Pagmg

= 4001

Content

Virtual address space
Basic paging mechanism
Limitations

Protection

Shared pages

OKB
the code segment:

Exam p | e ad d reSS S pace KR Program Code where instructions live

the heap segment:
contains malloc’'d data
dynamic data structures

(it grows downward)

2KB

(it grows upward)
the stack segment:
contains local variables
arguments to routines,
return values, etc.

15KB

16KB
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

Types of memory

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

|

(free)

Stack

the code segment:
where instructions live

the heap segment:
contains malloc’d data
dynamic data structures

(it grows downward)

(it grows upward)
the stack segment:
contains local variables
arguments to routines,
return values, etc.

Stack: Short-lived memory. Allocations
and deallocations are managed implicitly
(e.qg., by the compiler), not by the
orogrammer.

Heap: Long-lived memory. Allocations
and deallocations are explicitly handled
by the programmer.

Examples

vold func ()
int x;

Examples

1

vold func () |
1nt *Xx

(1

(1nt *) malloc(sizeof

B

(1n

Every address you see Is virtual

Here’s a little program that prints out the locations of the main () rou-
tine (where code lives), the value of a heap-allocated value returned from
malloc (), and the location of an integer on the stack:

return x;

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(int argc, char xargv[]) {

4 printf ("location of code : %p\n", (void) main);

5 printf ("location of heap : %p\n", (void *) malloc(l));
6 int x = 3;

y printf ("location of stack : %$p\n", (void #*) &x);

3

9

J

When run on a 64-bit Mac OS X machine, we get the following output:

location of code : O0x1095afeb0
location of heap : 0x1096008cO0
location of stack : Ox7fff691laeacni

http://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

Paging

Basic problem with allocating contiguous blocks of memory
for processes

Determining the size of memory blocks is difficult because
different processes have different memory requirements.

Paging: physical address space Is allowed to be non-contiguous

Paging

frame

. . number
Basic paging method T O
.. : . O] 1
- Divide pnhysical memory Into page | [1| page 0
fixed-sized blocks called page 2 :23 3 2
frames (size is power of 2, hage 3 age table 3| page 2
memory
- Divide logical memory into °
blocks of same size called 6
pages. 7| page 3

physical
memory

Paging

frame

. . number
Basic paging method " :
: Of 1
.~ Any page can be assigned to page 1 . 1| page 0
any free page frame page 2 N 2
: - page 3 tabl 3| page 2
External fragmentation is e
C logical 4| page 1
eliminated memory
5
Internal fragmentation is at most 6
a part of one page per process i
physical

memo!x

Paging example: 32-byte memory and :

4-pyte pages
\ D §

. 16

20

Q0
T 03 J|l—x— -

o[[]o]

page table

24

- TQ -0 O 0D

28

VO I3I33|=—X—=TQ -0 T

N oRRo©RINOOOBlLON =O

logical memory

physical memory

Paging example: 32-byte memory ana 4- o
byte pages (with internal fragmentation)

/> T

20

O OONOO O HILON =0

page table

24

5> Q -~ DI O TN

28

logical memory

physical memory

New process Is executed: free frames before
and after allocation

free-frame list free-frame list

14 15
13 131free

18
20 14 |free

15

@) 15 :free < D

page O 16 page O
page 1 page 1

page 2 17 page 2
page 3 page 3

new process 18 new process

<« » ree < »

19 14

0
113
2|18
3120

21 new-process page table 21

20 [free

Before allocation After allocation

Paging Limitations - Space

- Page table might need a lot of space

~ Registers can be used to store page tables but they are
only feasible for small tables (e.qg., 256 entries).

- Modern computers have page tables of 1 million
entries.

» Such large page tables are kept in main memory and a
page-table base register (PTBR) points to the table.

Protection

- Memory protection: each frame has a protection bit.
- Valid-invalid bit for each entry in the page table:

> “valld” Indicates that the assoclated page Is in the
orocess’ logical address space, and Is thus a legal

page.

> “Invalid” Indicates that the page Is not In the process
logical address space.

Protecti °
’
2| page O
00000 frame number valid—invalid bit
page 0 \ Z 3| page 1
O [B28IRY
page 1 131y 4| page 2
2 |RauImY
age 2 5
Pag 3 |
page 3 418 |V 6
5 BSEIRY
page 4 610 i 7| page3
12,287 r==a=eeees page table
: 9| page 5
— :
16,383 '========--- 2
page n

A tfew more useful aspects of paging

e Shared pages
o Copy-on-write

 Memory-mapped files

Shared Pages

- Paging allows tor the possibility of sharing common
code.

- Sharing pages is useful in time-sharing environments
(e.qg., 40 users, each executing a text editor).

- OS can implement shared-memory (IPC) using
shared pages.

Example of
shared Pages

ed 1

ed 2

ed 3

data 1

process P,

ed 1

ed 2

ed 3

data 3

process P,

- N |HS|W®

page table
for P,

NS | W

page table
for P,

ed 1

ed 2

ed 3

data 2

process P,

N O | A~ W®

page table
for P,

0
1| datai
2| data3
[
2 ed 2
5
6] ed3
/| dataZ2
8
9

10

11

Copy-on-Write (COW), e.g. on fork()

copy-on-write (COW), e.g., on fork()

* |nstead of copying all pages, create shared mappings
of parent pages in child address space

A. Make shared mappings read-only in child space

B. When child does a write, a protection tault
occurs, OS takes over and can then copy the
page and resume child.

Segmentation

 Memory-management scheme that supports the
user’s view of memory.

* View memory as a collection of variable-sizeo
segments, with no necessary ordering among
segments.

Segmentation (a program)

* We think of a program as a main
orogram, a stack, a math library,
etc.

 Each module iIs referred to by
name

* |n this view of a program, we
might not care whether the stack
'S stored before or after the
sgrt () function.

subroutine

stack

Sqart

symbol
table

main

program

logical address

| ogical view of segmentation

* For simplicity of
Implementation, eacnh
segment Is addressed by >
a segment number anc . >
an offset: 4

<segment-number, offset>

user space physical memory space

Segmentation Hardware

Segment tables:

Base: starting address of
the segment in physical
memory.

Limit: length of the
segment.

Additional metadata
iINncludes protection bits.

<segment-number, offset>

CPU

-+

limit |base

segment
table

yes

Ve

Nno

 J
trap: addressing error

physical memory

ntation

Example of seg

subroutine stack
. 1400
* Logical memory S segment o
divided into 5 mbor 2400
segments segment ¢ e
| limit | base
. Sqrt segment 4 O| 1000 | 1400 2500
e Segment 2 is 400 - 1| 400 | 600
pytes long and begins e 2 1o | 3200 segment 3

at location 4,300.

segment table 4300

segment 1 segment 2 segment 2
4700

° QueStiOn: What logical add;ess space segment 4
happens if there Is a oo
reference to byte 6300

segment 1

1,222 of segment 07 6700

physical memory

Some guestions

HOW dO paging and segmentation compare with
respect to the following issues?

o External fragmentation
* |nternal fragmentation

* ADbIlity to share code across processes

Some guestions

Assuming a 1-KB page size, what are the page
numbers and offset for the following address:

A. 2375

B. 250

Some guestions

Segment Base Length
0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses®

a. 0,430
0. 2,500

Virtual Memory
CSE 4001

Content

 Demand paging

Virtual Memory

page O

. Separation of user page 1
logical memory from page 2 N
glci y ct—
onhysical memory. >

partially in memory
for execution

. Programs can be \ SN

[\

- Logical address
space can be much memory 1

larger than physical . |
page v physical adisk
address space memory

virtual
memory

Implementation

Virtual memory can be implemented via:
 Demand paging

 Demand segmentation

Demand paging

Bring a page Iinto
memory only when it Is
needed:

- Less I/O needed
- Less memory needs
- Faster response

. More users

program

A

program
B

main
memory

swap out

swap in

12

16

20

13

1174

21

10

14

18

22

ARV,

11

15

19

23

Demand paging

. Demand paging Is similar to a paging
system with swapping, where processes
reside In secondary memory (e.g., disk).

- Lazy swapper: only bring pages when
they are needed.

. In the context of demand paging, we use
the term pager instead of swapper.

progra

9
A

m

Valia-lnvalia Bit

. Hardware support Is needed to distinguish between the
pages that are In memory and the ones that are on the disk.

We can re-use the support provided by the valid-invalid bit In
the page tapble.

e Bit == valid then page is in memory (and is valid).

e Bit == Invalid then page Is either not a valid one for that
orocess or Is valid but is currently in disk (pager needs to
bring it to main memory).

Valia-Invalia Bit

0
1
y . lid—invalid °
' ' , 1 & frame bit 3
- Marking a page invalid B N =
has no effect If the s[D 1] 5
2|1 6 (v
process never attempts 4 °© 3| d -
5| F 4 |l
to access that page. B s o v Z
6 i
, / H 7 i 9 F
- Pages that are in o pagetable
memory are called e »
memory resident. 12
13
14
15

physical memory

Page raults

What happens when a process tries to access non-resident
nages”

o Page Fault: A trap that results because the OS’s failed to
poring the desired page Into memory.

load M

page is on
backing store

operating
system
reference
trap
i

restart page table

iInstruction
free frame
reset page
table
physical

memory

N

bring in
missing page

\/

load M

operating
system

reference

O,

restart
iInstruction

page table

O

reset page

table

page is on
backing store

A
\/

The first step is to look at another
table to decide whether the actual

reference is invalid (not in the
orocess address space) or IS
simply not iIn memaory.

load M

page is on
backing store

operating
system
reference
trap
i

restart page table

iInstruction
free frame
reset page
table
physical

memory

N

bring in
missing page

\/

load M

page is on
backing store

operating

system

reference

D
O,

restart
iInstruction

trap

| page table

free frame

5

Terminate process if reference Is
invalid. Otherwise, find page in disk.

physical
memory

a

O

bring in
ISSing page

\/

load M

page is on
backing store

operating
system
reference
trap
i

restart page table

iInstruction
free frame
reset page
table
physical

memory

N

bring in
missing page

\/

page is on
backing store

—{ At this point the OS needs to find a
cperating | free frame (from a free-frame list).

reference
trap

D -

load M i

restart page table
Instruction
free frame

reset page bring in
table missing page

physical
memory

load M

page is on
backing store

operating
system
reference
trap
i

restart page table

iInstruction
free frame
reset page
table
physical

memory

N

bring in
missing page

\/

| ocality In memory-reference
pattern

i YA |y
' m Ummm

B PTiTa ..

- I'neoretically, some programs :
could access several new
pages with a single
instruction.

1l mn i ’fl

R »'\J

~ In this case, system
performance could be
seriously degraded.

Page numbers

o Luckily, this behavior Is
unlikely.

|Execut|on tlme

Writing code with demand-paging in mind...

B Program structure
® Int[128,128] data;
® Each row is stored in one page
® Program 1

0; 1 < 128; 1++)
datal[i,j] = 0;

128 x 128 = 16,384 page faults

® Program 2
for (1 = 0; 1 < 128; 1++)

for (7 = 0;, 7 < 128; J++)
datal[i,j] = 0;

128 page faults

Thrasning

* |[he process does not have "enough” pages, the page-
fault rate is very high and CPU becomes sub-utilized.

 The OS wants to maximize CPU utilization. As a result, it
decides that it iIs a good idea to increase the degree of
multiprogramming by adding new processes to the
system.

* [hrashing: A process Is spending more time paging that
executing.

Thrasning

 The OS wants to maximize CPU utilization. As a result, it decides
that it Is a good idea to increase the degree of multiprogramming
by adding new processes to the system.

‘ thrashing

CPU utilization

degree of multiprogramming

What happens is there is no free frame”

page is on
backing store
- -
\ /
operating
system
reference

trap

D -

load M i

O,

restart page table

iInstruction
-- 57 e O——
reset page bring in
table missing page

physical
memory

What happens is there is no free frame”

page is on
backing store
- -
\ /
operating
system
reference

trap

D -

load M i

O,

restart page table

iInstruction
-- 5T e O——
reset page bring in
table missing page

physical
memory

frame valid—invalid bit
st -
swap out
change victim
0 n to invalid ®page

f

. @ f{ victim

reset page
table for
page table
new page @ swap
desired
page In

physical
memory

\/

Page-Replacement Algorithms

FIFO algorithm
Optimal page-replacement algorithm
|_east-recently used (LRU) algorithm

Second-chance algorithm (clock)

FIFO Algorithms

reference string
/ 0 1 2 0 3 0 4 2 3 0 3 2 1

71 17| 7] |2 o| |2| (4] |4| 4] |0 0
0| |0] |0 3| (3| [3] |2]| [2] |2 1
1| |1 1| (o] |o| |o]| |3] |83 3

page frames

FIFO Algorithms

Resulting
Access Hit/Miss? Evict Cache State
0 Miss First-in— 0
1 Miss First-in— 0,1
2 Miss First-in— 0,1, 2
0 Hit First-in— 0,1, 2
1 Hit First-in— 0,1, 2
3 Miss 0 First-in— 1,2,3
0 Miss 1 First-in— 2, 3,0
3 Hit First-in— 2,3,0
1 Miss 2 First-in— 3,0, 1
2 Miss 3 First-in— 0,1, 2
1 Hit First-in— 0,1, 2

b
b

number of page faults

Paper: L. A. Belady,
programs running Iin

Belady’s anomaly

— b b ek
NN A~ O

nNn B~ O 0 O

R. A. Nelson, G. S. S
paging machine, Co

2 3 4 5 6 7
number of frames

nedler, An anomaly in space-time char- acteristics of certain

mm. ACM , 12, 1 (1969) 349-353.

Optimal Algorithm

Policy: Replace the page that will not be used for the
longest period of time.

reference string
/7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7

7| |7] |[7] |2 2 2 2 2 7
O |0 |O 0 4 0 0 0
1] |1 3 3 3 1 1

page frames

Optimal Algorithm

Resulting
Access Hit/Miss? Evict Cache State
0 Miss 0
1 Miss 0,1
2 Miss 0,12
0 Hit 0,12
1 Hit 0,12
3 Miss 2 0,1,3
0 Hit 0,1,3
3 Hit 0,1,3
1 Hit 0,1,3
2 Miss 3 0,1, 2
1 Hit 0,1,2

b
b

LRU Algorithm

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU— 0O,1,62
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU— 0,1,3
0 Hit LRU— 1,3,0
3 Hit LRU— 1,0,3
1 Hit LRU— 0,3,1
2 Miss 0 LRU— 31,2
1 Hit LRU— 3,2,1

b
b

Second-chance
Algorithm

 \Whenever a page is referenced, the

hardware sets the reference bit to 1.

e The O.S. sets the reference bitto O
according to some policy.

e Evicting is free it page is not dirty.

- Clock prioritize scan for pages
that are both unused and clean.

reference pages

bits f\

0

0

next :’
victim 1

= & & e

v

_/

circular queue of pages

(a)

reference pages

bits f\
0
v
0
v
0
v
0
v
= 0
v
_/

circular queue of pages

(b)

Working-set Model

page reference table
,..2615777751623412344434344413234443444 ...

t t,
WS(t,) = {1,2,5,6,7) WS(t,) = {3,4)

Working Sets and Page-fault frequency

working set

pPage
fault
rate

time

