
Thread Synchronization
CSE4001 Operating Systems Concepts
E. Ribeiro

Thread Synchronization
(Part 1)

CSE 4001

The Little Book of Semaphores

Allen B. Downey

Version 2.2.1

Book URL: https://greenteapress.com/wp/semaphores/

https://greenteapress.com/wp/semaphores/

Non-deterministic execution order
• Concurrent programs are often non-deterministic as order of

execution depends on the scheduler.

4 Introduction

1.4 Non-determinism

Concurrent programs are often non-deterministic, which means it is not pos-
sible to tell, by looking at the program, what will happen when it executes.
Here is a simple example of a non-deterministic program:

Thread A

1 print "yes"

Thread B

1 print "no"

Because the two threads run concurrently, the order of execution depends
on the scheduler. During any given run of this program, the output might be
“yes no” or “no yes”.

Non-determinism is one of the things that makes concurrent programs hard
to debug. A program might work correctly 1000 times in a row, and then crash
on the 1001st run, depending on the particular decisions of the scheduler.

These kinds of bugs are almost impossible to find by testing; they can only
be avoided by careful programming.

1.5 Shared variables

Most of the time, most variables in most threads are local, meaning that they
belong to a single thread and no other threads can access them. As long as
that’s true, there tend to be few synchronization problems, because threads
just don’t interact.

But usually some variables are shared among two or more threads; this
is one of the ways threads interact with each other. For example, one way
to communicate information between threads is for one thread to read a value
written by another thread.

If the threads are unsynchronized, then we cannot tell by looking at the
program whether the reader will see the value the writer writes or an old value
that was already there. Thus many applications enforce the constraint that
the reader should not read until after the writer writes. This is exactly the
serialization problem in Section 1.3.

Other ways that threads interact are concurrent writes (two or more writ-
ers) and concurrent updates (two or more threads performing a read followed
by a write). The next two sections deal with these interactions. The other
possible use of a shared variable, concurrent reads, does not generally create a
synchronization problem.

1.5.1 Concurrent writes

In the following example, x is a shared variable accessed by two writers.

Single program with two threads

Concurrent writes on shared variables
• The value that gets printed depends on the order in which the

statements are executed (i.e., the execution path).

Single program with two threads
1.5 Shared variables 5

Thread A

1 x = 5
2 print x

Thread B

1 x = 7

What value of x gets printed? What is the final value of x when all these
statements have executed? It depends on the order in which the statements are
executed, called the execution path. One possible path is a1 < a2 < b1, in
which case the output of the program is 5, but the final value is 7.

Puzzle: What path yields output 5 and final value 5?
Puzzle: What path yields output 7 and final value 7?
Puzzle: Is there a path that yields output 7 and final value 5? Can you

prove it?
Answering questions like these is an important part of concurrent program-

ming: What paths are possible and what are the possible effects? Can we prove
that a given (desirable) effect is necessary or that an (undesirable) effect is
impossible?

1.5.2 Concurrent updates

An update is an operation that reads the value of a variable, computes a new
value based on the old value, and writes the new value. The most common kind
of update is an increment, in which the new value is the old value plus one. The
following example shows a shared variable, count, being updated concurrently
by two threads.

Thread A

1 count = count + 1

Thread B

1 count = count + 1

At first glance, it is not obvious that there is a synchronization problem here.
There are only two execution paths, and they yield the same result.

The problem is that these operations are translated into machine language
before execution, and in machine language the update takes two steps, a read
and a write. The problem is more obvious if we rewrite the code with a tempo-
rary variable, temp.

Thread A

1 temp = count
2 count = temp + 1

Thread B

1 temp = count
2 count = temp + 1

Now consider the following execution path

a1 < b1 < b2 < a2

Assuming that the initial value of x is 0, what is its final value? Because
both threads read the same initial value, they write the same value. The variable

Concurrent updates on shared variables

1.5 Shared variables 5

Thread A

1 x = 5
2 print x

Thread B

1 x = 7

What value of x gets printed? What is the final value of x when all these
statements have executed? It depends on the order in which the statements are
executed, called the execution path. One possible path is a1 < a2 < b1, in
which case the output of the program is 5, but the final value is 7.

Puzzle: What path yields output 5 and final value 5?
Puzzle: What path yields output 7 and final value 7?
Puzzle: Is there a path that yields output 7 and final value 5? Can you

prove it?
Answering questions like these is an important part of concurrent program-

ming: What paths are possible and what are the possible effects? Can we prove
that a given (desirable) effect is necessary or that an (undesirable) effect is
impossible?

1.5.2 Concurrent updates

An update is an operation that reads the value of a variable, computes a new
value based on the old value, and writes the new value. The most common kind
of update is an increment, in which the new value is the old value plus one. The
following example shows a shared variable, count, being updated concurrently
by two threads.

Thread A

1 count = count + 1

Thread B

1 count = count + 1

At first glance, it is not obvious that there is a synchronization problem here.
There are only two execution paths, and they yield the same result.

The problem is that these operations are translated into machine language
before execution, and in machine language the update takes two steps, a read
and a write. The problem is more obvious if we rewrite the code with a tempo-
rary variable, temp.

Thread A

1 temp = count
2 count = temp + 1

Thread B

1 temp = count
2 count = temp + 1

Now consider the following execution path

a1 < b1 < b2 < a2

Assuming that the initial value of x is 0, what is its final value? Because
both threads read the same initial value, they write the same value. The variable

1.5 Shared variables 5

Thread A

1 x = 5
2 print x

Thread B

1 x = 7

What value of x gets printed? What is the final value of x when all these
statements have executed? It depends on the order in which the statements are
executed, called the execution path. One possible path is a1 < a2 < b1, in
which case the output of the program is 5, but the final value is 7.

Puzzle: What path yields output 5 and final value 5?
Puzzle: What path yields output 7 and final value 7?
Puzzle: Is there a path that yields output 7 and final value 5? Can you

prove it?
Answering questions like these is an important part of concurrent program-

ming: What paths are possible and what are the possible effects? Can we prove
that a given (desirable) effect is necessary or that an (undesirable) effect is
impossible?

1.5.2 Concurrent updates

An update is an operation that reads the value of a variable, computes a new
value based on the old value, and writes the new value. The most common kind
of update is an increment, in which the new value is the old value plus one. The
following example shows a shared variable, count, being updated concurrently
by two threads.

Thread A

1 count = count + 1

Thread B

1 count = count + 1

At first glance, it is not obvious that there is a synchronization problem here.
There are only two execution paths, and they yield the same result.

The problem is that these operations are translated into machine language
before execution, and in machine language the update takes two steps, a read
and a write. The problem is more obvious if we rewrite the code with a tempo-
rary variable, temp.

Thread A

1 temp = count
2 count = temp + 1

Thread B

1 temp = count
2 count = temp + 1

Now consider the following execution path

a1 < b1 < b2 < a2

Assuming that the initial value of x is 0, what is its final value? Because
both threads read the same initial value, they write the same value. The variable

Translation to machine language

Semaphores

Chapter 2

Semaphores

In real life a semaphore is a system of signals used to communicate visually,
usually with flags, lights, or some other mechanism. In software, a semaphore is
a data structure that is useful for solving a variety of synchronization problems.

Semaphores were invented by Edsger Dijkstra, a famously eccentric com-
puter scientist. Some of the details have changed since the original design, but
the basic idea is the same.

2.1 Definition

A semaphore is like an integer, with three differences:

1. When you create the semaphore, you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments
the semaphore.

3. When a thread increments the semaphore, if there are other threads wait-
ing, one of the waiting threads gets unblocked.

To say that a thread blocks itself (or simply “blocks”) is to say that it notifies
the scheduler that it cannot proceed. The scheduler will prevent the thread from
running until an event occurs that causes the thread to become unblocked. In
the tradition of mixed metaphors in computer science, unblocking is often called
“waking”.

That’s all there is to the definition, but there are some consequences of the
definition you might want to think about.

Semaphore implementation

wait()	{		
value	=	value	-	1	
if	(value	<	0)	{	
			add	this	thread	to	list	
			block	thread		
}	

}

If semaphore is closed, block the thread that called wait() on a queue
associated with the semaphore. Otherwise, let the thread that called wait()
continue into the critical section.

The	wait()	function:	

Semaphore implementation

signal()	{		
value	=	value	+	1	
if	(value	<=	0)	{	
			remove	a	thread	from	list	
			wakeup	thread		
}	

}

Wake up one of the threads that called wait(s), and run it so that it can
continue into the critical section.

The	signal()	function:

Semaphores: syntax

8 Semaphores

• In general, there is no way to know before a thread decrements a
semaphore whether it will block or not (in specific cases you might be
able to prove that it will or will not).

• After a thread increments a semaphore and another thread gets woken
up, both threads continue running concurrently. There is no way to know
which thread, if either, will continue immediately.

• When you signal a semaphore, you don’t necessarily know whether another
thread is waiting, so the number of unblocked threads may be zero or one.

Finally, you might want to think about what the value of the semaphore
means. If the value is positive, then it represents the number of threads that
can decrement without blocking. If it is negative, then it represents the number
of threads that have blocked and are waiting. If the value is zero, it means there
are no threads waiting, but if a thread tries to decrement, it will block.

2.2 Syntax

In most programming environments, an implementation of semaphores is avail-
able as part of the programming language or the operating system. Different
implementations sometimes offer slightly different capabilities, and usually re-
quire different syntax.

In this book I will use a simple pseudo-language to demonstrate how
semaphores work. The syntax for creating a new semaphore and initializing
it is

Semaphore initialization syntax

1 fred = Semaphore (1)

The function Semaphore is a constructor; it creates and returns a new
Semaphore. The initial value of the semaphore is passed as a parameter to
the constructor.

The semaphore operations go by different names in different environments.
The most common alternatives are

Semaphore operations

1 fred.increment ()
2 fred.decrement ()

and

Semaphore operations

1 fred.signal ()
2 fred.wait()

and

8 Semaphores

• In general, there is no way to know before a thread decrements a
semaphore whether it will block or not (in specific cases you might be
able to prove that it will or will not).

• After a thread increments a semaphore and another thread gets woken
up, both threads continue running concurrently. There is no way to know
which thread, if either, will continue immediately.

• When you signal a semaphore, you don’t necessarily know whether another
thread is waiting, so the number of unblocked threads may be zero or one.

Finally, you might want to think about what the value of the semaphore
means. If the value is positive, then it represents the number of threads that
can decrement without blocking. If it is negative, then it represents the number
of threads that have blocked and are waiting. If the value is zero, it means there
are no threads waiting, but if a thread tries to decrement, it will block.

2.2 Syntax

In most programming environments, an implementation of semaphores is avail-
able as part of the programming language or the operating system. Different
implementations sometimes offer slightly different capabilities, and usually re-
quire different syntax.

In this book I will use a simple pseudo-language to demonstrate how
semaphores work. The syntax for creating a new semaphore and initializing
it is

Semaphore initialization syntax

1 fred = Semaphore (1)

The function Semaphore is a constructor; it creates and returns a new
Semaphore. The initial value of the semaphore is passed as a parameter to
the constructor.

The semaphore operations go by different names in different environments.
The most common alternatives are

Semaphore operations

1 fred.increment ()
2 fred.decrement ()

and

Semaphore operations

1 fred.signal ()
2 fred.wait()

and

Synchronization Constraints

Chapter 1

Introduction

1.1 Synchronization

In common use, “synchronization” means making two things happen at the
same time. In computer systems, synchronization is a little more general; it
refers to relationships among events—any number of events, and any kind of
relationship (before, during, after).

Computer programmers are often concerned with synchronization con-
straints, which are requirements pertaining to the order of events. Examples
include:

Serialization: Event A must happen before Event B.

Mutual exclusion: Events A and B must not happen at the same time.

In real life we often check and enforce synchronization constraints using a
clock. How do we know if A happened before B? If we know what time both
events occurred, we can just compare the times.

In computer systems, we often need to satisfy synchronization constraints
without the benefit of a clock, either because there is no universal clock, or
because we don’t know with fine enough resolution when events occur.

That’s what this book is about: software techniques for enforcing synchro-
nization constraints.

1.2 Execution model

In order to understand software synchronization, you have to have a model of
how computer programs run. In the simplest model, computers execute one
instruction after another in sequence. In this model, synchronization is trivial;
we can tell the order of events by looking at the program. If Statement A comes
before Statement B, it will be executed first.

• We will use a combination of these two constraints to solve
most thread-synchronization problems

Basic synchronization patterns: Signaling

Chapter 3

Basic synchronization

patterns

This chapter presents a series of basic synchronization problems and shows ways
of using semaphores to solve them. These problems include serialization and
mutual exclusion, which we have already seen, along with others.

3.1 Signaling

Possibly the simplest use for a semaphore is signaling, which means that one
thread sends a signal to another thread to indicate that something has happened.

Signaling makes it possible to guarantee that a section of code in one thread
will run before a section of code in another thread; in other words, it solves the
serialization problem.

Assume that we have a semaphore named sem with initial value 0, and that
Threads A and B have shared access to it.

Thread A

1 statement a1
2 sem.signal ()

Thread B

1 sem.wait()
2 statement b1

The word statement represents an arbitrary program statement. To make
the example concrete, imagine that a1 reads a line from a file, and b1 displays
the line on the screen. The semaphore in this program guarantees that Thread
A has completed a1 before Thread B begins b1.

Here’s how it works: if thread B gets to the wait statement first, it will find
the initial value, zero, and it will block. Then when Thread A signals, Thread
B proceeds.

Similarly, if Thread A gets to the signal first then the value of the semaphore
will be incremented, and when Thread B gets to the wait, it will proceed im-

	
	

• a1 must happen before b1

Chapter 3

Basic synchronization

patterns

This chapter presents a series of basic synchronization problems and shows ways
of using semaphores to solve them. These problems include serialization and
mutual exclusion, which we have already seen, along with others.

3.1 Signaling

Possibly the simplest use for a semaphore is signaling, which means that one
thread sends a signal to another thread to indicate that something has happened.

Signaling makes it possible to guarantee that a section of code in one thread
will run before a section of code in another thread; in other words, it solves the
serialization problem.

Assume that we have a semaphore named sem with initial value 0, and that
Threads A and B have shared access to it.

Thread A

1 statement a1
2 sem.signal ()

Thread B

1 sem.wait()
2 statement b1

The word statement represents an arbitrary program statement. To make
the example concrete, imagine that a1 reads a line from a file, and b1 displays
the line on the screen. The semaphore in this program guarantees that Thread
A has completed a1 before Thread B begins b1.

Here’s how it works: if thread B gets to the wait statement first, it will find
the initial value, zero, and it will block. Then when Thread A signals, Thread
B proceeds.

Similarly, if Thread A gets to the signal first then the value of the semaphore
will be incremented, and when Thread B gets to the wait, it will proceed im-

	
	

• a1 must happen before b1

Basic synchronization patterns: Signaling

Chapter 3

Basic synchronization

patterns

This chapter presents a series of basic synchronization problems and shows ways
of using semaphores to solve them. These problems include serialization and
mutual exclusion, which we have already seen, along with others.

3.1 Signaling

Possibly the simplest use for a semaphore is signaling, which means that one
thread sends a signal to another thread to indicate that something has happened.

Signaling makes it possible to guarantee that a section of code in one thread
will run before a section of code in another thread; in other words, it solves the
serialization problem.

Assume that we have a semaphore named sem with initial value 0, and that
Threads A and B have shared access to it.

Thread A

1 statement a1
2 sem.signal ()

Thread B

1 sem.wait()
2 statement b1

The word statement represents an arbitrary program statement. To make
the example concrete, imagine that a1 reads a line from a file, and b1 displays
the line on the screen. The semaphore in this program guarantees that Thread
A has completed a1 before Thread B begins b1.

Here’s how it works: if thread B gets to the wait statement first, it will find
the initial value, zero, and it will block. Then when Thread A signals, Thread
B proceeds.

Similarly, if Thread A gets to the signal first then the value of the semaphore
will be incremented, and when Thread B gets to the wait, it will proceed im-

sem	=	semaphore(0)

• a1 must happen before b1

Basic synchronization patterns: Signaling

Chapter 3

Basic synchronization

patterns

This chapter presents a series of basic synchronization problems and shows ways
of using semaphores to solve them. These problems include serialization and
mutual exclusion, which we have already seen, along with others.

3.1 Signaling

Possibly the simplest use for a semaphore is signaling, which means that one
thread sends a signal to another thread to indicate that something has happened.

Signaling makes it possible to guarantee that a section of code in one thread
will run before a section of code in another thread; in other words, it solves the
serialization problem.

Assume that we have a semaphore named sem with initial value 0, and that
Threads A and B have shared access to it.

Thread A

1 statement a1
2 sem.signal ()

Thread B

1 sem.wait()
2 statement b1

The word statement represents an arbitrary program statement. To make
the example concrete, imagine that a1 reads a line from a file, and b1 displays
the line on the screen. The semaphore in this program guarantees that Thread
A has completed a1 before Thread B begins b1.

Here’s how it works: if thread B gets to the wait statement first, it will find
the initial value, zero, and it will block. Then when Thread A signals, Thread
B proceeds.

Similarly, if Thread A gets to the signal first then the value of the semaphore
will be incremented, and when Thread B gets to the wait, it will proceed im-

sem	=	semaphore(0)

• a1 must happen before b1

Basic synchronization patterns: Signaling

Chapter 3

Basic synchronization

patterns

This chapter presents a series of basic synchronization problems and shows ways
of using semaphores to solve them. These problems include serialization and
mutual exclusion, which we have already seen, along with others.

3.1 Signaling

Possibly the simplest use for a semaphore is signaling, which means that one
thread sends a signal to another thread to indicate that something has happened.

Signaling makes it possible to guarantee that a section of code in one thread
will run before a section of code in another thread; in other words, it solves the
serialization problem.

Assume that we have a semaphore named sem with initial value 0, and that
Threads A and B have shared access to it.

Thread A

1 statement a1
2 sem.signal ()

Thread B

1 sem.wait()
2 statement b1

The word statement represents an arbitrary program statement. To make
the example concrete, imagine that a1 reads a line from a file, and b1 displays
the line on the screen. The semaphore in this program guarantees that Thread
A has completed a1 before Thread B begins b1.

Here’s how it works: if thread B gets to the wait statement first, it will find
the initial value, zero, and it will block. Then when Thread A signals, Thread
B proceeds.

Similarly, if Thread A gets to the signal first then the value of the semaphore
will be incremented, and when Thread B gets to the wait, it will proceed im-

a1Done	=	semaphore(0)

• Same solution using better semaphore naming

a1Done.wait()
a1Done.signal()

• a1 must happen before b1
Basic synchronization patterns: Signaling

Basic synchronization patterns: Rendezvous

12 Basic synchronization patterns

mediately. Either way, the order of a1 and b1 is guaranteed.
This use of semaphores is the basis of the names signal and wait, and

in this case the names are conveniently mnemonic. Unfortunately, we will see
other cases where the names are less helpful.

Speaking of meaningful names, sem isn’t one. When possible, it is a good
idea to give a semaphore a name that indicates what it represents. In this case
a name like a1Done might be good, so that a1done.signal() means “signal
that a1 is done,” and a1done.wait() means “wait until a1 is done.”

3.2 Sync.py

TODO: write about using sync, starting with signal.py
Why does Thread B signal initComplete?

3.3 Rendezvous

Puzzle: Generalize the signal pattern so that it works both ways. Thread A has
to wait for Thread B and vice versa. In other words, given this code

Thread A

1 statement a1
2 statement a2

Thread B

1 statement b1
2 statement b2

we want to guarantee that a1 happens before b2 and b1 happens before a2. In
writing your solution, be sure to specify the names and initial values of your
semaphores (little hint there).

Your solution should not enforce too many constraints. For example, we
don’t care about the order of a1 and b1. In your solution, either order should
be possible.

This synchronization problem has a name; it’s a rendezvous. The idea is
that two threads rendezvous at a point of execution, and neither is allowed to
proceed until both have arrived.

• a1 must happen before b2

• b1 must happen before a2

• a1 must happen before b2

• b1 must happen before a2
3.3 Rendezvous 15

3.3.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal ()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.3.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal ()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

3.3 Rendezvous 15

3.3.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal ()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.3.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal ()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

3.3 Rendezvous 15

3.3.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal ()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.3.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal ()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

Basic synchronization patterns: Rendezvous

• a1 must happen before b2

• b1 must happen before a2
3.3 Rendezvous 15

3.3.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal ()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.3.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal ()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

3.3 Rendezvous 15

3.3.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal ()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.3.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal ()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

3.3 Rendezvous 15

3.3.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal ()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.3.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal ()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

Basic synchronization patterns: Rendezvous

• a1 must happen before b2

• b1 must happen before a2
3.3 Rendezvous 15

3.3.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal ()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.3.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal ()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

Basic synchronization patterns: Rendezvous

• a1 must happen before b2

• b1 must happen before a2
3.3 Rendezvous 15

3.3.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal ()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal ()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.3.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal ()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal ()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

aArrived	=	semaphore(0)	
bArrived	=	semaphore(0)

Basic synchronization patterns: Rendezvous

Example

Example

Example

Example

Thread Synchronization
(Part 2)

CSE 4001

Contents

• Semaphore implementation

• The mutual exclusion constraint

• The producer-consumer problem

Semaphore implementation

wait() {
value = value - 1
if (value < 0) {
 add this thread to list
 block thread
}

}

If semaphore is closed, block the thread that called wait() on a queue
associated with the semaphore. Otherwise, let the thread that called wait()
continue into the critical section.

The	wait()	function:	

Semaphore implementation

signal() {
value = value + 1
if (value <= 0) {
 remove a thread from list
 wakeup thread
}

}

Wake up one of the threads that called wait(s), and run it so that it can
continue into the critical section.

The	signal()	function:

Mutual exclusion
Mutual exclusion

A second common use of semaphores: to enforce mutual exclusion
and controlling concurrent access to shared variables.

The mutex guarantees that only one thread accesses the shared
variable at a time.

Thread A

count = count + 1

Thread B

count = count + 1

(Florida Tech - Computer Sciences) CSE 4001 6 / 20

Mutual exclusion hint
Mutual exclusion hint

Create a semaphore named mutex that is initialized to 1.

A value of one means that a thread may proceed and access the
shared variable;

A value of zero means that it has to wait for another thread to release
the mutex.

(Florida Tech - Computer Sciences) CSE 4001 7 / 20

Mutual exclusion solution
Mutual exclusion solution

Thread A
mutex.wait ()

critical section
count = count + 1

mutex. signal ()

Thread B
mutex.wait ()

critical section
count = count + 1

mutex. signal ()

(Florida Tech - Computer Sciences) CSE 4001 8 / 20

Multiplex
Multiplex

It allows multiple threads to run in the critical section at the same
time, but it enforces an upper limit on the number of concurrent
threads.

In other words, no more than n threads can run in the critical section
at the same time.

hint: treat semaphores as a set of tokens. If no tokens are available when
a thread arrives at the critical section, it waits until another thread
releases one.

(Florida Tech - Computer Sciences) CSE 4001 9 / 20

The producer-consumer problemThe producer-consumer problem

Producer

event = waitForEvent ()
buffer .add(event)

Consumer

event = buffer .get ()
event. process ()

Access to the bu�er has to be exclusive, but waitForEvent() and
event.process() can run concurrently.

(Florida Tech - Computer Sciences) CSE 4001 10 / 20

producer consumer

while true {
item = getEvent()
buffer.add(event)

}

producer()
while true {
 event = buffer.get()
 event.process()
}

consumer()

headtail

Empty buffer: consumer runs first

while true {
item = getEvent()
buffer.add(event)

}

producer()
while true {
 event = buffer.get()
 event.process()
}

consumer()

Empty buffer: consumer runs first

signal() wait()

producer consumer
headtail

while true {
item = getEvent()
buffer.add(event)

}

producer()
while true {
 items.wait()
 event = buffer.get()
 event.process()
}

consumer()

Empty buffer: consumer runs first

signal()
wait()

producer consumer
headtail

while true {
item = getEvent()
buffer.add(event)

}

producer()
while true {
 items.wait()
 event = buffer.get()
 event.process()
}

consumer()

Empty buffer: consumer runs first
items = semaphore(0)

signal()
wait()

producer consumer
headtail

while true {
item = getEvent()
buffer.add(event)
items.signal()

}

producer()
while true {
 items.wait()
 event = buffer.get()
 event.process()
}

consumer()

Empty buffer: consumer runs first

signal()
wait()

items = semaphore(0)

producer consumer
headtail

while true {
item = getEvent()
buffer.add(event)
items.signal()

}

producer()
while true {
 items.wait()
 event = buffer.get()
 event.process()
}

consumer()

Empty buffer: consumer runs first
items = semaphore(0)

producer consumer
headtail

while true {
item = getEvent()
buffer.add(event)
items.signal()

}

producer()
while true {
 items.wait()
 event = buffer.get()
 event.process()
}

consumer()

Empty buffer: consumer runs first
items	=	semaphore(0)

head tail

item
producer consumer

while true {
item = getEvent()
buffer.add(event)
items.signal()

}

producer()
while true {
 items.wait()
 event = buffer.get()
 event.process()
}

consumer()

head tail

Concurrent writes: add and get cannot take place at the same time

items	=	semaphore(0)

item
producer consumer

while true {
item = getEvent()

 mutex.wait()
 buffer.add(event)
 mutex.signal()

items.signal()
}

producer()

head tail

items = semaphore(0)
mutex = semaphore(1)

item

while true {
 items.wait()
 mutex.wait()
 event = buffer.get()
 mutex.signal()
 event.process()
}

consumer()

item
producer consumer

Concurrent writes: add and get cannot take place at the same time

while true {
item = getEvent()

 mutex.wait()
 buffer.add(event)
 mutex.signal()

items.signal()
}

producer()

head tail

Limited buffer size: producer sleeps once the maximum buffer length is reached.

items = semaphore(0)
mutex = semaphore(1)

item

while true {
 items.wait()
 mutex.wait()
 event = buffer.get()
 mutex.signal()
 event.process()
}

consumer()

item
producer consumer

items = semaphore(0)
mutex = semaphore(1)
spaces = semaphore(buffer.size())

head tail

itemitem

while true {
 item = getEvent()
 spaces.wait()
 mutex.wait()
 buffer.add(event)
 mutex.signal()
 items.signal()
}

producer()
while true {
 items.wait()
 mutex.wait()
 event = buffer.get()
 mutex.signal()
 spaces.signal()
 event.process()
}

consumer()

signal()

wait()

token interpretation
of the multiplex

producer consumer

Limited buffer size: producer sleeps once the maximum buffer length is reached.

while true {
 item = getEvent()
 spaces.wait()
 mutex.wait()
 buffer.add(event)
 mutex.signal()
 items.signal()
}

producer()

head tail

items = semaphore(0)
mutex = semaphore(1)
spaces = semaphore(buffer.size())

item

while true {
 items.wait()
 mutex.wait()
 event = buffer.get()
 mutex.signal()
 spaces.signal()
 event.process()
}

consumer()

item

signal()

wait()

token interpretation
of the multiplex

producer consumer

Limited buffer size: producer sleeps once the maximum buffer length is reached.

Implementation Example: Producer-Consumer

/* global vars */

const int bufferSize = 5;

const int numConsumers = 3;

const int numProducers = 3;

/* semaphores are declared global so they can be accessed

 in main() and in thread routine. */

Semaphore Mutex(1);

Semaphore Spaces(bufferSize);

Semaphore Items(0);

int main(int argc, char **argv)

{

 pthread_t producerThread[numProducers];

 pthread_t consumerThread[numConsumers];

...

Global variables and semaphores

/*

 Producer function

*/

void *Producer (void *threadID)

{

 // Thread number

 int x = (long)threadID;

 while(1)

 {

 sleep(3); // Slow the thread down a bit so we can see what is going on

 Spaces.wait();

 Mutex.wait();

 printf("Producer %d adding item to buffer \n", x);

 fflush(stdout);

 Mutex.signal();

 Items.signal();

 }

}

Implementation Example: Producer-Consumer

Producer thread

/*

 Producer function

*/

void *Producer (void *threadID)

{

 // Thread number

 int x = (long)threadID;

 while(1)

 {

 sleep(3); // Slow the thread down a bit so we can see what is going on

 Spaces.wait();

 Mutex.wait();

 printf("Producer %d adding item to buffer \n", x);

 fflush(stdout);

 Mutex.signal();

 Items.signal();

 }

}

/*

 Consumer function

*/

void *Consumer (void *threadID)

{

 // Thread number

 int x = (long)threadID;

 while(1)

 {

 Items.wait();

 Mutex.wait();

 printf("Consumer %d removing item from buffer \n", x);

 fflush(stdout);

 Mutex.signal();

 Spaces.signal();

 sleep(5); // Slow the thread down a bit so we can see what is going on

 }

}

Implementation Example: Producer-Consumer

Consumer thread

Thread Synchronization
(Part 3)

CSE 4001

Contents

• The readers-writers problem

A data set is shared among a number of concurrent threads

• Readers: Only read the data set; they do not perform any

updates
• Writers: Can both read and write

Problem: Allow multiple readers to read at the same time. Only
one single writer can access the shared data at any time.
•

Readers-Writers

Readers-Writers
Readers-Writers problem

Here is a set of variables that is su�cient to solve the problem
i n t r e a d e r s = 0 // no . o f r e a d e r s i n the room
mutex = Semaphore (1) // p r o t e c t s the coun t e r
roomEmpty = Semaphore (1) // 1 i f room i s empty

(Florida Tech - Computer Sciences) CSE 4001 3 / 1

Readers-Writers

Readers-Writers Readers-Writers
Readers-Writers problem

Writer
roomEmpty . wa i t ()

c r i t i c a l s e c t i o n f o r w r i t e r s
roomEmpty . s i g n a l ()

(Florida Tech - Computer Sciences) CSE 4001 4 / 1

Readers-Writers Readers-WritersReaders-writers

Reader
mutex . wa i t ()

r e a d e r s += 1
i f r e a d e r s = = 1 :

roomEmpty . wa i t () # f i r s t i n l o c k s
e n d i f

mutex . s i g n a l ()

c r i t i c a l s e c t i o n f o r r e a d e r s

mutex . wa i t ()
r e a d e r s ≠= 1
i f r e a d e r s = = 0 :

roomEmpty . s i g n a l () # l a s t out un l o ck s
e n d i f

mutex . s i g n a l ()

(Florida Tech - Computer Sciences) CSE 4001 5 / 1

Readers-Writers Readers-Writers
Readers-writers

Reader
mutex . wa i t ()

r e a d e r s += 1
i f r e a d e r s = = 1 :

roomEmpty . wa i t () # f i r s t i n l o c k s
e n d i f

mutex . s i g n a l ()

c r i t i c a l s e c t i o n f o r r e a d e r s

mutex . wa i t ()
r e a d e r s ≠= 1
i f r e a d e r s = = 0 :

roomEmpty . s i g n a l () # l a s t out un l o ck s
e n d i f

mutex . s i g n a l ()

(Florida Tech - Computer Sciences) CSE 4001 5 / 1

4.2 Readers-writers problem 81

4.2.5 No-starve readers-writers solution

Here is the writer code:

Listing 4.20: No-starve writer solution

1 turnstile.wait()
2 roomEmpty.wait()
3 # critical section for writers
4 turnstile.signal()
5
6 roomEmpty.signal()

If a writer arrives while there are readers in the room, it will block at Line 2,
which means that the turnstile will be locked. This will bar readers from entering
while a writer is queued. Here is the reader code:

Listing 4.21: No-starve reader solution

1 turnstile.wait()
2 turnstile.signal()
3
4 readSwitch.lock(roomEmpty)
5 # critical section for readers
6 readSwitch.unlock(roomEmpty)

When the last reader leaves, it signals roomEmpty, unblocking the waiting
writer. The writer immediately enters its critical section, since none of the
waiting readers can pass the turnstile.

When the writer exits it signals turnstile, which unblocks a waiting thread,
which could be a reader or a writer. Thus, this solution guarantees that at least
one writer gets to proceed, but it is still possible for a reader to enter while
there are writers queued.

Depending on the application, it might be a good idea to give more priority
to writers. For example, if writers are making time-critical updates to a data
structure, it is best to minimize the number of readers that see the old data
before the writer has a chance to proceed.

In general, though, it is up to the scheduler, not the programmer, to choose
which waiting thread to unblock. Some schedulers use a first-in-first-out queue,
which means that threads are unblocked in the same order they queued. Other
schedulers choose at random, or according to a priority scheme based on the
properties of the waiting threads.

If your programming environment makes it possible to give some threads
priority over others, then that is a simple way to address this issue. If not, you
will have to find another way.

Puzzle: Write a solution to the readers-writers problem that gives priority
to writers. That is, once a writer arrives, no readers should be allowed to enter
until all writers have left the system.

Reader thread

shared data set

RR

R

RR

W

W

W

Scenario 2: The scheduler picks a reader. ready-to-run
waiting queues

4.2 Readers-writers problem 81

4.2.5 No-starve readers-writers solution

Here is the writer code:

Listing 4.20: No-starve writer solution

1 turnstile.wait()
2 roomEmpty.wait()
3 # critical section for writers
4 turnstile.signal()
5
6 roomEmpty.signal()

If a writer arrives while there are readers in the room, it will block at Line 2,
which means that the turnstile will be locked. This will bar readers from entering
while a writer is queued. Here is the reader code:

Listing 4.21: No-starve reader solution

1 turnstile.wait()
2 turnstile.signal()
3
4 readSwitch.lock(roomEmpty)
5 # critical section for readers
6 readSwitch.unlock(roomEmpty)

When the last reader leaves, it signals roomEmpty, unblocking the waiting
writer. The writer immediately enters its critical section, since none of the
waiting readers can pass the turnstile.

When the writer exits it signals turnstile, which unblocks a waiting thread,
which could be a reader or a writer. Thus, this solution guarantees that at least
one writer gets to proceed, but it is still possible for a reader to enter while
there are writers queued.

Depending on the application, it might be a good idea to give more priority
to writers. For example, if writers are making time-critical updates to a data
structure, it is best to minimize the number of readers that see the old data
before the writer has a chance to proceed.

In general, though, it is up to the scheduler, not the programmer, to choose
which waiting thread to unblock. Some schedulers use a first-in-first-out queue,
which means that threads are unblocked in the same order they queued. Other
schedulers choose at random, or according to a priority scheme based on the
properties of the waiting threads.

If your programming environment makes it possible to give some threads
priority over others, then that is a simple way to address this issue. If not, you
will have to find another way.

Puzzle: Write a solution to the readers-writers problem that gives priority
to writers. That is, once a writer arrives, no readers should be allowed to enter
until all writers have left the system.

writer	thread

4.2 Readers-writers problem 81

4.2.5 No-starve readers-writers solution

Here is the writer code:

Listing 4.20: No-starve writer solution

1 turnstile.wait()
2 roomEmpty.wait()
3 # critical section for writers
4 turnstile.signal()
5
6 roomEmpty.signal()

If a writer arrives while there are readers in the room, it will block at Line 2,
which means that the turnstile will be locked. This will bar readers from entering
while a writer is queued. Here is the reader code:

Listing 4.21: No-starve reader solution

1 turnstile.wait()
2 turnstile.signal()
3
4 readSwitch.lock(roomEmpty)
5 # critical section for readers
6 readSwitch.unlock(roomEmpty)

When the last reader leaves, it signals roomEmpty, unblocking the waiting
writer. The writer immediately enters its critical section, since none of the
waiting readers can pass the turnstile.

When the writer exits it signals turnstile, which unblocks a waiting thread,
which could be a reader or a writer. Thus, this solution guarantees that at least
one writer gets to proceed, but it is still possible for a reader to enter while
there are writers queued.

Depending on the application, it might be a good idea to give more priority
to writers. For example, if writers are making time-critical updates to a data
structure, it is best to minimize the number of readers that see the old data
before the writer has a chance to proceed.

In general, though, it is up to the scheduler, not the programmer, to choose
which waiting thread to unblock. Some schedulers use a first-in-first-out queue,
which means that threads are unblocked in the same order they queued. Other
schedulers choose at random, or according to a priority scheme based on the
properties of the waiting threads.

If your programming environment makes it possible to give some threads
priority over others, then that is a simple way to address this issue. If not, you
will have to find another way.

Puzzle: Write a solution to the readers-writers problem that gives priority
to writers. That is, once a writer arrives, no readers should be allowed to enter
until all writers have left the system.

reader	thread

turnstileroomEmpty

Readers-Writers Readers-Writers
Readers-writers: priority

Depending on the application, it might be a good idea to give more
priority to writers. For example, if writers are making time-critical updates
to a data structure, it is best to minimize the number of readers that see
the old data before the writer has a chance to proceed.

(Florida Tech - Computer Sciences) CSE 4001 8 / 1

Readers-Writers Readers-Writers: no-starve solution
Readers-writers: no-starve solution

r eadSw i t ch = L i g h t s w i t c h ()
roomEmpty = Semaphore (1)
t u r n s t i l e = Semaphore (1)

turnstile is a turnstile for readers and a mutex for writers. Readers will
need to queue on the turnstile if a writer gets stuck inside it.

(Florida Tech - Computer Sciences) CSE 4001 7 / 1

Readers-Writers
Readers-Writers: no-starve solution
4.2 Readers-writers problem 81

4.2.5 No-starve readers-writers solution

Here is the writer code:

Listing 4.20: No-starve writer solution

1 turnstile.wait()
2 roomEmpty.wait()
3 # critical section for writers
4 turnstile.signal()
5
6 roomEmpty.signal()

If a writer arrives while there are readers in the room, it will block at Line 2,
which means that the turnstile will be locked. This will bar readers from entering
while a writer is queued. Here is the reader code:

Listing 4.21: No-starve reader solution

1 turnstile.wait()
2 turnstile.signal()
3
4 readSwitch.lock(roomEmpty)
5 # critical section for readers
6 readSwitch.unlock(roomEmpty)

When the last reader leaves, it signals roomEmpty, unblocking the waiting
writer. The writer immediately enters its critical section, since none of the
waiting readers can pass the turnstile.

When the writer exits it signals turnstile, which unblocks a waiting thread,
which could be a reader or a writer. Thus, this solution guarantees that at least
one writer gets to proceed, but it is still possible for a reader to enter while
there are writers queued.

Depending on the application, it might be a good idea to give more priority
to writers. For example, if writers are making time-critical updates to a data
structure, it is best to minimize the number of readers that see the old data
before the writer has a chance to proceed.

In general, though, it is up to the scheduler, not the programmer, to choose
which waiting thread to unblock. Some schedulers use a first-in-first-out queue,
which means that threads are unblocked in the same order they queued. Other
schedulers choose at random, or according to a priority scheme based on the
properties of the waiting threads.

If your programming environment makes it possible to give some threads
priority over others, then that is a simple way to address this issue. If not, you
will have to find another way.

Puzzle: Write a solution to the readers-writers problem that gives priority
to writers. That is, once a writer arrives, no readers should be allowed to enter
until all writers have left the system.

writer	thread

4.2 Readers-writers problem 81

4.2.5 No-starve readers-writers solution

Here is the writer code:

Listing 4.20: No-starve writer solution

1 turnstile.wait()
2 roomEmpty.wait()
3 # critical section for writers
4 turnstile.signal()
5
6 roomEmpty.signal()

If a writer arrives while there are readers in the room, it will block at Line 2,
which means that the turnstile will be locked. This will bar readers from entering
while a writer is queued. Here is the reader code:

Listing 4.21: No-starve reader solution

1 turnstile.wait()
2 turnstile.signal()
3
4 readSwitch.lock(roomEmpty)
5 # critical section for readers
6 readSwitch.unlock(roomEmpty)

When the last reader leaves, it signals roomEmpty, unblocking the waiting
writer. The writer immediately enters its critical section, since none of the
waiting readers can pass the turnstile.

When the writer exits it signals turnstile, which unblocks a waiting thread,
which could be a reader or a writer. Thus, this solution guarantees that at least
one writer gets to proceed, but it is still possible for a reader to enter while
there are writers queued.

Depending on the application, it might be a good idea to give more priority
to writers. For example, if writers are making time-critical updates to a data
structure, it is best to minimize the number of readers that see the old data
before the writer has a chance to proceed.

In general, though, it is up to the scheduler, not the programmer, to choose
which waiting thread to unblock. Some schedulers use a first-in-first-out queue,
which means that threads are unblocked in the same order they queued. Other
schedulers choose at random, or according to a priority scheme based on the
properties of the waiting threads.

If your programming environment makes it possible to give some threads
priority over others, then that is a simple way to address this issue. If not, you
will have to find another way.

Puzzle: Write a solution to the readers-writers problem that gives priority
to writers. That is, once a writer arrives, no readers should be allowed to enter
until all writers have left the system.

reader	thread

Thread Synchronization
(Part 4)

CSE 4001

Contents

• The readers-writers problem

• The dinning-philosophers
problem

Dining philosophersDining philosophers problem

The Dining Philosophers Problem was proposed by Dijkstra in 1965. The standard
version features are a table with five plates, five forks (or chopsticks) and a big bowl of
spaghetti. Five philosophers, who represent interacting threads, come to the table and
execute the following loop:

w h i l e True :
t h i n k ()
g e t_ f o r k s ()
ea t ()
pu t_ fo rk s ()

2

1

0

4

3
2

3

0 1

4

(Florida Tech - Computer Sciences) CSE 4001 9 / 1

Dining philosophersDining philosophers problem

The forks represent resources
that the threads have to hold
exclusively in order to make
progress.

The philosophers need two
forks to eat, so a hungry
philosopher might have to
wait for a neighbor to put
down a fork.

2

1

0

4

3
2

3

0 1

4

(Florida Tech - Computer Sciences) CSE 4001 10 / 1

Dining philosophersDining philosophers problem

Assuming that the philosophers know how to think and eat, our job is to write a
version of get_forks and put_forks that satisfies the following constraints:

Only one philosopher can
hold a fork at a time.

It must be impossible for a
deadlock to occur.

It must be impossible for a
philosopher to starve waiting
for a fork.

It must be possible for more
than one philosopher to eat
at the same time.

2

1

0

4

3
2

3

0 1

4

(Florida Tech - Computer Sciences) CSE 4001 11 / 1

Dining philosophers
Dining philosophers problem

Let us define the functions left and right to
refer to the forks’ position.

de f l e f t (i) : r e t u r n i
d e f r i g h t (i) : r e t u r n (i + 1) % 5

Use a list of Semaphores, one for each fork. Ini-
tially, all the forks are available.

f o r k s = [Semaphore (1) f o r i i n range (5)]

2

1

0

4

3
2

3

0 1

4

(Florida Tech - Computer Sciences) CSE 4001 12 / 1

Dining philosophersDining philosophers problem

First attempt of a solution:

de f g e t _ f o r k s (i) :
f o r k [r i g h t (i)] . wa i t ()
f o r k [l e f t (i)] . wa i t ()

de f pu t_ fo rk s (i) :
f o r k [r i g h t (i)] . s i g n a l ()
f o r k [l e f t (i)] . s i g n a l ()

Which constraints are satisfied by this solution?

2

1

0

4

3
2

3

0 1

4

1 Only one philosopher can hold a fork at

a time.

2 It must be impossible for a deadlock to

occur.

3 It must be impossible for a philosopher

to starve waiting for a fork.

4 It must be possible for more than one

philosopher to eat at the same time.

(Florida Tech - Computer Sciences) CSE 4001 13 / 1

Dining philosophers

Dining philosophers problem

Limit the number of philosophers at the table at a time: If only
four philosophers are allowed at the table at a time, deadlock is
impossible. There is always a fork on the table.

We can control the number of philosophers at the table with a
Multiplex named footman that is initialized to 4.

(Florida Tech - Computer Sciences) CSE 4001 14 / 1

Dining philosophers
Dining philosophers problem

def get_forks (i):
footman .wait ()
fork[right(i)]. wait ()
fork[left(i)]. wait ()

def put_forks (i):
fork[right(i)]. signal ()
fork[left(i)]. signal ()
footman . signal ()

Which constraints are satisfied by this solution?

2

1

0

4

3
2

3

0 1

4

1 Only one philosopher can hold a fork at

a time.

2 It must be impossible for a deadlock to

occur.

3 It must be impossible for a philosopher

to starve waiting for a fork.

4 It must be possible for more than one

philosopher to eat at the same time.

(Florida Tech - Computer Sciences) CSE 4001 15 / 1

Dining philosophers
Dining philosophers problem

Another way to avoid deadlock is to change the order in which the
philosophers pick up forks. In the original non-solution, the
philosophers are “righties”; that is, they pick up the right fork first.
But what happens if Philosopher 0 is a leftie?

Prove that if there is at least one leftie and at least one rightie, then
deadlock is not possible.

Hint: deadlock can only occur when all 5 philosophers are holding one
fork and waiting, forever, for the other. Otherwise, one of them could
get both forks, eat, and leave.

(Florida Tech - Computer Sciences) CSE 4001 16 / 1

