
Threads
CSE4001 Operating Systems Concepts

E. Ribeiro

Single and Multithreaded Processes

I Thread – a fundamental unit of CPU utilization that forms the

basis of multithreaded computer systems

Single and Multithreaded Processes

I Thread – a fundamental unit of CPU utilization that forms the

basis of multithreaded computer systems

Single and Multithreaded Processes

I Thread – a fundamental unit of CPU utilization that forms the

basis of multithreaded computer systems

» Threads are discrete processing units that allow
functions to execute concurrently (i.e., simultaneous
execution of functions while taking turns in the CPU).

» Useful when functions take too long to complete their
tasks as they should not block other functions.

» When an application is launched, it contains only one
thread (i.e., executes the main() function). This type
of application is called a single-threaded application.

Threads

» Multi-threaded applications create new threads to
execute multiple functions.

» Modern computer architecture offers multiple
processing cores by default. Threads allow
programmers to use the available processing
capacity.

» Having multi-core machines by default means that
knowing how to develop multi-threaded programs
has become a key skill in modern programming.

Threads

Single and Multithreaded Processes

I Thread – a fundamental unit of CPU utilization that forms the

basis of multithreaded computer systems

Figure from Arpaci-Dusseau

Single and Multithreaded Processes

I Thread – a fundamental unit of CPU utilization that forms the

basis of multithreaded computer systems

Single and Multithreaded Processes

I Thread – a fundamental unit of CPU utilization that forms the

basis of multithreaded computer systems

 A thread is a basic unit of CPU
utilization. It comprises:

• a thread ID

• a program counter

• a register set

• a stack

Single and Multithreaded Processes

I Thread – a fundamental unit of CPU utilization that forms the

basis of multithreaded computer systems

Single and Multithreaded Processes

I Thread – a fundamental unit of CPU utilization that forms the

basis of multithreaded computer systems

 A traditional process has a single thread
of control.

 Processes that have multiple threads can
perform multiple tasks concurrently.

 Software packages are usually
multithreaded. They are implemented as a
process with several threads of control.

A web browser has threads for showing text, threads for showing
images, threads to retrieve data from the network.

Some multi-threaded packages

ht
tp

s:
//l

ev
el

up
.g

itc
on

ne
ct

ed
.c

om
/h

ow
-w

eb
-b

ro
w

se
rs

-u
se

-p
ro

ce
ss

es
-a

nd
-th

re
ad

s-
9f

8f
8f

a2
33

71

Most graphical user interfaces are multi-threaded programs.
Scientific software also uses multiple threads

Some multi-threaded packages

ht
tp

s:
//d

oc
.q

t.i
o/

qt
-5

.1
2/

qt
da

ta
vi

su
al

iz
at

io
n-

vo
lu

m
et

ric
-e

xa
m

pl
e.

ht
m

l

Multithreaded Server Architecture

Multithreaded Server Architecture

Multithreaded Server Architecture

 For a large number of clients, a single-threaded server
implementation would take too long to respond.

 Processes were used often to solve this problem until threads
became popular. Threads are known as light-weight processes.

Multithreaded Server Architecture

 Most OSs are now multithreaded: several threads operate
in the kernel managing devices and handling interrupts. For
example, Linux uses a kernel thread for managing the amount
of free memory in the system.

Modern OSs are mult0-threaded

Concurrent Execution on a Single-core System

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

Parallel Execution on a Multicore System

Multi-core Programming

Multicore systems putting pressure on programmers, challenges include :

I Dividing activities

I Balance

I Data splitting

I Data dependency

I Testing and debugging

Multi-core Programming

Multicore systems putting pressure on programmers, challenges include :

I Dividing activities

I Balance

I Data splitting

I Data dependency

I Testing and debugging

Challenges:

The challenges of developing
software for multi-core systems may
require an entirely new approach to
designing software systems.

User Threads

I Thread management done by user-level threads library

I Three primary thread libraries:

I POSIX Pthreads

I Win32 threads

I Java threads

User Threads

I Thread management done by user-level threads library

I Three primary thread libraries:

I POSIX Pthreads

I Win32 threads

I Java threads

Kernel Threads

I Supported by the Kernel

I Examples:

I Windows XP/2000

I Solaris

I Linux

I Tru64 UNIX

I Mac OS X

Kernel Threads

I Supported by the Kernel

I Examples:

I Windows XP/2000

I Solaris

I Linux

I Tru64 UNIX

I Mac OS X

Multithreading Models

I Many-to-one

I One-to-one

I Many-to-many

Multithreading Models

I Many-to-one

I One-to-one

I Many-to-many

Many-to-one model

Many user-level threads mapped to single kernel thread

Examples:

I Solaris Green Threads

I GNU Portable Threads

Many-to-one model

Many user-level threads mapped to single kernel thread

Examples:

I Solaris Green Threads

I GNU Portable Threads

Many-to-one model

Many user-level threads mapped to single kernel thread

Examples:

I Solaris Green Threads

I GNU Portable Threads

Many-to-one model

Many user-level threads mapped to single kernel thread

Examples:

I Solaris Green Threads

I GNU Portable Threads

One-to-one model

Each user-level thread maps to kernel thread

Examples:

I Windows NT/XP/2000

I Linux

I Solaris 9 and later

One-to-one model

Each user-level thread maps to kernel thread

Examples:

I Windows NT/XP/2000

I Linux

I Solaris 9 and later

Many-to-many model

I Allows many user level threads to be mapped to many kernel threads

I Allows the operating system to create a su�cient number of kernel

threads

Examples:

I Solaris prior to version 9

I Windows NT/2000 with

the ThreadFiber
package

Many-to-many model

I Allows many user level threads to be mapped to many kernel threads

I Allows the operating system to create a su�cient number of kernel

threads

Examples:

I Solaris prior to version 9

I Windows NT/2000 with

the ThreadFiber
package

Many-to-many model

I Allows many user level threads to be mapped to many kernel threads

I Allows the operating system to create a su�cient number of kernel

threads

Examples:

I Solaris prior to version 9

I Windows NT/2000 with

the ThreadFiber
package

Many-to-many model

I Allows many user level threads to be mapped to many kernel threads

I Allows the operating system to create a su�cient number of kernel

threads

Examples:

I Solaris prior to version 9

I Windows NT/2000 with

the ThreadFiber
package

Thread Libraries: pthreads

Thread library provides programmer with API for creating and managing

threads

I A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

I API specifies behavior of the thread library, implementation is up to

the developer

I Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Thread Libraries: pthreads

Thread library provides programmer with API for creating and managing

threads

I A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

I API specifies behavior of the thread library, implementation is up to

the developer

I Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Thread Programming

Shared Memory Model:
I All threads have access to the

same global, shared memory

I Threads also have their own

private data

I Programmers are responsible for

synchronizing access (protecting)

globally shared data.

https://computing.llnl.gov/tutorials/pthreads/

Thread Programming

Shared Memory Model:
I All threads have access to the

same global, shared memory

I Threads also have their own

private data

I Programmers are responsible for

synchronizing access (protecting)

globally shared data.

https://computing.llnl.gov/tutorials/pthreads/

Creating and Terminating Threads

I The maximum number of threads that may be created by a process is

implementation dependent.

I Once created, threads are peers, and may create other threads. There is

no implied hierarchy or dependency between threads.

https://computing.llnl.gov/tutorials/pthreads/

Creating and Terminating Threads

include <pthread . h>

include <s t d i o . h>

define NUM_THREADS 5

void ⇤PrintHello (void ⇤threadid){

long tid ;

tid = (long) threadid ;

printf (" Hello World ! It ’s me , thread #% ld !\n" , tid) ;

pthread_exit (NULL) ;

}

int main (int argc , char ⇤argv []) {

pthread_t threads [NUM_THREADS] ;

int rc ;

long t ;

for (t=0; t<NUM_THREADS ; t++){

printf ("In main: creating thread %ld\n" , t) ;

rc = pthread_create (&threads [t] , NULL , PrintHello , (void ⇤) t) ;

if (rc){

printf (" ERROR ; return code from pthread_create (): %d\n" , rc) ;

exit (≠1);

}

}

pthread_exit (NULL) ;

}

https://computing.llnl.gov/tutorials/pthreads/

Creating and Terminating Threads

include <pthread . h>

include <s t d i o . h>

define NUM_THREADS 5

void ⇤PrintHello (void ⇤threadid){

long tid ;

tid = (long) threadid ;

printf (" Hello World ! It ’s me , thread #% ld !\n" , tid) ;

pthread_exit (NULL) ;

}

int main (int argc , char ⇤argv []) {

pthread_t threads [NUM_THREADS] ;

int rc ;

long t ;

for (t=0; t<NUM_THREADS ; t++){

printf ("In main: creating thread %ld\n" , t) ;

rc = pthread_create (&threads [t] , NULL , PrintHello , (void ⇤) t) ;

if (rc){

printf (" ERROR ; return code from pthread_create (): %d\n" , rc) ;

exit (≠1);

}

}

pthread_exit (NULL) ;

}

https://computing.llnl.gov/tutorials/pthreads/

Creating and Terminating Threads

include <pthread . h>

include <s t d i o . h>

define NUM_THREADS 5

void ⇤PrintHello (void ⇤threadid){

long tid ;

tid = (long) threadid ;

printf (" Hello World ! It ’s me , thread #% ld !\n" , tid) ;

pthread_exit (NULL) ;

}

int main (int argc , char ⇤argv []) {

pthread_t threads [NUM_THREADS] ;

int rc ;

long t ;

for (t=0; t<NUM_THREADS ; t++){

printf ("In main: creating thread %ld\n" , t) ;

rc = pthread_create (&threads [t] , NULL , PrintHello , (void ⇤) t) ;

if (rc){

printf (" ERROR ; return code from pthread_create (): %d\n" , rc) ;

exit (≠1);

}

}

pthread_exit (NULL) ;

}

https://computing.llnl.gov/tutorials/pthreads/

Creating and Terminating Threads

include <pthread . h>

include <s t d i o . h>

define NUM_THREADS 5

void ⇤PrintHello (void ⇤threadid){

long tid ;

tid = (long) threadid ;

printf (" Hello World ! It ’s me , thread #% ld !\n" , tid) ;

pthread_exit (NULL) ;

}

int main (int argc , char ⇤argv []) {

pthread_t threads [NUM_THREADS] ;

int rc ;

long t ;

for (t=0; t<NUM_THREADS ; t++){

printf ("In main: creating thread %ld\n" , t) ;

rc = pthread_create (&threads [t] , NULL , PrintHello , (void ⇤) t) ;

if (rc){

printf (" ERROR ; return code from pthread_create (): %d\n" , rc) ;

exit (≠1);

}

}

pthread_exit (NULL) ;

}

https://computing.llnl.gov/tutorials/pthreads/

Thread Management - Joining and Detaching Threads

“Joining” is one way to accomplish synchronization between threads.

https://computing.llnl.gov/tutorials/pthreads/

Thread Management - Joining and Detaching Threads

“Joining” is one way to accomplish synchronization between threads.

https://computing.llnl.gov/tutorials/pthreads/

Example – Joining and Detaching Threads

Worker Function
include <pthread . h>

include <s t d i o . h>

include < s t d l i b . h>

include <math . h>

define NUM_THREADS 4

void ⇤BusyWork (void ⇤t)

{

int i ;

long tid ;

double result =0.0;

tid = (long) t ;

printf (" Thread %ld starting ...\n" , tid) ;

for (i=0; i <1000000; i++)

result = result + sin (i) ⇤ tan (i) ;

printf (" Thread %ld done. Result = %e\n" , tid , result) ;

pthread_exit ((void ⇤) t) ;

}

.

.

.

https://computing.llnl.gov/tutorials/pthreads/

Example – Joining and Detaching Threads

Worker Function
include <pthread . h>

include <s t d i o . h>

include < s t d l i b . h>

include <math . h>

define NUM_THREADS 4

void ⇤BusyWork (void ⇤t)

{

int i ;

long tid ;

double result =0.0;

tid = (long) t ;

printf (" Thread %ld starting ...\n" , tid) ;

for (i=0; i <1000000; i++)

result = result + sin (i) ⇤ tan (i) ;

printf (" Thread %ld done. Result = %e\n" , tid , result) ;

pthread_exit ((void ⇤) t) ;

}

.

.

.

https://computing.llnl.gov/tutorials/pthreads/

Example – Joining and Detaching Threads

Worker Function
include <pthread . h>

include <s t d i o . h>

include < s t d l i b . h>

include <math . h>

define NUM_THREADS 4

void ⇤BusyWork (void ⇤t)

{

int i ;

long tid ;

double result =0.0;

tid = (long) t ;

printf (" Thread %ld starting ...\n" , tid) ;

for (i=0; i <1000000; i++)

result = result + sin (i) ⇤ tan (i) ;

printf (" Thread %ld done. Result = %e\n" , tid , result) ;

pthread_exit ((void ⇤) t) ;

}

.

.

.

https://computing.llnl.gov/tutorials/pthreads/

Example – Joining and Detaching Threads

Main Function
int main (int argc , char ⇤argv []) {

pthread_t thread [NUM_THREADS] ;

pthread_attr_t attr ;

int rc ; long t ; void ⇤status ;

/* Initialize and set thread detached attribute */
pthread_attr_init (&attr) ;

pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

for (t=0; t<NUM_THREADS ; t++) {

printf ("Main: creating thread %ld\n" , t) ;

rc = pthread_create (&thread [t] , &attr , BusyWork , (void ⇤) t) ;

if (rc) exit (≠1);

}

/* Free attribute and wait for the other threads */
pthread_attr_destroy (&attr) ;

for (t=0; t<NUM_THREADS ; t++) {

rc = pthread_join (thread [t] , &status) ;

if (rc) exit (≠1);

printf ("Main: completed join with thread %ld having a status
of %ld\n" , t , (long) status) ;

}

printf ("Main: program completed . Exiting .\n") ;

pthread_exit (NULL) ;

}

https://computing.llnl.gov/tutorials/pthreads/

Example – Joining and Detaching Threads

Main Function
int main (int argc , char ⇤argv []) {

pthread_t thread [NUM_THREADS] ;

pthread_attr_t attr ;

int rc ; long t ; void ⇤status ;

/* Initialize and set thread detached attribute */
pthread_attr_init (&attr) ;

pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

for (t=0; t<NUM_THREADS ; t++) {

printf ("Main: creating thread %ld\n" , t) ;

rc = pthread_create (&thread [t] , &attr , BusyWork , (void ⇤) t) ;

if (rc) exit (≠1);

}

/* Free attribute and wait for the other threads */
pthread_attr_destroy (&attr) ;

for (t=0; t<NUM_THREADS ; t++) {

rc = pthread_join (thread [t] , &status) ;

if (rc) exit (≠1);

printf ("Main: completed join with thread %ld having a status
of %ld\n" , t , (long) status) ;

}

printf ("Main: program completed . Exiting .\n") ;

pthread_exit (NULL) ;

}

https://computing.llnl.gov/tutorials/pthreads/

Boost Libraries

#include	<iostream>		

#include	<boost/thread.hpp>			

#include	<boost/date_time.hpp>							

						

void	workerFunc()		

{		

				boost::posix_time::seconds	workTime(3);										

				std::cout	<<	"Worker:	running"	<<	std::endl;				

						

				//	Pretend	to	do	something	useful...	

				boost::this_thread::sleep(workTime);										

				std::cout	<<	"Worker:	finished"	<<	std::endl;		

}				

						

int	main(int	argc,	char*	argv[])		

{		

				std::cout	<<	"main:	startup"	<<	std::endl;										

				boost::thread	workerThread(workerFunc);				

						

				std::cout	<<	"main:	waiting	for	thread"	<<	std::endl;										

				workerThread.join();				

						

				std::cout	<<	"main:	done"	<<	std::endl;										

				return	0;		

}

main:	startup

main:	waiting	for	thread

Worker:	running

Worker:	finished

main:	done

ht
tp

://
w

w
w.

co
de

pr
oj

ec
t.c

om
/A

rti
cl

es
/2

79
05

3/
H

ow
-to

-g
et

-s
ta

rte
d-

us
in

g-
Bo

os
t-t

hr
ea

dsExample 1

#include	<boost/thread.hpp>	

#include	<iostream>	

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				std::cout	<<	i	<<	std::endl;	

		}	

}	

int	main()	

{	

		boost::thread	t(thread);	

		t.join();	

}	

Declares a variable t of type
boost::thread

Example 2

#include	<boost/thread.hpp>	

#include	<iostream>	

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				std::cout	<<	i	<<	std::endl;	

		}	

}	

int	main()	

{	

		boost::thread	t(thread);	

		t.join();	

}	

This is the function we want
to be executed within the
thread.

#include	<boost/thread.hpp>	

#include	<iostream>	

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				std::cout	<<	i	<<	std::endl;	

		}	

}	

int	main()	

{	

		boost::thread	t(thread);	

		t.join();	

}	

Name of the function to be
executed within the thread is
passed to the constructor of
boost::thread

#include	<boost/thread.hpp>	

#include	<iostream>	

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				std::cout	<<	i	<<	std::endl;	

		}	

}	

int	main()	

{	

		boost::thread	t(thread);	

		t.join();	

}	

Upon creation, the thread function starts
executing in its own thread immediately.
Function main() is also executing in its
own thread. Here, we say that these
functions are executing concurrently.

#include	<boost/thread.hpp>	

#include	<iostream>	

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				std::cout	<<	i	<<	std::endl;	

		}	

}	

int	main()	

{	

		boost::thread	t(thread);	

		t.join();	

}	

The method join() blocks
the calling thread until
thread t terminates.
Basically, it forces main() to
wait for t.

#include	<boost/thread.hpp>	

#include	<iostream>	

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				std::cout	<<	i	<<	std::endl;	

		}	

}	

int	main()	

{	

		boost::thread	t(thread);	

		t.join();	

}	

What happens if we don’t
call join()?

Example: Video processing
» Video as a 3-D array (volume)

http://breckon.eu/toby/demos/videovolumes/

http://breckon.eu/toby/demos/videovolumes/

Example: Video processing
» Some tasks of a video-processing software can be

done concurrently by separate threads.

• Calculate the average image

• Calculate the median image

http://breckon.eu/toby/demos/videovolumes/

http://breckon.eu/toby/demos/videovolumes/

master
thread

worker
thread

worker
thread

worker
thread

worker
thread

thread_create()

Do work

thread_join()

thread_exit()

Final
result

Figure 1: Master-worker thread configuration (Diagram adapted from https://computing.
llnl.gov/tutorials/pthreads/).

Each worker thread will be given one-fourth of the video volume to perform the average
calculation. These sub-arrays will not overlap and the average can be calculated without
explicit collaboration among threads. As a result, there should be no major issues with
synchronization, expect that the master thread must wait for the workers to finish their
jobs. Figure 2 illustrate the division of the video into four equal-size sub-arrays.

i j
k

i j
k

Figure 2: Video divided into four non-overlapping subarrays. Left: Original video. Right:
Divided video. Each worker thread will calculate the average of a sub-array. The manager
thread will combine the result and save it to an image file.

3

Example: Video processing
» We can also speed up each task by first dividing the video into sub

volumes, and then assign each sub volume to be processed by a
separate thread.

http://breckon.eu/toby/demos/videovolumes/

master
thread

worker
thread

worker
thread

worker
thread

worker
thread

thread_create()

Do work

thread_join()

thread_exit()

Final
result

Figure 1: Master-worker thread configuration (Diagram adapted from https://computing.
llnl.gov/tutorials/pthreads/).

Each worker thread will be given one-fourth of the video volume to perform the average
calculation. These sub-arrays will not overlap and the average can be calculated without
explicit collaboration among threads. As a result, there should be no major issues with
synchronization, expect that the master thread must wait for the workers to finish their
jobs. Figure 2 illustrate the division of the video into four equal-size sub-arrays.

i j
k

i j
k

Figure 2: Video divided into four non-overlapping subarrays. Left: Original video. Right:
Divided video. Each worker thread will calculate the average of a sub-array. The manager
thread will combine the result and save it to an image file.

3

http://breckon.eu/toby/demos/videovolumes/

Synchronization

» Multi-threaded programming can
increase performance of applications.
But, complexity is also increased.

» Access to shared resources must be
controlled by trying to synchronize
access.

Synchronizing threads

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

boost::mutex	mutex;	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				mutex.lock();	

						std::cout	<<	"Thread	"	<<	boost::this_thread::get_id()	<<	":	"	<<	i	<<	std::endl;	

				mutex.unlock();	

		}	

}	

int	main()	

{	

		boost::thread	t1(thread);	

		boost::thread	t2(thread);	

		t1.join();	

		t2.join();	

}	

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

boost::mutex	mutex;	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				mutex.lock();	

						std::cout	<<	"Thread	"	<<	boost::this_thread::get_id()	<<	":	"	<<	i	<<	std::endl;	

				mutex.unlock();	

		}	

}	

int	main()	

{	

		boost::thread	t1(thread);	

		boost::thread	t2(thread);	

		t1.join();	

		t2.join();	

}	

Creates two threads, both
execution the thread() function.

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

boost::mutex	mutex;	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				mutex.lock();	

						std::cout	<<	"Thread	"	<<	boost::this_thread::get_id()	<<	":	"	<<	i	<<	std::endl;	

				mutex.unlock();	

		}	

}	

int	main()	

{	

		boost::thread	t1(thread);	

		boost::thread	t2(thread);	

		t1.join();	

		t2.join();	

}	

The thread() function writes on
the standard output stream (on the
console). This stream is a global
object shared by all threads.

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

boost::mutex	mutex;	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				mutex.lock();	

						std::cout	<<	"Thread	"	<<	boost::this_thread::get_id()	<<	":	"	<<	i	<<	std::endl;	

				mutex.unlock();	

		}	

}	

int	main()	

{	

		boost::thread	t1(thread);	

		boost::thread	t2(thread);	

		t1.join();	

		t2.join();	

}	

We need to synchronize access to this shared
resource otherwise messages from multiple
threads will overlap on the console.

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

boost::mutex	mutex;	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				mutex.lock();	

						std::cout	<<	"Thread	"	<<	boost::this_thread::get_id()	<<	":	"	<<	i	<<	std::endl;	

				mutex.unlock();	

		}	

}	

int	main()	

{	

		boost::thread	t1(thread);	

		boost::thread	t2(thread);	

		t1.join();	

		t2.join();	

}	

Here, we declare a global mutex
(i.e., mutual-exclusion object)

void	wait(int	seconds)	

{	

		boost::this_thread::sleep(boost::posix_time::seconds(seconds));	

}	

boost::mutex	mutex;	

void	thread()	

{	

		for	(int	i	=	0;	i	<	5;	++i)	

		{	

				wait(1);	

				mutex.lock();	

						std::cout	<<	"Thread	"	<<	boost::this_thread::get_id()	<<	":	"	<<	i	<<	std::endl;	

				mutex.unlock();	

		}	

}	

int	main()	

{	

		boost::thread	t1(thread);	

		boost::thread	t2(thread);	

		t1.join();	

		t2.join();	

}	

A mutex works like a “traffic semaphore” or lock.
Multiple threads will see it but only one thread can get
hold of it. Once one thread locks the mutex, all other
threads that “try it” will need to wait until the lock is
released by the thread that was holding it.

Install the boost library (Ubuntu)

4 Background on multi-threaded programming using the

Boost library

To complete this assignment successfully and learn about threads, you will need to study on
you own. Please, study the following material:

• Chapter 6: Multithreading

http://en.highscore.de/cpp/boost/multithreading.html

• Study and modify my sample program (Download it from Canvas). You are welcome to
use/adapt my sample code for developing your own program. The sample code provides
two examples. The makefile provided is designed to work on Ubuntu linux.

4.1 Installing the boost library

To install the boost library, use the apt-get utility in your Ubuntu linux:

sudo apt-get install libboost-all-dev

4

» Tutorial:

http://theboostcpplibraries.com/boost.thread

To learn more about boost threads

http://theboostcpplibraries.com/boost.thread

OpenMP (Open Multi-Processing)

» OpenMP is a set of compiler directives as well as an
API for programs written in C, C++, or Fortran that
provides support for parallel programming in shared-
memory environments.

OpenMP (Open Multi-Processing)

» OpenMP identifies parallel regions as blocks of code
that may run in parallel. Application developers insert
compiler directives into their code at parallel regions, and
these directives instruct the OpenMP run-time library to
execute the region in parallel.

OpenMP (Open Multi-Processing)

// OpenMP header

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[])

{

 int nthreads, tid;

 // Begin of parallel region

 #pragma omp parallel private(nthreads, tid)

 {

 // Getting thread number

 tid = omp_get_thread_num();

 printf("Welcome to GFG from thread = %d\n",tid);

 if (tid == 0) {

 // Only master thread does this

 nthreads = omp_get_num_threads();

 printf("Number of threads = %d\n", nthreads);

 }

 }

}

https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/

This program will print a message which will be getting
executed by various threads.

Compile:

gcc -o gfg -fopenmp geeksforgeeks.c

Execute:

./gfg

* To find out how many CPUs, type lscpu on the command line.

ht
tp

://
ris

ew
al

l.c
om

/h
ap

py
-h

al
lo

w
ee

n-
ne

w
-w

al
lp

ap
er

-fo
r-

an
dr

oi
d.

ht
m

l

Happy Multi-thread Programming!!

