CSE 4001 Operating Systems Concepts
E. Ribeiro

January 26, 2022

Outline

@ Processes

A process is a program in execution

CPU Memory

code

What is a process?
T e

Process

A process is an abstraction
of a program in execution.

Loading:
Takes on-disk program
and reads it into the
address space of process

Figure from: OS in three easy pieces

Main components of the address space

code H
1 staticdata
i heap H

What is a process?

oxFFFFFFFF :

(’ﬁ(geweafﬁwos)

Stack

v - Stacﬁ_po[ntm’

Address space ‘J-@ulz_

Uninitialize d vars
(BSS segment)
Titialize d vars
(data segme nt)
Code

0X00000000 (textsegment)

- rogram counter

Figure from: OS in three easy pieces

Figure by Matt Welsh, Harvard University.

The code part of the address space

oxPFFFFFFF

MJYESS syace-'

0X00000000

(iﬁg;ewetfﬁ)ros)

Stack

\J
A

Hoap

Uninitialize d vars
(CgS S segme nt)

itialize d vars
(data s egment)

Code

(t?xtsegment)

Figure by Matt Welsh, Harvard University.

- Stacﬁ}ooimz r

Program
counter
(PC)

—

- Pp gram counter

/* Hello World program */
#include<stdio.h>
main()

{

printf("Hello World");

The OS view of a process

L 20 230 2 72 7 2 2

v ¥

Process state (ready, running, blocked, ...)

The address space (how many possible addresses)

The code of the running program

The data of the running program

An execution stack encapsulating the state of procedure calls
The program counter (PC) indicating the address of the next instruction.
A set of general-purpose registers with current values

A set of operating system resources

€ open files, network connections, signals, etc.

CPU scheduling info: process priority

Each process is identified by its process ID (PID)

All these information is stored in a construct called
Process Control Block (PCB)

Adapted from original slide by Larry Zhang

The Process Control Block (PCB)

The OS maintains a
PCB for each
process. It is a data
structure with many
fields.

Defined in:

/include/linux/sched.h

struct task_sti

volatile 1ong@ .
unsigned long§ Txecution state
int sigpending;

mm_segment_t addr_limit;

struct exec_domain *exec, domaln,
volatile long need resched;

unsigned long ptrace;

int prio, static prio;

struct 1ist_head run_list;

prio_array t *array;

unsigned long sleep avg;

unsigned long last.run;

unsigned long policy;

unsigned long cpus_allowed;

uasiqned int tim slice, first time slice;

atomic_t usa

Sy e Hooe ey

struct 1ist head perace children;

struct list_head p ist; -
s o e e Pt m; D" Memory mgmruy‘o
struct linux_binfmt k

int exit code, exit slqnal-

int pdeath signal;

unsigned_long personality;

int did exec:

unsig a dumpa.ble 1;
e

rocess 1D
T
pid_t tty old pgrp;
pid t session;
pid_t tgid;
int leader;
struct task_struct *real parent;
struct task struct *parent;
struct llst head children;
struct list head sibling;
struct task_struct *group leader;
struct pid Iink pids[PIDTYPE MAX];
wait queue > head t wait chldexit;
struct completion *vfork done;
int *set child tid;
int *clear c
unsigned long

Prio rity_

unsigned long it _real value, it prof value, it virt_value;
unsigned long it real incr, it prof imcr, it virt iner;
struct tlme: list real _timer;
struct tms times;

Tz Pl G
struct tms grou Accounting info

a i1
1ong per cpu utme[NR cPUs], per_cpu_stime[NR_CPUS] ;
long min flt, maj_flt, nswap, cmin flt, cmaj

id, suid,fsuid; [
eoid syid agia; UseTID

Toups;
gid_t groups[NGROUPS] ;
kernel cap t cap_effective, cap_inheritable, cap permitted;
int ke@p capabilities:l;
struct user struct *user;
truct rlinit rlim[RLIM NLIMITS];
nsigned short used math;
St a1
int link count, total link count;
struct tty struct *tty;
unsigned int locks;
struct sem undo *semindo;
struct
struct CPUstate
struct
struct -
struct namespace * Ope nﬁ@s
Struct signal struct *signai;
struct sighand struct *sighand;
sigset_t blocked, real blocks
struct sigpending pending;
unsigned long sas_ss_sp;
size t sas_ss size;
int (*notifier)(void *priv);
void *notifier data;
sigset_t *notifier mask;
void *Eux_info;
void (*tux_exit)(void);
u32 parent_exec_id;
u32 self exec_id;
spinlock_t alloc_lock;
lock t switch lock;
void *journal info;
unsigned long ptrace message;
siginfo t *last_siginfo;
y:

Figure by Matt Welsh, Harvard University.

Life cycle of a process

Descheduled

<~—— | Ready

Scheduled

I/O: |n|t|a /I/O: done

Blocked

Figure from: OS in three easy pieces

Two processes running, no |/O

Descheduled
~——— | Ready
Scheduled

1/0O: |n|t|a /I/O: done

Blocked

Time Processy Process; Notes

1 Running Ready

2 Running Ready

3 Running Ready

4 Running Ready Processg now done
5 - Running

6 - Running

7 - Running

8 - Running Process; now done

Figure from: OS in three easy pieces

Two processes running, with 1/0

Descheduled
<«——= | Ready
Scheduled

1/O: |n|t|a /I/O: done

Blocked

Time Processg Processq Notes

1 Running Ready

2 Running Ready

3 Running Ready Processg initiates I/O
4 Blocked Running Processg is blocked,
5 Blocked Running so Process; runs
6 Blocked Running

7 Ready Running I/O done

8 Ready Running Process; now done
9 Running -
10 Running - Processg now done

Figure from: OS in three easy pieces

Process states (Unix)

fork()

created
preempted
preempt Sa
return reschedule ready to run
process in memory
system call,

interrupt
wakeup
asleep in
memory

return to user

interrupt,
interrupt return

Figure adapted from Stallings’ book

Created: Process is newly created but
it is not ready to run yet.

Preempted: Process is returning from
kernel to user mode, but the kernel
preempts it and does a process switch
to schedule another process.

Zombie: Process is no longer exists,
but it leaves a record for its parent
process to collect.

Process states (Unix) without hard drive

created
preempted

return to user

return

reschedule

ready to run!
s process

in memory
system call,
interrupt

kernel
running

wakeup
interrupt,
interrupt return

asleep in
memory

Figure adapted from Stallings’ book

Process states (Unix) with hard drive

S eSS sEsEsEsEssssE ..
i
i
i
0
' created
preempted 0
return to user ' enough not enough
\ A 0 memory memory
~ i
-~
&

preempt "
U
reschedule

N,
ready to run!
in memory

swap out

return

ready to run
swapped

system call, swap in
interrupt

running

o
=
@
c
kel

interrupt,
interrupt return

swap out

asleep in
memory

sleep
swapped

Figure adapted from Stallings’ book

Ready queue and various |/O queue: process waiting

PID 4277 PID 4301
State: Wm{y_ State: mma{y_
Ready queue ————| ‘ fc ‘ ‘ fc ‘
[Registers | [Regisers |
PID 4110 PID 4002 PID 4923
State: Waiting State: Waiting State: Waiting
Disk I/0 queue ———| ‘ $c ‘ ‘ P ‘ | ‘ FC ‘
[Registers | [Registers | | [Registers |

Process waiting|/

queue header PCB; PCB,
ready | head G
queue | tail registers registers
. .
. .
mag
unito [_tail
mag
tape PCB, PCB,, PCBg
unit 1
1] g
disk head
unit 0 tail
PCBs
terminal | head '+_’ =
unit 0 | tail

Adapted from Silberschatz, Galvin, and Gagne, 2009.

¢ OS maintains a set of queues

« Each PCB is queued on a state queue
based on the process’ current state.

As processes change states, PCBs are

unlinked from one queue and linked into

another.

Ready queue and various |1/O queue: process moved to ready

queue header PCB; PCB,
ready — @4277 @4591 @4913
queue registers registers Reacty queue ‘5“”;”@—‘ - ‘Sm ;My_‘ - ‘Sm ﬁ:mly_‘
: : [Regisers | [Registers | [Regisers |
mag [head
= PID 4110 PID 4002
Disk I/0 queue ———| | fC | fC |
[Regsten | [Registers |
mag
u‘:}f? : PCB, PCB, PCBg . Disk I/O completes
dsk | head » OS maintains a set of queues
uni tail
‘ PCB; » Each PCB is queued on a state queue
inal head -’—» —= ’
R e based on the process’ current state.
. » As processes change states, PCBs are
unlinked from one queue and linked into
another.

Adapted from Silberschatz, Galvin, and Gagne, 2009.

	Processes

