
scheduling

“Well, I found a solution to your problem with the
chickens. But, the solution only works for
spherical chickens in the vacuum and with a
uniform mass distribution…”

https://nossotradeoff.wordpress.com/2013/02/14/spherical-chickens-in-the-vacum/

https://nossotradeoff.wordpress.com/2013/02/14/spherical-chickens-in-the-vacum/

Initial (simplifying) assumptions

Shortest Job First

Initial (simplifying) assumptions

Shortest Job First: different arrival times

Initial (simplifying) assumptions

Shortest Time to Completion First

http://www.heathershumaker.com/blog/wp-content/uploads/2013/09/rule10_final-Conflict-1024x810.jpg

Time sharing and interactive systems

http://www.heathershumaker.com/blog/wp-content/uploads/2013/09/rule10_final-Conflict-1024x810.jpg

Metric for Interactive systems:

Interactive systems

Incorporating I/O

Overlap

Initial (simplifying) assumptions

Overlap

6.3 Scheduling Algorithms 275

system processes

highest priority

lowest priority

interactive processes

interactive editing processes

batch processes

student processes

Figure 6.6 Multilevel queue scheduling.

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground–background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, while the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.

6.3.6 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/O-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 6.7). The scheduler first executes all

Multi-level queue scheduling

Initial (simplifying) assumptions

The OS can’t see into future…

Multi-level feedback queue

Multi-level feedback queue scheduling276 Chapter 6 CPU Scheduling

quantum ! 8

quantum ! 16

FCFS

Figure 6.7 Multilevel feedback queues.

processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will be executed only if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/O burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

In general, a multilevel feedback queue scheduler is defined by the
following parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher-
priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,

Multi-level feedback queue scheduling

276 Chapter 6 CPU Scheduling

quantum ! 8

quantum ! 16

FCFS

Figure 6.7 Multilevel feedback queues.

processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will be executed only if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/O burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

In general, a multilevel feedback queue scheduler is defined by the
following parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher-
priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,

• Rule 1: If Priority(A) > Priority(B), A runs (B
doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.
• Rule 3: All jobs enter the system with the highest
priority (the topmost queue).
• Rule 4: Once a job uses up its time allotment at a
given level (regardless of how many times it has
given up the CPU), its priority is reduced (i.e., it
moves down one queue).
• Rule 5: After some time period S, move all the
jobs in the system to the topmost queue.

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

Multi-level feedback queue scheduling

Example

Linux scheduling

Prior to Version 2.5:
• Linux used a variation of the traditional UNIX
scheduling algorithm.
• Did not have good support for multiple

processors.
• Had poor performance for systems with many

runnable processes.

Linux scheduling
Version 2.5:

• Presented a new scheduling algorithm: O(1)
• O(1) ran in constant time regardless the number of runnable

processes.
• Provided support for SMP systems including load balancing

and processor affinity.
• It worked great for SMP systems. But, it wasn’t very good

for interactive systems (e.g., Desktop systems) because of
slow response times.

Linux scheduling

Version 2.6:
• Scheduler was revised again: Completely Fair

Scheduler (CFS).
• CFS became the default linux scheduler.

Completely Fair Scheduler (CFS)

• Scheduling based on scheduling classes.
- Each class has a priority.
- Different classes allow for different scheduling

algorithms depending on the system needs.
‣ Example: Scheduling criteria for server systems can

be different from criteria for mobile devices.

Completely Fair Scheduler (CFS): red-black tree

6.7 Operating-System Examples 293

CFS PERFORMANCE

The Linux CFS scheduler provides an efficient algorithm for selecting which
task to run next. Each runnable task is placed in a red-black tree—a balanced
binary search tree whose key is based on the value of vruntime. This tree is
shown below:

T0

T2

T3 T5 T6

T1

T4

T9T7 T8

smaller larger

Task with the smallest
value of vruntime

Value of vruntime

When a task becomes runnable, it is added to the tree. If a task on the
tree is not runnable (for example, if it is blocked while waiting for I/O), it is
removed. Generally speaking, tasks that have been given less processing time
(smaller values of vruntime) are toward the left side of the tree, and tasks
that have been given more processing time are on the right side. According
to the properties of a binary search tree, the leftmost node has the smallest
key value, which for the sake of the CFS scheduler means that it is the task
with the highest priority. Because the red-black tree is balanced, navigating
it to discover the leftmost node will require O(lgN) operations (where N
is the number of nodes in the tree). However, for efficiency reasons, the
Linux scheduler caches this value in the variable rb leftmost, and thus
determining which task to run next requires only retrieving the cached value.

Let’s examine the CFS scheduler in action: Assume that two tasks have the
same nice values. One task is I/O-bound and the other is CPU-bound. Typically,
the I/O-bound task will run only for short periods before blocking for additional
I/O, and the CPU-bound task will exhaust its time period whenever it has
an opportunity to run on a processor. Therefore, the value of vruntime will
eventually be lower for the I/O-bound task than for the CPU-bound task, giving
the I/O-bound task higher priority than the CPU-bound task. At that point, if
the CPU-bound task is executing when the I/O-bound task becomes eligible
to run (for example, when I/O the task is waiting for becomes available), the
I/O-bound task will preempt the CPU-bound task.

Linux also implements real-time scheduling using the POSIX standard as
described in Section 6.6.6. Any task scheduled using either the SCHED FIFO or
the SCHED RR real-time policy runs at a higher priority than normal (non-real-

• A task is added to the tree
when it becomes runnable.

• A task is removed from the
tree when it is not runnable.

• Tasks that are given less
processing time are on the
left. Tasks that are given more
time are on the right.

