course, there are other things
in there too (e.g., statically-initialized variables), but for now let us just
assume those three components: code, stack, and heap.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Stack: Short-lived memory. Allocations
and deallocations are managed implicitly
(e.g., by the compiler), not by the
programmer.

Heap: Long-lived memory. Allocations
and deallocations are explicitly handled
by the programmer.

Examples

14

Interlude: Memory API

In this interlude, we discuss the memory allocation interfaces in UNIX

systems. The interfaces provided are quite simple, and hence the chapter
is short and to the point1. The main problem we address is this:

CRUX: HOW TO ALLOCATE AND MANAGE MEMORY

In UNIX/C programs, understanding how to allocate and manage
memory is critical in building robust and reliable software. What inter-
faces are commonly used? What mistakes should be avoided?

14.1 Types of Memory

In running a C program, there are two types of memory that are allo-
cated. The first is called stack memory, and allocations and deallocations
of it are managed implicitly by the compiler for you, the programmer; for
this reason it is sometimes called automatic memory.

Declaring memory on the stack in C is easy. For example, let’s say you
need some space in a function func() for an integer, called x. To declare
such a piece of memory, you just do something like this:

void func() {
int x; // declares an integer on the stack
...

}

The compiler does the rest, making sure to make space on the stack
when you call into func(). When your return from the function, the
compiler deallocates the memory for you; thus, if you want some infor-
mation to live beyond the call invocation, you had better not leave that
information on the stack.

It is this need for long-lived memory that gets us to the second type
of memory, called heap memory, where all allocations and deallocations

1Indeed, we hope all chapters are! But this one is shorter and pointier, we think.

1

Examples

2 INTERLUDE: MEMORY API

are explicitly handled by you, the programmer. A heavy responsibility,
no doubt! And certainly the cause of many bugs. But if you are careful
and pay attention, you will use such interfaces correctly and without too
much trouble. Here is an example of how one might allocate a pointer to
an integer on the heap:

void func() {
int *x = (int *) malloc(sizeof(int));
...

}

A couple of notes about this small code snippet. First, you might no-
tice that both stack and heap allocation occur on this line: first the com-
piler knows to make room for a pointer to an integer when it sees your
declaration of said pointer (int *x); subsequently, when the program
calls malloc(), it requests space for an integer on the heap; the routine
returns the address of such an integer (upon success, or NULL on failure),
which is then stored on the stack for use by the program.

Because of its explicit nature, and because of its more varied usage,
heap memory presents more challenges to both users and systems. Thus,
it is the focus of the remainder of our discussion.

14.2 The malloc() Call

The malloc() call is quite simple: you pass it a size asking for some
room on the heap, and it either succeeds and gives you back a pointer to
the newly-allocated space, or fails and returns NULL2.

The manual page shows what you need to do to use malloc; type man
malloc at the command line and you will see:

#include <stdlib.h>
...
void *malloc(size_t size);

From this information, you can see that all you need to do is include
the header file stdlib.h to use malloc. In fact, you don’t really need to
even do this, as the C library, which all C programs link with by default,
has the code for malloc() inside of it; adding the header just lets the
compiler check whether you are calling malloc() correctly (e.g., passing
the right number of arguments to it, of the right type).

The single parameter malloc() takes is of type size t which sim-
ply describes how many bytes you need. However, most programmers
do not type in a number here directly (such as 10); indeed, it would be
considered poor form to do so. Instead, various routines and macros are
utilized. For example, to allocate space for a double-precision floating
point value, you simply do this:

double *d = (double *) malloc(sizeof(double));

2Note that NULL in C isn’t really anything special at all, just a macro for the value zero.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

Every address you see is virtual

http://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

6 THE ABSTRACTION: ADDRESS SPACES

ASIDE: EVERY ADDRESS YOU SEE IS VIRTUAL

Ever write a C program that prints out a pointer? The value you see
(some large number, often printed in hexadecimal), is a virtual address.
Ever wonder where the code of your program is found? You can print
that out too, and yes, if you can print it, it also is a virtual address. In
fact, any address you can see as a programmer of a user-level program
is a virtual address. It’s only the OS, through its tricky techniques of
virtualizing memory, that knows where in the physical memory of the
machine these instructions and data values lie. So never forget: if you
print out an address in a program, it’s a virtual one, an illusion of how
things are laid out in memory; only the OS (and the hardware) knows the
real truth.

Here’s a little program that prints out the locations of the main() rou-
tine (where code lives), the value of a heap-allocated value returned from
malloc(), and the location of an integer on the stack:

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(int argc, char *argv[]) {
4 printf("location of code : %p\n", (void *) main);
5 printf("location of heap : %p\n", (void *) malloc(1));
6 int x = 3;
7 printf("location of stack : %p\n", (void *) &x);
8 return x;
9 }

When run on a 64-bit Mac OS X machine, we get the following output:

location of code : 0x1095afe50
location of heap : 0x1096008c0
location of stack : 0x7fff691aea64

From this, you can see that code comes first in the address space, then
the heap, and the stack is all the way at the other end of this large virtual
space. All of these addresses are virtual, and will be translated by the OS
and hardware in order to fetch values from their true physical locations.

In the next chapters, we’ll focus our exploration on the basic mecha-
nisms needed to virtualize memory, including hardware and operating
systems support. We’ll also investigate some of the more relevant poli-
cies that you’ll encounter in operating systems, including how to manage
free space and which pages to kick out of memory when you run low on
space. In doing so, we’ll build up your understanding of how a modern
virtual memory system really works3.

3Or, we’ll convince you to drop the course. But hold on; if you make it through VM, you’ll
likely make it all the way!

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

Paging

Basic problem with allocating contiguous blocks of memory
for processes

Determining the size of memory blocks is difficult because
different processes have different memory requirements.

Paging: physical address space is allowed to be non-contiguous

Paging

Basic paging method

Divide physical memory into
fixed-sized blocks called
frames (size is power of 2,
between 512 bytes and 16 MB).

Divide logical memory into
blocks of same size called
pages.

Paging

Basic paging method

Any page can be assigned to
any free page frame

External fragmentation is
eliminated

Internal fragmentation is at most
a part of one page per process

Paging example: 32-byte memory and
4-byte pages

Paging example: 32-byte memory and 4-
byte pages (with internal fragmentation)

m

m

New process is executed: free frames before
and after allocation

Before allocation After allocation

free
free
free

free

free

free

Paging Limitations - Space

Page table might need a lot of space

Registers can be used to store page tables but they are
only feasible for small tables (e.g., 256 entries).

Modern computers have page tables of 1 million
entries.

Such large page tables are kept in main memory and a
page-table base register (PTBR) points to the table.

Protection

Memory protection: each frame has a protection bit.

Valid-invalid bit for each entry in the page table:

“valid” indicates that the associated page is in the
process’ logical address space, and is thus a legal
page.

“invalid” indicates that the page is not in the process’
logical address space.

Protection

page 0

page 1

page 2

page 3

page 4

page 5

16,383

A few more useful aspects of paging

• Shared pages

• Copy-on-write

• Memory-mapped files

Shared Pages

Paging allows for the possibility of sharing common
code.

Sharing pages is useful in time-sharing environments
(e.g., 40 users, each executing a text editor).

OS can implement shared-memory (IPC) using
shared pages.

Example of
shared Pages

Copy-on-Write (COW), e.g. on fork()

 copy-on-write (COW), e.g., on fork()

• Instead of copying all pages, create shared mappings
of parent pages in child address space

A. Make shared mappings read-only in child space

B. When child does a write, a protection fault
occurs, OS takes over and can then copy the
page and resume child.

Segmentation

• Memory-management scheme that supports the
user’s view of memory.

• View memory as a collection of variable-sized
segments, with no necessary ordering among
segments.

Segmentation (a program)
• We think of a program as a main

program, a stack, a math library,
etc.

• Each module is referred to by
name

• In this view of a program, we
might not care whether the stack
is stored before or after the
sqrt() function.

Logical view of segmentationLogical view of segmentation

1

2

1
4

2

3

2

4
2

3

user space physical memory space

• For simplicity of
implementation, each
segment is addressed by
a segment number and
an offset:

<segment-number, offset>

Segmentation hardware

4

Segmentation Hardware
Segment tables:

Base: starting address of
the segment in physical
memory.

Limit: length of the
segment.

Additional metadata
includes protection bits.

<segment-number, offset>

Example of segmentation
• Logical memory

divided into 5
segments.

• Segment 2 is 400
bytes long and begins
at location 4,300.

• Question: What
happens if there is a
reference to byte
1,222 of segment 0?

Some questions

How do paging and segmentation compare with
respect to the following issues?

• External fragmentation

• Internal fragmentation

• Ability to share code across processes

Some questions

Assuming a 1-KB page size, what are the page
numbers and offset for the following address:

A. 2375

B. 256

What are the physical addresses for the following logical addresses?

a. 0,430
b. 2,500

Some questions

Virtual Memory
CSE 4001

Content

• Demand paging

Virtual Memory
Separation of user
logical memory from
physical memory.

Programs can be
partially in memory
for execution

Logical address
space can be much
larger than physical
address space disk

Implementation

Virtual memory can be implemented via:

• Demand paging

• Demand segmentation

Demand paging
Bring a page into
memory only when it is
needed:

Less I/O needed

Less memory needs

Faster response

More users

Demand paging

Demand paging is similar to a paging
system with swapping, where processes
reside in secondary memory (e.g., disk).

Lazy swapper: only bring pages when
they are needed.

In the context of demand paging, we use
the term pager instead of swapper.

Valid-Invalid Bit

Hardware support is needed to distinguish between the
pages that are in memory and the ones that are on the disk.

We can re-use the support provided by the valid-invalid bit in
the page table.

• Bit == valid then page is in memory (and is valid).

• Bit == invalid then page is either not a valid one for that
process or is valid but is currently in disk (pager needs to
bring it to main memory).

Valid-Invalid Bit

Marking a page invalid
has no effect if the
process never attempts
to access that page.

Pages that are in
memory are called
memory resident.

Page Faults
What happens when a process tries to access non-resident
pages?

• Page Fault: A trap that results because the OS’s failed to
bring the desired page into memory.

The first step is to look at another
table to decide whether the actual
reference is invalid (not in the
process address space) or is
simply not in memory.

1

Terminate process if reference is
invalid. Otherwise, find page in disk.

2

At this point the OS needs to find a
free frame (from a free-frame list).

4

Locality in memory-reference
pattern

Execution time
Pa

ge
 n

um
be

rs

Theoretically, some programs
could access several new
pages with a single
instruction.

In this case, system
performance could be
seriously degraded.

Luckily, this behavior is
unlikely.

■  Program structure
●  Int[128,128] data;
●  Each row is stored in one page
●  Program 1

 for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults  

●  Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i,j] = 0;

 
128 page faults

Writing code with demand-paging in mind…

Thrashing
• The process does not have “enough” pages, the page-

fault rate is very high and CPU becomes sub-utilized.

• The OS wants to maximize CPU utilization. As a result, it
decides that it is a good idea to increase the degree of
multiprogramming by adding new processes to the
system.

• Thrashing: A process is spending more time paging that
executing.

Thrashing
• The OS wants to maximize CPU utilization. As a result, it decides

that it is a good idea to increase the degree of multiprogramming
by adding new processes to the system.

What happens is there is no free frame?

What happens is there is no free frame?

Page-Replacement Algorithms

• FIFO algorithm

• Optimal page-replacement algorithm

• Least-recently used (LRU) algorithm

• Second-chance algorithm (clock)

414 Chapter 9 Virtual Memory

7 7

0

7

0

1

page frames

reference string

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

7

1

2

7

0

2

7

0

1

0

1

3

0

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

1

2

Figure 9.12 FIFO page-replacement algorithm.

fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 9.12. Every time a fault occurs, we show which pages are in our three
frames. There are fifteen faults altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new
one, a fault occurs almost immediately to retrieve the active page. Some other
page must be replaced to bring the active page back into memory. Thus, a bad
replacement choice increases the page-fault rate and slows process execution.
It does not, however, cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-replacement
algorithm, consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Figure 9.13 shows the curve of page faults for this reference string versus the
number of available frames. Notice that the number of faults for four frames
(ten) is greater than the number of faults for three frames (nine)! This most
unexpected result is known as Belady’s anomaly: for some page-replacement
algorithms, the page-fault rate may increase as the number of allocated frames
increases. We would expect that giving more memory to a process would
improve its performance. In some early research, investigators noticed that
this assumption was not always true. Belady’s anomaly was discovered as a
result.

9.4.3 Optimal Page Replacement

One result of the discovery of Belady’s anomaly was the search for an optimal
page-replacement algorithm—the algorithm that has the lowest page-fault
rate of all algorithms and will never suffer from Belady’s anomaly. Such an
algorithm does exist and has been called OPT or MIN. It is simply this:

Replace the page that will not be used for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible page-
fault rate for a fixed number of frames.

FIFO Algorithms

BEYOND PHYSICAL MEMORY: POLICIES 5

Resulting
Access Hit/Miss? Evict Cache State

0 Miss First-in→ 0
1 Miss First-in→ 0, 1
2 Miss First-in→ 0, 1, 2
0 Hit First-in→ 0, 1, 2
1 Hit First-in→ 0, 1, 2
3 Miss 0 First-in→ 1, 2, 3
0 Miss 1 First-in→ 2, 3, 0
3 Hit First-in→ 2, 3, 0
1 Miss 2 First-in→ 3, 0, 1
2 Miss 3 First-in→ 0, 1, 2
1 Hit First-in→ 0, 1, 2

Figure 22.2: Tracing The FIFO Policy

that was the “first one” in (the cache state in the figure is kept in FIFO
order, with the first-in page on the left), which is page 0. Unfortunately,
our next access is to page 0, causing another miss and replacement (of
page 1). We then hit on page 3, but miss on 1 and 2, and finally hit on 3.

Comparing FIFO to optimal, FIFO does notably worse: a 36.4% hit
rate (or 57.1% excluding compulsory misses). FIFO simply can’t deter-
mine the importance of blocks: even though page 0 had been accessed
a number of times, FIFO still kicks it out, simply because it was the first
one brought into memory.

ASIDE: BELADY’S ANOMALY

Belady (of the optimal policy) and colleagues found an interesting refer-
ence stream that behaved a little unexpectedly [BNS69]. The memory-
reference stream: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5. The replacement policy
they were studying was FIFO. The interesting part: how the cache hit
rate changed when moving from a cache size of 3 to 4 pages.

In general, you would expect the cache hit rate to increase (get better)
when the cache gets larger. But in this case, with FIFO, it gets worse! Cal-
culate the hits and misses yourself and see. This odd behavior is generally
referred to as Belady’s Anomaly (to the chagrin of his co-authors).

Some other policies, such as LRU, don’t suffer from this problem. Can
you guess why? As it turns out, LRU has what is known as a stack prop-
erty [M+70]. For algorithms with this property, a cache of size N + 1
naturally includes the contents of a cache of size N . Thus, when increas-
ing the cache size, hit rate will either stay the same or improve. FIFO and
Random (among others) clearly do not obey the stack property, and thus
are susceptible to anomalous behavior.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

FIFO Algorithms

Belady’s anomaly

Paper: L. A. Belady, R. A. Nelson, G. S. Shedler, An anomaly in space-time char- acteristics of certain
programs running in paging machine, Comm. ACM , 12, 1 (1969) 349–353.

9.4 Page Replacement 415

nu
m

be
r

of
 p

ag
e

fa
ul

ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because page 7 will not be used until reference 18, whereas
page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 6.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7

0

1

2

0

1

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 9.14 Optimal page-replacement algorithm.

9.4 Page Replacement 415

nu
m

be
r

of
 p

ag
e

fa
ul

ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because page 7 will not be used until reference 18, whereas
page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 6.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7

0

1

2

0

1

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 9.14 Optimal page-replacement algorithm.

Optimal Algorithm
Policy: Replace the page that will not be used for the
longest period of time.

Optimal Algorithm

BEYOND PHYSICAL MEMORY: POLICIES 3

TIP: COMPARING AGAINST OPTIMAL IS USEFUL

Although optimal is not very practical as a real policy, it is incredibly
useful as a comparison point in simulation or other studies. Saying that
your fancy new algorithm has a 80% hit rate isn’t meaningful in isolation;
saying that optimal achieves an 82% hit rate (and thus your new approach
is quite close to optimal) makes the result more meaningful and gives it
context. Thus, in any study you perform, knowing what the optimal is
lets you perform a better comparison, showing how much improvement
is still possible, and also when you can stop making your policy better,
because it is close enough to the ideal [AD03].

Hopefully, the intuition behind the optimal policy makes sense. Think
about it like this: if you have to throw out some page, why not throw
out the one that is needed the furthest from now? By doing so, you are
essentially saying that all the other pages in the cache are more important
than the one furthest out. The reason this is true is simple: you will refer
to the other pages before you refer to the one furthest out.

Let’s trace through a simple example to understand the decisions the
optimal policy makes. Assume a program accesses the following stream
of virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1. Figure 22.1 shows the behavior
of optimal, assuming a cache that fits three pages.

In the figure, you can see the following actions. Not surprisingly, the
first three accesses are misses, as the cache begins in an empty state; such
a miss is sometimes referred to as a cold-start miss (or compulsory miss).
Then we refer again to pages 0 and 1, which both hit in the cache. Finally,
we reach another miss (to page 3), but this time the cache is full; a re-
placement must take place! Which begs the question: which page should
we replace? With the optimal policy, we examine the future for each page
currently in the cache (0, 1, and 2), and see that 0 is accessed almost imme-
diately, 1 is accessed a little later, and 2 is accessed furthest in the future.
Thus the optimal policy has an easy choice: evict page 2, resulting in
pages 0, 1, and 3 in the cache. The next three references are hits, but then

Resulting
Access Hit/Miss? Evict Cache State

0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 2 0, 1, 3
0 Hit 0, 1, 3
3 Hit 0, 1, 3
1 Hit 0, 1, 3
2 Miss 3 0, 1, 2
1 Hit 0, 1, 2

Figure 22.1: Tracing The Optimal Policy

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

LRU AlgorithmBEYOND PHYSICAL MEMORY: POLICIES 7

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU→ 0
1 Miss LRU→ 0, 1
2 Miss LRU→ 0, 1, 2
0 Hit LRU→ 1, 2, 0
1 Hit LRU→ 2, 0, 1
3 Miss 2 LRU→ 0, 1, 3
0 Hit LRU→ 1, 3, 0
3 Hit LRU→ 1, 0, 3
1 Hit LRU→ 0, 3, 1
2 Miss 0 LRU→ 3, 1, 2
1 Hit LRU→ 3, 2, 1

Figure 22.5: Tracing The LRU Policy

22.5 Using History: LRU

Unfortunately, any policy as simple as FIFO or Random is likely to
have a common problem: it might kick out an important page, one that
is about to be referenced again. FIFO kicks out the page that was first
brought in; if this happens to be a page with important code or data
structures upon it, it gets thrown out anyhow, even though it will soon be
paged back in. Thus, FIFO, Random, and similar policies are not likely to
approach optimal; something smarter is needed.

As we did with scheduling policy, to improve our guess at the future,
we once again lean on the past and use history as our guide. For example,
if a program has accessed a page in the near past, it is likely to access it
again in the near future.

One type of historical information a page-replacement policy could
use is frequency; if a page has been accessed many times, perhaps it
should not be replaced as it clearly has some value. A more commonly-
used property of a page is its recency of access; the more recently a page
has been accessed, perhaps the more likely it will be accessed again.

This family of policies is based on what people refer to as the prin-
ciple of locality [D70], which basically is just an observation about pro-
grams and their behavior. What this principle says, quite simply, is that
programs tend to access certain code sequences (e.g., in a loop) and data
structures (e.g., an array accessed by the loop) quite frequently; we should
thus try to use history to figure out which pages are important, and keep
those pages in memory when it comes to eviction time.

And thus, a family of simple historically-based algorithms are born.
The Least-Frequently-Used (LFU) policy replaces the least-frequently-
used page when an eviction must take place. Similarly, the Least-Recently-
Used (LRU) policy replaces the least-recently-used page. These algo-
rithms are easy to remember: once you know the name, you know exactly
what it does, which is an excellent property for a name.

To better understand LRU, let’s examine how LRU does on our exam-

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Second-chance
Algorithm

9.4 Page Replacement 419

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……

circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……

Figure 9.17 Second-chance (clock) page-replacement algorithm.

second chances). In addition, if a page is used often enough to keep its reference
bit set, it will never be replaced.

One way to implement the second-chance algorithm (sometimes referred
to as the clock algorithm) is as a circular queue. A pointer (that is, a hand on
the clock) indicates which page is to be replaced next. When a frame is needed,
the pointer advances until it finds a page with a 0 reference bit. As it advances,
it clears the reference bits (Figure 9.17). Once a victim page is found, the page
is replaced, and the new page is inserted in the circular queue in that position.
Notice that, in the worst case, when all bits are set, the pointer cycles through
the whole queue, giving each page a second chance. It clears all the reference
bits before selecting the next page for replacement. Second-chance replacement
degenerates to FIFO replacement if all bits are set.

9.4.5.3 Enhanced Second-Chance Algorithm

We can enhance the second-chance algorithm by considering the reference bit
and the modify bit (described in Section 9.4.1) as an ordered pair. With these
two bits, we have the following four possible classes:

1. (0, 0) neither recently used nor modified—best page to replace

2. (0, 1) not recently used but modified—not quite as good, because the
page will need to be written out before replacement

• Whenever a page is referenced, the
hardware sets the reference bit to 1.

• The O.S. sets the reference bit to 0
according to some policy.

• Evicting is free if page is not dirty.

- Clock prioritize scan for pages
that are both unused and clean.

Working-set Model
9.6 Thrashing 429

page reference table
. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .

∆

t1
WS(t1) = {1,2,5,6,7}

∆

t2
WS(t2) = {3,4}

Figure 9.20 Working-set model.

that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process’s pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization. The
difficulty with the working-set model is keeping track of the working set. The
working-set window is a moving window. At each memory reference, a new
reference appears at one end, and the oldest reference drops off the other end.
A page is in the working set if it is referenced anywhere in the working-set
window.

We can approximate the working-set model with a fixed-interval timer
interrupt and a reference bit. For example, assume that ! equals 10,000
references and that we can cause a timer interrupt every 5,000 references.
When we get a timer interrupt, we copy and clear the reference-bit values for
each page. Thus, if a page fault occurs, we can examine the current reference
bit and two in-memory bits to determine whether a page was used within the
last 10,000 to 15,000 references. If it was used, at least one of these bits will be
on. If it has not been used, these bits will be off. Pages with at least one bit on
will be considered to be in the working set.

Note that this arrangement is not entirely accurate, because we cannot
tell where, within an interval of 5,000, a reference occurred. We can reduce the
uncertainty by increasing the number of history bits and the frequency of inter-
rupts (for example, 10 bits and interrupts every 1,000 references). However, the
cost to service these more frequent interrupts will be correspondingly higher.

9.6.3 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set can
be useful for prepaging (Section 9.9.1), but it seems a clumsy way to control
thrashing. A strategy that uses the page-fault frequency (PFF) takes a more
direct approach.

The specific problem is how to prevent thrashing. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Conversely, if the page-fault
rate is too low, then the process may have too many frames. We can establish
upper and lower bounds on the desired page-fault rate (Figure 9.21). If the
actual page-fault rate exceeds the upper limit, we allocate the process another

Working Sets and Page-fault frequency

9.7 Memory-Mapped Files 431

WORKING SETS AND PAGE-FAULT RATES

There is a direct relationship between the working set of a process and its
page-fault rate. Typically, as shown in Figure 9.20, the working set of a process
changes over time as references to data and code sections move from one
locality to another. Assuming there is sufficient memory to store the working
set of a process (that is, the process is not thrashing), the page-fault rate of
the process will transition between peaks and valleys over time. This general
behavior is shown below:

1

0
time

working set

page
fault
rate

A peak in the page-fault rate occurs when we begin demand-paging a new
locality. However, once the working set of this new locality is in memory,
the page-fault rate falls. When the process moves to a new working set, the
page-fault rate rises toward a peak once again, returning to a lower rate once
the new working set is loaded into memory. The span of time between the
start of one peak and the start of the next peak represents the transition from
one working set to another.

in more than a page-sized chunk of memory at a time). Subsequent reads and
writes to the file are handled as routine memory accesses. Manipulating files
through memory rather than incurring the overhead of using the read() and
write() system calls simplifies and speeds up file access and usage.

Note that writes to the file mapped in memory are not necessarily
immediate (synchronous) writes to the file on disk. Some systems may choose
to update the physical file when the operating system periodically checks
whether the page in memory has been modified. When the file is closed, all the
memory-mapped data are written back to disk and removed from the virtual
memory of the process.

Some operating systems provide memory mapping only through a specific
system call and use the standard system calls to perform all other file I/O.
However, some systems choose to memory-map a file regardless of whether
the file was specified as memory-mapped. Let’s take Solaris as an example. If
a file is specified as memory-mapped (using the mmap() system call), Solaris
maps the file into the address space of the process. If a file is opened and
accessed using ordinary system calls, such as open(), read(), and write(),

