scheduling



THE CRUX: HOW TO DEVELOP SCHEDULING POLICY
How should we develop a basic framework for thinking about
scheduling policies? What are the key assumptions? What metrics are
important? What basic approaches have been used in the earliest of com-
puter systems?




@Rt \yOur prololem‘ with the
WOrKS for
1 C ﬂd with a

- “"Well, | found a sc
chickens. Buly

- spnerical
~ uniform

‘Q@s://q)sscztradeoff.wordpress.com/201 3/02/14/spherical-chickens-in-the-vacum/



https://nossotradeoff.wordpress.com/2013/02/14/spherical-chickens-in-the-vacum/

Initial (simplifying) assumptions

. Each job runs for the same amount of time.
. All jobs arrive at the same time.
. Once started, each job runs to completion.

. All jobs only use the CPU (i.e., they perform no 1/0O)
. The run-time of each job is known.

Ol = GO N =




0 20 40 60 80 100 120
Time

Figure 7.1: FIFO Simple Example



0 20 40 60 80 100 120
Time

Figure 7.2: Why FIFO Is Not That Great



Shortest Job First

B C A

0 20 40 60 80 100 120
Time

Figure 7.3: SJF Simple Example



Initial (simplifying) assumptions

1. Each job runs for the same amount of time.

. e WY o W &5 FTaWo X I 1 VaWalelt o' Wa Wi - K s % We V- \
o L E .v w. . — : — o o> 3 = 2 S PTRN (= o— aom - P TR~ lez E (= 3G By B YR O ORI

3. Once started, each job runs to completion.

4. All jobs only use the CPU (i.e., they perform no 1/0)
5. The run-time of each job is known.




Shortest Job First: different arrival times

[B,C arrive]

L

0 20 40 60 80 100 120
Time

Figure 7.4: SJF With Late Arrivals From B and C



Initial (simplifying) assumptions

1. Each job runs for the same amount of time.

TR B . o PV o o W L oW I 1. VaWalek o' Wa W - K o' We VSSS—— ot S
. oo /ol o e Ta— S = F v a ’v sy DR e o o 25 Fed N 3 3 o L e (= o= aom - el o > D o g EE e g o o - O OB — - ‘e

"
“,_‘ £ ;,AA., A ,_.9;,.\9 A Q.A Au" .

. 4 All jobs only use the CPU (1 e, they perform no 1/0)
5. The run-time of each job is known.




Shortest Time to Completion First

B,C arrive]
A.B C A

0 20 40 60 80 100 120
Time

Figure 7.5: STCF Simple Example



Time sharing and interactive systems

http://www.heathershumaker.com/blog/wp-content/uploads/2013/09/rule10_final-Conflict-1024x810.jpg


http://www.heathershumaker.com/blog/wp-content/uploads/2013/09/rule10_final-Conflict-1024x810.jpg

Metric for Interactive systems:

Tresponse — Tfi'rst'run — Tarrival




Interactive systems
A B C

I 1°r ;1

0 0 10 15 20 29 30
Time

Figure 7.6: SJF Again (Bad for Response Time)

ABCABCABCABCABC

i

10 15 20 25 30
Time

Figure 7.7: Round Robin (Good for Response Time)




Incorporating /O

0 20 40 60 80 100 120 140
Time

Figure 7.8: Poor Use of Resources



Overlap

T1P: OVERLAP ENABLES HIGHER UTILIZATION
When possible, overlap operations to maximize the utilization of sys-
tems. Overlap is useful in many different domains, including when per-
forming disk I/O or sending messages to remote machines; in either case,
starting the operation and then switching to other work is a good idea,
and improves the overall utilization and efficiency of the system.




Initial (simplifying) assumptions

1. Each job runs for the same amount of time.

TR S . e VY R W 5 e Wile X B A VAW AN S A WaTh & K% We VN A A et

4 e e il 7 ‘”I NG ﬁ o ’v K 5 v - sy DR e -,4 o5 e o of e Wl k- "«ﬁ 2

,‘ aVerls W ek & ol BV & LY 3 ' "N

‘ A =Val % aVTallk JTaWalatasah adVat v Fat W
e i -l & Lﬁ . v o v s — 3 EMR il AL % e Al ‘ B L B B ecii .‘v‘ 2l o e — __gn g w sa Toa - e S v v =
‘

-
‘A i LN L e d o)

B, The run-time of each ]ob is known

. - ’ = - = - o - / = g — . - < 9 - - s ' - S B

- @ Tx E e b -0 Eor o 2z v R TS %% v e\ sl “ o Bz B ¢ T‘v PV ,-»‘4-"




0 20 40 60 80 100 120 140
Time

Figure 7.9: Overlap Allows Better Use of Resources



Multi-level queue scheduling

highest priority

| > system processes >
| > interactive processes >
: > interactive editing processes >
C > batch processes >
| > student processes >

lowest priority



wd N0

- <« -
O w » i S vw > 5 B - BRI

WA RN A 1OV FraYamhy 1T )
Lale Qe e o o oo - ST S v -

- < _ - < _

N - o 5 o .~ o 5
& it Ry g S YA TS o Ly N N P e ST =\ S e SRR

5. The run-time of each job is known.




The OS5 can't see into future. ..




Multi-level tfeedback queue scheduling

Pt

quantum = 8

e
quantum = 16

FCFS




Multi-level teedback queue scheduling

e Rule 1: If Priority(A) > Priority(B), A runs (B
doesn’t).

e Rule 2: If Priority(A) = Priority(B), A & B run in RR.

> gquantum = 8
* Rule 3: All jobs enter the system with the highest
priority (the topmost queue).
—> gquantum = 16
* Rule 4: Once a job uses up its time allotment at a
given level (regardless of how many times it has
given up the CPU), its priority is reduced (i.e., it ., -

moves down one gqueue).

* Rule 5: After some time period S, move all the
jobs In the system to the topmost queue.

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfg.pdf



Multi-level tfeedback queue scheduling

[High Priority] Q8 —> @ —>
Q7

Q6

Q5
Q4 —» @
Q3

Example

Q2
iLow Priority] Q1 —>@



| INnuxX scheduling

Prior to Version 2.5:

e | INnUX used a variation of the traditional UNIX
scheduling algorithm.

 Did not have good support for multiple
OrOCESSOrS.

* Had poor performance for systems with many
runnable processes.



| INnuxX scheduling

Version 2.5:
* Presented a new scheduling algorithm: O(1)
 O(1) ran in constant time regardless the number of runnable
OrOCEesses.
* Provided support for SMP systems including load balancing
and processor affinity.

* |t worked great for SMP systems. But, it wasn't very good
for interactive systems (e.g., Desktop systems) because of

slow response times.



| INnuxX scheduling

Version 2.6:

e Scheduler was revised again: Completely Fair
Scheaduler (CFS).

e (CFS became the default linux scheduler.



Completely Fair Scheduler (CFS)

e Scheduling based on scheduling classes.
- Each class has a priority.

- Different classes allow for different scheduling
algorithms depending on the system needs.

» Example: Scheduling criteria for server systems can
pe different from criteria for mobile devices.




Completely Fair Scheduler (CFS): red-black tree

e A task Is added to the tree | @
, Task with the smallest
when It becomes runnable. value of vrunt 4 me @
e A task is removed from the \ @ @ @ @
tree when It Is not runnable. G @ @

* [asks that are given less
processing time are on the smaller | larger
. Value of vruntime
left. Tasks that are given more
fime are on the right.




