rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY

Thread Synchronization

CSE4001 Operating Systems Concepts
E. Ribelro

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

Thread Synchronization
(Part 1)

CSE 4001

e
The Little Book of Semaphores

Allen B. Downey

Version 2.2.1

Book URL: https://greenteapress.com/wp/semaphores/

https://greenteapress.com/wp/semaphores/

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

Non-deterministic execution orger

e Concurrent programs are often non-deterministic as order of
execution depends on the scheduler.

Single program with two threads

Thread A Thread B

|
|
|
1 |print "yes" 1 |print "no"
|
|
|

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

Concurrent writes on shared variables

* [he value that gets printed depends on the order In which the
statements are executed (i.e., the execution path).

Single program with two threads

Concurrent updates on shared variables e
r-- - - - - - - - - - - - - - "7 - - "- """ 0 0 00— == =00 =/ 0= = = |
|
| Thread A Thread B :
:1 count = count + 1 1 | count = count + 1 :
| |

___________________ I_ S)

Thread A Thread B

1 |temp = count 1 |Temp = count
> | count = temp + 1 > |count = temp + 1

FLORIDA TECH

Semaphores

A semaphore is like an integer, with three differences:

1. When you create the semaphore, you can initialize its value to any integer,
but atter that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value ot the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments
the semaphore.

3. When a thread increments the semaphore, it there are other threads wait-
ing, one of the waiting threads gets unblocked.

rLORIDA TEGH

Semaphore implementation ™"

't semaphore Is closed, block the thread that called wait() on a queue

associated with the semaphore. Otherwise, let the thread that called wait ()
continue Into the critical section.

The wait() function:

wait() {
value = value - 1
if (value < 0) {
add this thread to list
block thread

rLORIDA TEGH

Semaphore implementation ™"

Wake up one of the threads that called wait(s), and run it so that it can
continue Into the critical section.

The signal() function:

signal() {
value = value + 1

if (value <= 0) {
remove a thread from list
wakeup thread

FLORIDA TECH

Semaphores: syntax 1

Semaphore initialization syntax

fred = Semaphore (1)

Semaphore operations

fred.signal ()
fred.wait ()

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

Synchronization Constraints

Serialization: Event A must happen before Event B.

Mutual exclusion: Events A and B must not happen at the same time.

e \We will use a combination of these two constraints to solve
most thread-synchronization problems

Basic synchronization patterns: Signaling

a1l must happen before b1

Thread A

1 | statement al

Thread B

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

statement b1

. S | | FLORIDA TECH
Basic synchronization patterns: Signaling e

a1l must happen before b1

Thread A Thread B

1 | statement al .

Basic synchronization patterns: Signaling

a1l must happen before b1

sem = semaphore(0)

Thread A

1 | statement al
2 Sem.signal() \

Thread B

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

sem.wait ()
statement b1

Basic synchronization patterns: Signaling

a1l must happen before b1

sem = semaphore(0)

Thread A

1 | statement al
2 Sem.signal() \

Thread B

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

sem.wait ()
statement b1

. S | | FLORIDA TECH
Basic synchronization patterns: Signaling e

a1l must happen before b1
e Same solution using better semaphore naming

alDone = semaphore(0)

Thread A Thread B

1 | statement al 1 alDone.wait()
> | alDone.signal() > | statement b1

Basic synchronization patterns: Rendezvous — remmme

a1l must happen before b2

* b1 must happen before a2

Thread A Thread B

1 | statement al 1 | statement b1
> | statement a2 > | statement b2

Basic synchronization patterns: Rendezvous — remmme

a1l must happen before b2

* b1 must happen before a2

Thread A Thread B

1 | statement al 1 [statement b1
2 2
3 3
4+ | statement a2 statement b2

Basic synchronization patterns: Rendezvous — remmme

a1l must happen before b2

* b1 must happen before a2

Thread A Thread B

statement al 1 [statement b1

aArrived.wait ()

1
2
s | bArrived.wait ()
4 statement b2

statement a2

Basic synchronization patterns: Rendezvous — remmme

a1l must happen before b2

* b1 must happen before a2

Thread A Thread B

1 | statement al 1 [statement b1

> |aArrived.signal > | bArrived.signal ()
3 | bArrived.wait () aArrived.wait ()

4+ | statement a2 statement b2

Basic synchronization patterns: Rendezvous — remmme

a1l must happen before b2

* b1 must happen before a2

aArrived = semaphore(0)
bArrived = semaphore(0)

Thread A Thread B
statement al 1 Lstatement b1

1
> |aArrived.signal > | bArrived.signal ()
3 | bArrived.wait () aArrived.wait ()

4+ | sStatement a2 statement b2

Example CFLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

#include "semaphore_class.h"

/¥ prototype for thread routine */
void *threadB (void *ptr);
void *threada (void *ptr);

/% glabal vars */
semaphore B_Done(0);

int mainQ)
{
int 1[3];
pthread_t thread_a;
pthread_t thread_b;
i[0] = 0; i[1] = 1; /® argument to threads */

pthread_create (&thread_a, NULL, threadA, (void *) & [0]);
pthread_create (&thread_b, NULL, threadB, (void *) &i[1]);

exit(0);

Y /* main() */

void “threada (void *ptr) void *threadB (void *ptr)
t {

int x;

X = *((int *) ptr);
B_Done.wait();

printf("Thread %d: Statement B: Must run before Statement A. \n", X);
printf("Thread %d: Statement A: Must run after Statement B. \n", X);

fflush(stdout); fflush(stdout);
B_Done.signal(); B_Done.signal();
pthread_exit(0); /* exit thread */ pthread_exit(0); /* exit thread */

void *threada (void *ptr

{
int Xx;
X = *((int *) ptr);

B_Done.wait();

printf("Thread %d: Stz

fflush(stdout);

B_Done.signal();

pthread_exit(0); /* e

Example

#include "semaphore_class.h"

/* prototype for thread routine */
void *threadB (void *ptr);
void *threadA (void *ptr);

/* global vars */
Semaphore B_Done(0);

int main()

{
int 1[3];
pthread_t thread_a;
pthread_t thread_b;

i[0] = 0: i[1] = 1; /* argument to threads */

pthread_create (&thread_a, NULL, threadA, (void *) &i[0]);
pthread_create (&thread_b, NULL, threadB, (void *) &i[1l]);

exi1t(0);

Y /* main(Q) */

(FSRIDA TECH

FLORIDA'S STEM UNIVERSITY"

atement A. \n", X);

Example CFLORIDA TECH

l FLORIDA'S STEM UNIVERSITY"

void *threadA (void *ptr)
{

int X;
X = *((Ant *) ptr);

B_Done.wait():

printf("Thread %d: Statement A: Must run after Statement B. \n", X);
fflush(stdout) ;

B_Done.signal();

pthread_exit(0); /* exit thread */

Example CFLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

#include "semaphore_class.h"

/* prototype for thread routine */
void *threadB (void *ptr);
void *threadA (void *ptr);

/* global vars */
Semaph

int m

¢] void *threadB (void *ptr)
i 1

: int X;
Z x = *((int *) ptr);
} /8

printf("Thread %d: Statement B: Must run before Statement A. \n", X);
void fflush(stdout) ;

B_Done.signal();

1 pthread_ex1t(0); /* exit thread */

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

Thread Synchronization
(Part 2)

- 4001

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

Contents

* Semaphore implementation
* [he mutual exclusion constraint

* |he producer-consumer proplem

rLORIDA TEGH

Semaphore implementation ™"

't semaphore Is closed, block the thread that called wait() on a queue

associated with the semaphore. Otherwise, let the thread that called wait ()
continue Into the critical section.

The wait() function:

walt () {
value = value -1
1f (value < 0) {
add this thread to list
block thread

rLORIDA TEGH

Semaphore implementation ™"

Wake up one of the threads that called wait(s), and run it so that it can
continue Into the critical section.

The signal() function:

signal() {
value = value + 1
1f (value <= 0) {
remove a thread from list
wakeup thread

rLORIDA TEGH

Mutual exclusion

@ A second common use of semaphores: to enforce mutual exclusion
and controlling concurrent access to shared variables.

@ [he mutex guarantees that only one thread accesses the shared
variable at a time.

Thread A Thread B

count = count + 1 count = count + 1

rLORIDA TEGH

Mutual exclusion hint &

@ Create a semaphore named mutex that is initialized to 1.

@ A value of one means that a thread may proceed and access the
shared variable;

@ A value of zero means that it has to wait for another thread to release
the mutex.

Viutual exclusion solution

Thread A

mutex.wait ()
critical section
count = count + 1
mutex.signal ()

Thread B

mutex.wait ()
critical section
count = count + 1
mutex.signal ()

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

rLORIDA TEGH

|
M u |t| p | (}X FLORIDA’S STEM UNIVERSITY"

@ It allows multiple threads to run in the critical section at the same
time, but it enforces an upper limit on the number of concurrent
threads.

@ In other words, no more than n threads can run in the critical section
at the same time.

hint: treat semaphores as a set of tokens. |f no tokens are available when
a thread arrives at the critical section, it waits until another thread
releases one.

I'he producer-consumer problem LORIDA TECH

Producer

event = waitForEvent ()
buffer.add(event)

Consumer

event = buffer.get ()
event .process ()

Access to the buffer has to be exclusive, but waitForEvent () and
event.process() can run concurrently.

Empty buffer: consumer runs first FLORIDA TECH

__________________________________ —FL[].E'.IDA’SSJ'EM-LI.I\IIVERSITYI

producer() consumer()
= while true { while true {
item = getEvent() — event = buffer.get()
buffer.add(event) event.process()

}

}

head

producer ‘\\\\\\‘

Empty buffer: consumer runs first FLORIDA TECH

__________________________________ —FLO.E'.IDA’SSJ'EM-LINIVEESITYI

I
I
I
producer() consumer() |
while true { I
I
I
I
I

while true {
item = getEvent()
buffer.add(event)

event = buffer.get()
event.process()

}

}

head

producer ‘\\\\\\‘

Empty buffer: consumer runs first

producer()

while true {
item = getEvent()
buffer.add(event

consumer()

}

while true {

items.wait ()
event = buffer.get()
event.process()

FLORIDA TEGH

_FLO.E'.IDA’SSJ'EM-LINIVEESITYI

oroducer

head

Empty buffer: consumer runs first FLORIDA TECH

__________________________________ —FLD.E'.IDA’SSJ'EM-LI.I\IIVERSITYI

|
| items = semaphore(0) |
| |
| consumer () |
, producer() |
while true { |
| while true { . items.wait () |
| item = getEvent() »~ wait() event = buffer.get ()
| buffer.add (event®) |S9nal(event .process () |
| }) |
| |

head

producer ‘\\\\\\‘

Empty buffer: consumer runs first FLORIDA TECH

__________________________________ —FLD.E'.IDA’SSJ'EM-LI.I\IIVERSITYI

items semaphore (0)

consumer()

while true {
items.wait ()

event = buffer.get()
event.process()

producer()

while true {
ltem = getEvent ()
buffer.add(event

items.signal ()

signal()

|
|
|
|
|
|
|
} |
|

head

producer ‘\\\\\\‘

Empty buffer: consumer runs first FLORIDA TECH

__________________________________ —FLO.E'.IDA’SSJ'EM-LINIVEESITYI

items semaphore (0)

producer () consumer ()

while true {
1tem = getEvent ()
buffer.add(event)
items.signal ()

items.wait ()
event = buffer.get()
event.process()

}

I
I
I
I
: while true {
I
I
I
I

head

producer ‘\\\\\\‘

Empty buffer: consumer runs first FLORIDA TECH

__________________________________ —FL[].E'.IDA’SSJ'EM-LI.I\IIVERSITYI

items = semaphore(0)

consumer()

while true {
items.wait ()
event = buffer.get()
event.process()

producer()

while true {
item = getEvent()
buffer.add(event)
items.signal ()

}

oroducer

Concurrent writes: add and get cannot take place at the same time | ORIDA TECH

__________________________________ —FL[].E'.IDA’SSJ'EM-LI.I\IIVERSITYI

items.signal ()

}

I

| items = semaphore(0) |
| I
| I
| producer () consumer() |
I | while true { |
| while true { items.wait () |

item = getEvent() —p event = buffer.get()

| —> buffer.add(event) event.process () |
| I
| I

oroducer

Concurrent writes: add and get cannot take place at the same time | ORIDA TECH

— — — — — o o o o o e e e D e e e e e e e e e e e e e e e e e m— — —FL[].E'.IDA’SSJ'EM-LI.I\IIVERSITYI

| items = semaphore(0) |
| mutex = semaphore(1l) |
: producer () consumer() |
| while true { while true { |
item = getEvent() items.wait () |
| mutex.wait () mutex.wait () |
| buffer.add(event) event = buffer.get() |
| mutex.signal () mutex.signal () |
I items.signal () event.process () |
I
I

oroducer

Limit ff 1ze: | N | ffer | N | hed.
Imited buffer size: producer sleeps once the maximum buffer length is reached I'LDRIDATEGHB

— — — — — o o o o o e e e D e e e e e e e e e e e e e e e e e m— — —FL[].E'.IDA’SSJ'EM-LI.I\IIVERSITYI

items = semaphore(0)
mutex = semaphore(1l)
producer () consumer()

while true {

I

I

I

| .
| . while true {
I l1tem = getEvent()

I

I

I

I

items.wait ()
mutex.wait ()

event = buffer.get()
mutex.signal ()
event.process()

mutex.wait ()
buffer.add(event)

mutex.signal ()

items.signal ()

oroducer

Limited buffer size: producer sleeps once the maximum bufter length is reached.

e o ____d FLORIDA TECH
. tems semaphore (O) FLORIDA'S STEM UNIVERSITY.I
1 —
mutex = semaphore(1l)
spaces = semaphore(buffer.size())
oroducer() consumer()
while true { token interpretation while true {

items.wait ()

I

I

I

I

I

of the multiplex . |
mutex.wait () |
I

I

I

I

I

spaces.wait ()

mutex.wait () wait()
buffer.add(event)

mutex.signal ()

ltems.signal () \

event = buffer.get()
mutex.signal ()
signal() spaces.signal ()
event.process()

I
I
I
I
I
: i1tem = getEvent()
I
I
I
I
I

oroducer

Limited buffer size: producer sleeps once the maximum bufter length is reached.

— e e e e e e L L L L L L __-_-__ rLORIDA TECH
. tems semaphore (O) FLORIDA'S STEM UNIVERSIT?
1 =
mutex = semaphore(1l)
spaces = semaphore(buffer.size())
oroducer() consumer()
while true { token interpretation while true {

|
|
|
|
, _ |
items.wait () |
mutex.wait () |
|
|
|
|
|

of the multiplex

item = getEvent()
spaces.wait ()
mutex.wait () wait()
buffer.add(event)
mutex.signal ()
ltems.signal () \

event = buffer.get()
mutex.signal ()
signal() spaces.signal ()
event.process()

oroducer

'm p\ementation Exam ple: Producer-ConsumeK,cLERmA TECH

FLORIDA'S STEM UNIVERSITY?

Global variables and semaphores
/* global vars */
const int bufferSize = 5;
const 1nt numConsumers = 3;
const 1nt numProducers = 3;
/* semaphores are declared global so they can be accessed

1n main() and 1n thread routine. */

Semaphore Mutex(1l);
Semaphore Spaces(buffersSize);

Semaphore Items(0):;

1nt main(int argc, char **argv)

{

pthread_t producerThread[numProducers];

pthread_t consumerThread[numConsumers];

Implementation Example: Producer-Consu merGiﬁ’ijA TECH

FLORIDA'S STEM UNIVERSITY"

/%
Producer function Producer thread
*/
voild *Producer (void *threadID)
{
// Thread number
int X = (long)threadID;
while(C 1)
{
sleep(3); // Slow the thread down a bit so we can see what 1s going on
Spaces.wait();
Mutex.wait();
printf("Producer %d adding 1tem to buffer \n", x);
fflush(stdout):
Mutex.signal ();
Items.signal();
¥
h

Inn p\ementation Exam ple: Producer-Consu merGiﬁ’iRmA TECH

‘LORIDA’S STEM UNIVERSITY"

/%
Consumer function Consumer thread
*/
void *Consumer (voild *threadID)
{
// Thread number
int X = (long)threadID;
while(1)
{
Ttems.wait();
Mutex.wait();
printf("Consumer %d removing item from buffer \n", x);
fflush(stdout):
Mutex.signal();
Spaces.signal ();
sleep(5); // Slow the thread down a bit so we can see what 1s going on
h
¥

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

Thread Synchronization
(Part 3)

- 4001

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

Contents

* [he readers-writers problem

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

Reaaders-Writers

A data set is shared among a number of concurrent threads

 Readers: Only read the data set; they do not perform any
updates

e Writers: Can both read and write

Problem: Allow multiple readers to read at the same time. Only
one single writer can access the shared data at any time.

Reaqders-Writers

Here is a set of variables that is sufficient to solve the problem

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

int readers = 0 // no.
mutex = Semaphore(1)
roomEmpty = Semaphore(1l) // 1 if

of readers in the

room

// protects the counter

IS empty

room

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

Reaqders-Writers

Writer

roomEmpty . wait ()
critical section for writers
roomEmpty.signal ()

Readers-\Writers

Reader

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

mutex . wait ()
readers 4= 1
if readers 1:
roomEmpty. wait() # first in locks
endif

mutex.signal ()

critical section for readers

mutex . wait ()
readers — 1
if readers 0:
roomEmpty.signal () # last out unlocks
endif

mutex.signal ()

Readers-\Writers

Reader

fﬁhﬂSxTﬁdﬁ()‘
readers += 1 |
| If readers '

N

locks

roomEmpty. wait () # first
endif

bhutex . signal ()

critical section for readers

Imutex . wait ()

|
m

readers —= 1
if readers .
roomEmpty.signal () # last out unlocks

endif
utex.signal ()

S

eader thread

readSwitch.lock(roomEmpty)
critical section for readers
eadSwitch.unlock (roomEmpty)

FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

Scenario 2: The scheduler picks a reader. (FEERIDA TECH

ready-to-run FLORIDA'S STEM UNIVERSITY’

A SR SR SR T W S S e

A e LNl NN AN NNl AN Al AR

shared data set

writer thread reader thread

turnstile.wait ()
turnstile.signal ()

1 turnstile.wait()

2 roomEmpty.wait ()

3 # critical section for writers
4 turnstile.signal()
3)
0

readSwitch.lock(roomEmpty)
critical section for readers
readSwitch.unlock(roomEmpty)

Oy O I W DN =

roomEmpty.signal ()

Readers-Writers

Depending on the application, it might be a good idea to give more
priority to writers. For example, if writers are making time-critical updates
to a data structure, it is best to minimize the number of readers that see
the old data before the writer has a chance to proceed.

Readers-Writers s

readSwitch = Lightswitch ()
roomEmpty = Semaphore(1)
turnstile = Semaphore(1)

turnstile is a turnstile for readers and a mutex for writers. Readers will
need to queue on the turnstile if a writer gets stuck inside it.

Readers-Writers s

writer thread reader thread
1 turnstile.wait() 1 turnstile.wait()
2 roomEmpty.wait () 2 turnstile.signal()
3 # critical section for writers 3
4 turnstile.signal() 4 readSwitch.lock(roomEmpty)
9 3, # critical section for readers
6 roomEmpty.signal() 6 readSwitch.unlock(roomEmpty)

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

Thread Synchronization
(Part 4)

- 4001

rLORIDA TEGH

IIIIIIIIIIIIIIIIIIIIIIII

Contents

* [he readers-writers problem

- The dinning-philosophers
problem

rLORIDA TEGH

Dining philosophers

The Dining Philosophers Problem was proposed by Dijkstra in 1965. The standard
version features are a table with five plates, five forks (or chopsticks) and a big bowl of
spaghetti. Five philosophers, who represent interacting threads, come to the table and

execute the following loop:

while True:
think ()
get_forks ()
eat ()
put_forks ()

rLORIDA TEGH

Dining philosophers

@ The forks represent resources
that the threads have to hold
exclusively in order to make
progress.

@ The philosophers need two
forks to eat, so a hungry
philosopher might have to
wait for a neighbor to put
down a fork.

rLORIDA TEGH

Dining philosophers

Assuming that the philosophers know how to think and eat, our job is to write a
version of get_forks and put_forks that satisfies the following constraints:

@ Only one philosopher can
hold a fork at a time.

@ |t must be impossible for a
deadlock to occur.

@ |t must be impossible for a
philosopher to starve waiting
for a fork.

@ |t must be possible for more
than one philosopher to eat
at the same time.

rLORIDA TEGH

Dining philosophers

ocht to

Let us define the functions left and rig

refer to the forks' position.

def left(i): return |
def right(i): return (i + 1) % 5

Use a list of Semaphores, one for each fork. Ini-
tially, all the forks are available.

forks = [Semaphore(1l) for i in range(5)]

DININg philosopnhers

First attempt of a solution:

def get_forks(i):
fork [right(i)]. wait()
fork[left (i)].wait()

def put_forks(i):
fork [right(i)].signal()
fork [left(i)].signal()

Which constraints are satisfied by this solution?

o Only one philosopher can hold a fork at
a time.

g It must be impossible for a deadlock to
occur.

e It must be impossible for a philosopher
to starve waiting for a fork.

It must be possible for more than one
philosopher to eat at the same time.

rLORIDA TEGH

FLORIDA'S STEM UNIVERSITY"

rLORIDA TEGH

Dining philosophers

@ Limit the number of philosophers at the table at a time: |t only
four philosophers are allowed at the table at a time, deadlock is
impossible. There is always a fork on the table.

@ We can control the number of philosophers at the table with a
Multiplex named footman that is initialized to 4.

rLORIDA TEGH

Dining philosophers

def get_forks(i):
footman.wait ()
fork[right(i)].wait ()
fork[left(i)].wait ()

def put_forks(i):
fork[right(i)].signal ()
fork[left(i)].signal ()
footman.signal ()

0 Only one philosopher can hold a fork at
a time.

9 It must be impossible for a deadlock to
occur.

Which constraints are satisfied by this solution? © It must be impossible for a philosopher

to starve waiting for a fork.

It must be possible for more than one
philosopher to eat at the same time.

rLORIDA TEGH

Dining philosophers

@ Another way to avoid deadlock is to change the order in which the
philosophers pick up forks. In the original non-solution, the
philosophers are “righties’”’; that is, they pick up the right fork first.
But what happens if Philosopher O is a leftie?

