“FLORIDA TECH

FLORIDA'S STEM UNIVERSITY

Threads

CSE4001 Operating Systems Concepts
E. Ribelro

Single and Multithreaded Processes

CFL\ﬁRIDA TECH

FLORIDA'S STEM UNIVERSITY*

» Thread — a fundamental unit of CPU utilization that forms the
basis of multithreaded computer systems

code I l data

files |

registers I

code

‘ data I

files

stack I

registers

registers ||| registers

thread —» ;

single-threaded process

stack l stack

g«—-— thread

multithreaded process

rLORIDA TECH
Threads = wsomowen

» [hreads are discrete processing units that allow
functions to execute concurrently (I.e., simultaneous
execution of functions while taking turns in the CPU).

» Useful when functions take too long to complete their
tasks as they should not block other functions.

» \WVhen an application Is launched, It contains only one
thread (i.e., executes the main() function). This type

of application is called a single-threaded application.

rLORIDA TECH
Threads = wsomowen

» Multi-threaded applications create new threads to
execute multiple functions.

» Modern computer architecture offers multiple
porocessing cores by default. Threads allow
orogrammers to use the available processing
capacity.

» Having multi-core machines by default means that
knowing how to develop multi-threaded programs
has become a key skill In modern programming.

Single and Multithreaded Processes

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

(free)

Stack

the code segment:
where instructions live

the heap segment:
contains malloc’d data
dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:
contains local variables
arguments to routines,
return values, efc.

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

(free)

Stack (2)

(free)

—

Stack (1)

“FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

Figure from Arpaci-Dusseau

Single and Multithreaded Processes

= A thread is a basic unit of CPU
utilization. It comprises:

* a thread ID

®* a program counter

* a register set

e a stack

-
“FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

code data files

stack

registers

code

data

files

_]'—!

registers

registers

reqgisters

thread —> g

stack

stack

stack

:

single-threaded process

?

;4-—- thread

multit

hreaded process

Single and Multithreaded Processes

~ A traditional process has a single thread
of control.

. Processes that have multiple threads can
perform multiple tasks concurrently.

~ Software packages are usually
multithreaded. They are implemented as a
process with several threads of control.

“FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

code

data

files

registers

stack

thread —> ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

:

:

é,_

— thread

multithreaded process

Some multi-threaded packages FLORIDA TECH

A web browser has threads tor showing text, threads for showing
images, threads to retrieve data from the network.

BROWSER AHCHITECTUHE

c H H 0 M E U I J

d-threads-9f8f8fa23371

Processes-an

cted.com/how-web-browsers-use-

https://levelup.gitconne

: @
Some multi-threaded packages ‘FLORIDA TECH

Most graphical user interfaces are multi-threaded programs.
Scientific software also uses multiple threads

‘@00 Volumetric object example - 3D terrain el

.| Slice volume on X axis | Show FPS

//' -_»_“—- B

Texture detail

() Low (128x64x128)
() Medium (256x128x256)
(o) High (512x256x512)

7 = Show area
- |_|Slice volume on Y axis

(») Whole region
() The mine
() The mountain

.| Alternate color table
Alpha multiplier: 3.500

@ Preserve opacity
|| Transparent ground
@ Use HD shader

Note: A high end graphics card is
recommended with the HD shader
when the volume contains a lot of
transparent areas.

. | Slice volume on Z axis

—

¥ Draw slice frames

https://doc.qgt.io/gt-5.12/gtdatavisualization-volumetric-example.html

Multithreaded Server Architecture

(1) request

(2) create new
thread to service
the request

(FI.\ERIDA TECH

FLORIDA'S STEM UNIVERSITY"

client }'—- server

S

thread

(3) resume listening
for additional
client requests

Multithreaded Server Architecture

~ For a large number of clients, a single-threaded server

implementation would take too long to respona.

FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

~ Processes were used often to solve this problem until threads

became popular. Threads are known as light-weight processes.

(1) request

client

(2) create new
thread to service
the request

server

e

U

thread

(3) resume listening
for additional
client requests

Modern OSs are multO-threaded FLORIDA TECH

- Most OSs are now multithreaded: several threads operate
in the kernel managing devices and handling interrupts. For
example, Linux uses a kernel thread for managing the amount
of free memory in the system.

(FI.\ERIDA TECH

FLORIDA'S STEM UNIVERSITY"

Concurrent Execution on a Single-core System

single core | T4 T2 T3 T4 T4 Tp T3 T4 T4

time

- - “FLORIDA TECH
Parallel Execution on a Multicore System

sl 70 0 8 I
AR

time

core 2

Multi-core Programming i

‘ '
Data dependency

Testing and debugging The challenges of developing

software for multi-core systems may

AARRA
PEELT

Challenges:

-t
-

» Dividing activities

Balance

>
» Data splitting
>
>

require an entirely new approach to

designing software systems.

rLORIDA TECH
User Threads

» [hread management done by user-level threads library

» [hree primary thread libraries:

» POSIX Pthreads
» Win32 threads
» Java threads

Kernel Threads “FLOMDATECH
» Supported by the Kernel

» Examples:

> Windows XP /2000

Solaris
L InuXx

Truo4 UNIX
Mac OS X

vV v v V

1 =- 10 RIDA TEGH

Multithreading Models

» Many-to-one
» One-to-one

» Many-to-many

Many-to-one model TLORIDA TECH

Many user-level threads mapped to single kernel thread |

; o o

34— user thread

Examples:
» Solaris Green Threads
» GNU Portable Threads

“FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

One-to-one model

Each user-level thread maps to kernel thread |

Examples:
» Windows NT /XP /2000

» Linux
» Solaris 9 and later
<«——Kernel thread

<«—— yser thread

FLORIDA TECH
I\/I a n y_ tO_ m a n y m O d e | FLORIDA'S STEM UNIVERSITY’

» Allows many user level threads to be mapped to many kernel threads

» Allows the operating system to create a sufficient number of kernel

threads ; é)

§<— user thread

Examples: ;

» Solaris prior to version 9

» Windows NT /2000 with
the ThreadFiber

package

° ° ° <« kernel thread

| | rLORIDA TECH
T h rea d L I b ra r I eS : pt hr e ad S FLORIDA’'S STEM UNIVERSITY’

Thread library provides programmer with API for creating and managing
threads

» A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

» API specifies behavior of the thread library, implementation is up to
the developer

» Common in UNIX operating systems (Solaris, Linux, Mac OS X)

-

' \FLURIDATEBH
Thread Programming :
private }- thra=c ‘
Shared Memory Model: /“"“" nrea
» All threads have access to the . | private
same global, shared memory _I

» [hreads also have their own
private data

private I

thread

» Programmers are responsible for
synchronizing access (protecting) thread !

globally shared data.
private | | private I
thread

Creating and Terminating Threads “FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

» The maximum number of threads that may be created by a process is
implementation dependent.

» Once created, threads are peers, and may create other threads. There is
no implied hierarchy or dependency between threads.

thread 3

time

Creating and Terminating Threads “FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

#include <pthread.h>
#include <stdio.h>
#define NUM__THREADS 5

void *PrintHello(void *threadid){
long tid;
tid = (long)threadid;
printf("Hello World! It’s me, thread #J1d!\n", tid);
pthread_exit (NULL);

Creating and Terminating Threads “FLORIDA TECH

FLORIDA'S STEM UNIVERSITY"

int main (int argc, char sxargv]|]){
pthread_t threads|[NUM_THREADS];
int rc:
long t;
for(t=0; t<NUM_THREADS; t++){
printf("In main: creating thread ’%1ld\n", t);
rc — pthread_create(&threads|[t], NULL, PrintHello, (void x)t);

if (rc){
printf ("ERROR; return code from pthread_create(): %d\n", rc)j
exit(—1);

}

}

pthread_exit (NULL);

Thread Management - Joining and Detaching Threads CLoribaTecH

FLORIDA'S STEM UNIVERSITY"

“Joining” is one way to accomplish synchronization between threads.

Master .
thread create() ———# thread join ()
Thread = — = —J —

Worker
Thread
DOWORK —» pthread_exit()|
Worker
Thread

https://computing.llnl.gov/tutorials/pthreads/

Example — Joining and Detaching Threads Cr1 ORIDA TECH

FLORIDA'S STEM UNIVERSITY"

#include <pthread.h>
#include <stdio.h>
#include <stdlib .h>
#include <math.h>

#define NUM_THREADS 4 Worker Function

void *xBusyWork(void x*t)
1
int 1;
long tid;
double result=0.0;
tid = (long)t;
printf ("Thread %1ld starting...\n",tid);
for (i=0; 1<1000000; i++)

result = result + sin(i) * tan(i);

printf ("Thread %1ld done. Result = %e\n",tid, result);
pthread_exit ((voidx) t);

int main (int argc, char =xargv|[]){ Main Function \(F—FER"JATEGH

pthread_t thread |[NUM_THREADS]; FLORIDA'S STEM UNIVERSITY
pthread_attr_t attr;
int rc; long t; void xstatus;

/* Initialize and set thread detached attribute x/
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for(t=0; t<NUM_THREADS; t++4) {
printf ("Main: creating thread 7%1d\n", t);
rc = pthread_create(&thread|[t], &attr, BusyWork, (void *)t);
if (rc) exit(—1);

}

/* Free attribute and wait for the other threads */
pthread_attr_destroy(&attr);
for(t=0; t<NUM_THREADS; t+4++) {

rc = pthread_join(thread[t], &status);

if (rc) exit(—1);

printf("Main: completed join with thread %1d having a status
of %1d\n",t,(long)status);

}

printf("Main: program completed. Exiting.\n");
pthread_exit (NULL);

FLORIDA TECH

Boost Libraries

#include <iostream> if"ﬁ
#include <boost/thread.hpp> TLORIDA TECH

#include <boost/date time.hpp> Exal I lp‘e 1 FLDR'DA’SSTEM”N'VERS”\%

D

void workerFunc() 2
{ 7
@)

boost::posix time: :seconds workTime(3); £
std::cout << "Worker: running"” << std::endl; %

5

g/ Pgetizd tzhdo _;?rrlellﬁhlng usE]_:t:lL. - main: startup g
POST. - Lhis _thread. -5 egpgwor "1me), main: waiting for thread Q
std::cout << "Worker: finished"” << std::endl; : 2

1 Worker: running S
Worker: finished g

int main(int argc, char* argv[]) main: done g
{ 3
std::cout << "main: startup” << std::endl; é
boost: :thread workerThread(workerFunc); =

O

std::cout << "main: waiting for thread"” << std::endl; .§
workerThread. join(); o

O

O

@)

std::cout << "maln: done"” << std::endl; g
return 0; &=

} e

include <boost/thread.hpp>

include <iostream> Exa m p | e 2 E!'Rgglpse UJVEERE!.YI

void wait(int seconds)

{

boost::this thread::sleep(boost::posix _time::seconds(seconds));

¥

void thread()

{
for (int i = 0; 1 < 5; ++i)
{
wait(1l);
std::cout << 1 << std::endl;
}
J Declares a variable t of type
int main() boost: :thread
{
boost: :thread t(thread);
t.join();

}

include <boost/thread.hpp> -
include <iostream> rLORIDA TEGH

void wait(int seconds)

{

boost::this thread::sleep(boost::posix _time::seconds(seconds));

¥

?{/Oid thread() e —— This Is the function we want

—__|to be executed within the

for (int 1 = 0; i < 5; ++1i)

{ thread.
wait(1l);
std::cout << 1 << std::endl;
}
}
int main()
{
boost::thread t(thread);
t.join();

}

include <boost/thread.hpp> (X
include <iostream> :J—&EL%JE&!‘!

void wait(int seconds)

{

boost::this thread::sleep(boost::posix _time::seconds(seconds));

¥

}/Oid thread() Name of the function to be
For (int i = @; i < 5; ++i) executed within the thread Is
{ passed to the constructor of

wait(1); boost: :thread
std::cout << 1 << std::endl;

¥
¥

int main()

{
boost: :thread t(thread);

t.join();
}

include <boost/thread.hpp> o
include <iostream> :L!'RQE,L%UJVEERE.LI

void wait(int seconds)

{

boost::this thread::sleep(boost::posix _time::seconds(seconds));

¥

void thread()

{

TEOP (Int 1 =05 1 < 55 ++1) Upon creation, the thread function starts
wait(1); executing in its own thread immedadiately.
std::cout << 1 << std::endl; |Fynction main() is also executing in its

1 } own thread. Here, we say that these

functions are executing concurrently.

int main()

{
boost: :thread t(thread);

t.join();
}

include <boost/thread.hpp> (X
include <iostream> :J—&EL%JE&!‘!

void wait(int seconds)

{

boost::this thread::sleep(boost::posix _time::seconds(seconds));

¥

void thread() The method join() blocks
U oo (int i - 05 1< 55 ed) the calling thread unti
{ thread t terminates.
wait(1); | Basically, it forces main() to
std::cout << 1 << std::endl; |
) wait for t.
}
int main()
{
boost::thread t(thread);
t.join();

}

include <boost/thread.hpp> o
include <iostream> rLORIDA TEGH

void wait(int seconds)

{

boost::this thread::sleep(boost::posix _time::seconds(seconds));

¥

f{"’id thread() What happens if we don'’t
for (int i = 0; 1 < 5; ++1i) call join()?

{
wait(1l);
std::cout << 1 << std::endl;
}
}
int main()
{
boost: :thread t(thread);
t.join();

}

G X
Example: Video processing TLORIDA TECH

» Video as a 3-D array (volume)

Source: NASA

http://breckon.eu/toby/demos/videovolumes/

http://breckon.eu/toby/demos/videovolumes/

Gy X
Example: Video processing “TLORIDA TECH

» Some tasks of a video-processing software can be
done concurrently by separate threads.

e Calculate the average image
e Calculate the median image

Source: NASA

http://breckon.eu/toby/demos/videovolumes/

http://breckon.eu/toby/demos/videovolumes/

ExXample: Video processing fiaie

» \We can also speed up each task by first dividing the video Into sub

volumes, and then assign each sub volume to be processed by a
separate thread.

master . Final
: i . i thread_create() » thread_join() >
1/1?’3 1/1?’3 thread result

] l |

worker
thread

worker
thread

Do work »| thread_exit()

worker
thread

worker
thread

http://breckon.eu/toby/demos/videovolumes/

http://breckon.eu/toby/demos/videovolumes/

- FLORIDA TEC
Synchronizing threads b

» Multi-threaded programming can
INncrease performance of applications.
But, complexity Is also Increased.

» ACCess 10 shared resources must be
controlled by trying to synchronize
ACCess,

void wait(int seconds) _—
{ “FLORIDA TECH
boost::this thread::sleep(boost::posix _time::seconds(seconds)); FLORIDA'S STEM UNIVERSITY

}

boost: :mutex mutex;

void thread()
{
for (int 1 = 0; i < 5; ++1)
{
wait(1l);
mutex.lock();
std: :cout << "Thread
mutex.unlock();

¥
¥

<< boost::this thread::get id() << ": " << 1 << std::endl;

int main()

{
boost: :thread tl(thread);
boost: :thread t2(thread);
tl.join();
t2.j0in();

void wait(int seconds) X
{ “FLORIDA TECH

boost::this thread::sleep(boost::posix _time::seconds(seconds)); FLORIDA'S STEM UNIVERSITY

}

boost: :mutex mutex;

void thread()

{
for (int 1 = 0; i < 5; ++1)
{
wait(1l);
mutex.lock();
std::cout << "Thread " << boost::this thread::get id() << ": " << 1 << std::endl;
mutex.unlock();
\ s Creates two threads, both

execution the thread() function.

int main()

{
boost::thread tl(thread); _
boost::thread t2(thread);
tl.join();
t2.join();

void wait(int seconds) X
{ “FLORIDA TECH

boost::this thread::sleep(boost::posix _time::seconds(seconds)); FLORIDA'S STEM UNIVERSITY
}

The thread() function writes on
the standard output stream (on the

boost: :mutex mutex;

j{"’id thread() console). This stream is a global
for (int i = @; i < 5; ++i) object shared by all threads.
{
wait(1l);
mutex.lock();
std::cout << "Thread " << boost::this thread::get id() << ": " << 1 << std::endl;
mutex.unlock();
}

}

int main()

{
boost: :thread tl(thread);
boost: :thread t2(thread);
tl.join();
t2.j0in();

void wait(int seconds) (X

{ “FLORIDA TECH
boost::this_thread::sleep(boost::posix_time: :seconds(seconds)); FLORIDA'S STEM UNIVERSITY

¥

boost: :mutex mutex;

We need to synchronize access to this shared

}{’Oid thread() resource otherwise messages from multiple
for (int i = 0; i < 5; ++i) threads will overlap on the console.
{
wait(1l);

mutex.lock();
std: :cout << "Thread
mutex.unlock();

¥
¥

<< boost::this thread::get id() << ": " << 1 << std::endl;

int main()

{
boost::thread tl(thread);
boost::thread t2(thread);
tl.join();
t2.j0in();

void wait(int seconds) X
{ “FLORIDA TECH

boost::this thread::sleep(boost::posix _time::seconds(seconds)); FLORIDA'S STEM UNIVERSITY

}

boost: :mutex mutex;

Here, we declare a global mutex

f{/oid thread() (i.e., mutual-exclusion object)

for (int 1 = 0; i < 5; ++1)
{
wait(1l);
mutex.lock();
std::cout << "Thread " << boost::this thread::get id() << ": " << 1 << std::endl;
mutex.unlock();

¥
¥

int main()

{
boost: :thread tl(thread);
boost: :thread t2(thread);
tl.join();
t2.j0in();

void wait(int seconds) (X
{ “TLORIDA TEGH

boost::this_thread::sleep(boost::posix_time: :seconds(seconds)); FLORIDA'S STEM UNIVERSITY
¥

A mutex works like a “traffic semaphore” or lock.

boost: :mutex mutex;

Multiple threads will see It but only one thread can get

void thread() hold of it. Once one thread locks the mutex, all other
{ for (int i = @; i < 5; ++i) |threads that “try it” will need to wait until the lock is
{ released by the thread that was holding It.
wait(1l);
mutex.lock();
std::cout << "Thread " << boost::this thread::get id() << ": " << i << std::endl;
mutex.unlock();

}

}

int main()

{ AW-’iﬁ‘ //
boost: :thread tl(thread); m“m_h‘y/ﬂeﬁf
boost: :thread t2(thread); N i
tl.join();
t2.join();

rLORIDA TECH

Install the boost library (Ubuntu) e

sudo apt-get i1nstall libboost-all-dev

To learn more about boost threads TLORIATECH

» Tutorial:

http://theboostcpplibraries.com/boost.thread

http://theboostcpplibraries.com/boost.thread

“FLORIDA TECH
FLORIDA'S STEM UNIVERSITY’

OpenMP (Open Multi-Processing)

OpeniviP

» OpenMP is a set of compiler directives as well as an
API| for programs written in C, C++, or Fortran that
provides support for parallel programming in shared-
memaory environments.

“FLORIDA TECH
FLORIDA'S STEM UNIVERSITY’

OpenMP (Open Multi-Processing)

OpeniviP

» OpenMP identifies parallel regions as blocks of code
that may run in parallel. Application developers insert
compiler directives into their code at parallel regions, and

these directives instruct the OpenMP run-time library to
execute the region In parallel.

FLORIDA TECH

OpenMP (Open Multi-Processing) "2

This program will print a message which will be getting
executed by various threads.

// openMP header
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char® argvl[])

{
int nthreads, tid;
// Begin of parallel region
J . g _ akbar@ubuntu: ~/Desktop
#pragma omp parallel private(nthreads, tid)
g File Edit View Search Terminal Help
_ akbar@ubuntu:~/DesktopS gcc -o gfg -fopenmp geeksforgeeks.c
// Getting thread number akbar@ubuntu:~/Desktop$S ./gfg
tid = omp_get_thread_num(): Welcome to GFG from thread =
_ T ~ ’ o Welcome to GFG from thread =
printf("welcome to GFG from thread = %d\n",tid); Number of threads = 8
Welcome to GFG from thread =
_ _ Welcome to GFG from thread =
it (tid == 0) { Welcome to GFG from thread =
// only master thread does this Welcome to GFG from thread =
Welcome to GFG from thread =
nthreads = omp_get_num_threads(); Welcome to GFG from thread =
printf ("Number of threads = %d\n", nthreads); akbar@ubuntu:~/Desktop$ |}
¥
}
¥

* To find out how many CPUs, type lscpu on the command line.

https://www.geeksforgeeks.org/openmp-introduction-with-installation-quide/

A\l
Happy Multi-thread Programming!!

o/ //mﬁ\
-~ . 4

—-—

A

http://risewall.com/happy-halloween-new-wallpaper-for-android.html

