
Processes

CSE 4001 Operating Systems Concepts

E. Ribeiro

January 26, 2022

Outline

1 Processes

A process is a program in execution

A process is an abstraction
of a program in execution.

What is a process?

4 THE ABSTRACTION: THE PROCESS

MemoryCPU

Disk

code
static data

heap

stack

Process

code
static data

Program Loading:
Takes on-disk program

and reads it into the
address space of process

Figure 4.1: Loading: From Program To Process

4.3 Process Creation: A Little More Detail
One mystery that we should unmask a bit is how programs are trans-

formed into processes. Specifically, how does the OS get a program up
and running? How does process creation actually work?

The first thing that the OS must do to run a program is to load its code
and any static data (e.g., initialized variables) into memory, into the ad-
dress space of the process. Programs initially reside on disk (or, in some
modern systems, flash-based SSDs) in some kind of executable format;
thus, the process of loading a program and static data into memory re-
quires the OS to read those bytes from disk and place them in memory
somewhere (as shown in Figure 4.1).

In early (or simple) operating systems, the loading process is done ea-
gerly, i.e., all at once before running the program; modern OSes perform
the process lazily, i.e., by loading pieces of code or data only as they are
needed during program execution. To truly understand how lazy loading
of pieces of code and data works, you’ll have to understand more about
the machinery of paging and swapping, topics we’ll cover in the future
when we discuss the virtualization of memory. For now, just remember
that before running anything, the OS clearly must do some work to get
the important program bits from disk into memory.

OPERATING
SYSTEMS
[VERSION 0.81] WWW.OSTEP.ORG

Figure from: OS in three easy pieces

Main components of the address space

MemoryCPU

Disk

code
static data

heap

stack

Process

code
static data

Program Loading:
Takes on-disk program

and reads it into the
address space of process

What is a process?

Figure from: OS in three easy pieces

© 2007 Ma& We ls h – Harvard Unive rs i9 5

 Process address space

● The range of virtual memory addresses that the process can access

● Includes the code of the running program

● The data of the running program (static variables and heap)

● An execution stack

● Local variables and saved registers for each procedure call

S tack

He ap

Ini%alize d vars
(data s e gme nt)

Code
('xt s e gme nt)

Addre s s s pace

0x00000000

0xFFFFFFFF

S tack po in'r

Program coun'r

Unini%alize d vars
(BS S s e gme nt)

(Re s e rve d fo r OS)

4 THE ABSTRACTION: THE PROCESS

MemoryCPU

Disk

code
static data

heap

stack

Process

code
static data

Program Loading:
Takes on-disk program

and reads it into the
address space of process

Figure 4.1: Loading: From Program To Process

4.3 Process Creation: A Little More Detail
One mystery that we should unmask a bit is how programs are trans-

formed into processes. Specifically, how does the OS get a program up
and running? How does process creation actually work?

The first thing that the OS must do to run a program is to load its code
and any static data (e.g., initialized variables) into memory, into the ad-
dress space of the process. Programs initially reside on disk (or, in some
modern systems, flash-based SSDs) in some kind of executable format;
thus, the process of loading a program and static data into memory re-
quires the OS to read those bytes from disk and place them in memory
somewhere (as shown in Figure 4.1).

In early (or simple) operating systems, the loading process is done ea-
gerly, i.e., all at once before running the program; modern OSes perform
the process lazily, i.e., by loading pieces of code or data only as they are
needed during program execution. To truly understand how lazy loading
of pieces of code and data works, you’ll have to understand more about
the machinery of paging and swapping, topics we’ll cover in the future
when we discuss the virtualization of memory. For now, just remember
that before running anything, the OS clearly must do some work to get
the important program bits from disk into memory.

OPERATING
SYSTEMS
[VERSION 0.81] WWW.OSTEP.ORG

Figure by Matt Welsh, Harvard University.

The code part of the address space

/* Hello World program */

#include<stdio.h>

main()
{
 printf("Hello World");

}

Program
counter
(PC)

© 2007 Ma& We ls h – Harvard Unive rs i9 5

 Process address space

● The range of virtual memory addresses that the process can access

● Includes the code of the running program

● The data of the running program (static variables and heap)

● An execution stack

● Local variables and saved registers for each procedure call

S tack

He ap

Ini%alize d vars
(data s e gme nt)

Code
('xt s e gme nt)

Addre s s s pace

0x00000000

0xFFFFFFFF

S tack po in'r

Program coun'r

Unini%alize d vars
(BS S s e gme nt)

(Re s e rve d fo r OS)

What is a process?

Figure by Matt Welsh, Harvard University.

The OS view of a process

Adapted from original slide by Larry Zhang

The Process Control Block (PCB)Process Control Block (PCB)

Figure by Matt Welsh, Harvard University.

The OS maintains a
PCB for each
process. It is a data
structure with many
fields.

© 2007 Ma& We ls h – Harvard Unive rs i9 12

struct task_struct {
volatile long state;
unsigned long flags;
int sigpending;
mm_segment_t addr_limit;
struct exec_domain *exec_domain;
volatile long need_resched;
unsigned long ptrace;
int lock_depth;
unsigned int cpu;
int prio, static_prio;
struct list_head run_list;
prio_array_t *array;
unsigned long sleep_avg;
unsigned long last_run;
unsigned long policy;
unsigned long cpus_allowed;
unsigned int time_slice, first_time_slice;
atomic_t usage;
struct list_head tasks;
struct list_head ptrace_children;
struct list_head ptrace_list;
struct mm_struct *mm, *active_mm;
struct linux_binfmt *binfmt;
int exit_code, exit_signal;
int pdeath_signal;
unsigned long personality;
int did_exec:1;
unsigned task_dumpable:1;
pid_t pid;
pid_t pgrp;
pid_t tty_old_pgrp;
pid_t session;
pid_t tgid;
int leader;
struct task_struct *real_parent;
struct task_struct *parent;
struct list_head children;
struct list_head sibling;
struct task_struct *group_leader;
struct pid_link pids[PIDTYPE_MAX];
wait_queue_head_t wait_chldexit;
struct completion *vfork_done;
int *set_child_tid;
int *clear_child_tid;
unsigned long rt_priority;

 ()Linux PCB Structure task_struct
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
struct tms times;
struct tms group_times;
unsigned long start_time;
long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt,
cnswap;
int swappable:1;
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;
gid_t groups[NGROUPS];
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;
struct user_struct *user;
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
int link_count, total_link_count;
struct tty_struct *tty;
unsigned int locks;
struct sem_undo *semundo;
struct sem_queue *semsleeping;
struct thread_struct thread;
struct fs_struct *fs;
struct files_struct *files;
struct namespace *namespace;
struct signal_struct *signal;
struct sighand_struct *sighand;
sigset_t blocked, real_blocked;
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
void *tux_info;
void (*tux_exit)(void);
 u32 parent_exec_id;
 u32 self_exec_id;
spinlock_t alloc_lock;
 spinlock_t switch_lock;
void *journal_info;
unsigned long ptrace_message;
siginfo_t *last_siginfo;
};

Exe cu%on s ta'

Me mory mgmt info

Pro c e s s ID

Prio ri9

Us e r ID

Ac coun%ng info

CPU s ta'
Ope n file s

Defined in:
/include/linux/sched.h

Life cycle of a processLife cycle of a process

6 THE ABSTRACTION: THE PROCESS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/O). In this case, a trace of the state of each
process might look like this (Table 4.1).

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 now done
5 – Running
6 – Running
7 – Running
8 – Running Process1 now done

Table 4.1: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Table 4.2 shows a trace of this scenario.

More specifically, Process0 initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-

OPERATING
SYSTEMS
[VERSION 0.81] WWW.OSTEP.ORG

Figure from: OS in three easy pieces

Two processes running, no I/OExample: two running processes, no I/O

Figure from: OS in three easy pieces

6 THE ABSTRACTION: THE PROCESS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/O). In this case, a trace of the state of each
process might look like this (Table 4.1).

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 now done
5 – Running
6 – Running
7 – Running
8 – Running Process1 now done

Table 4.1: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Table 4.2 shows a trace of this scenario.

More specifically, Process0 initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-

OPERATING
SYSTEMS
[VERSION 0.81] WWW.OSTEP.ORG

6 THE ABSTRACTION: THE PROCESS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/O). In this case, a trace of the state of each
process might look like this (Table 4.1).

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 now done
5 – Running
6 – Running
7 – Running
8 – Running Process1 now done

Table 4.1: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Table 4.2 shows a trace of this scenario.

More specifically, Process0 initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-

OPERATING
SYSTEMS
[VERSION 0.81] WWW.OSTEP.ORG

Two processes running, with I/OExample: two running processes, with I/O

Figure from: OS in three easy pieces

6 THE ABSTRACTION: THE PROCESS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/O). In this case, a trace of the state of each
process might look like this (Table 4.1).

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 now done
5 – Running
6 – Running
7 – Running
8 – Running Process1 now done

Table 4.1: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Table 4.2 shows a trace of this scenario.

More specifically, Process0 initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-

OPERATING
SYSTEMS
[VERSION 0.81] WWW.OSTEP.ORG

THE ABSTRACTION: THE PROCESS 7

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready Process0 initiates I/O
4 Blocked Running Process0 is blocked,
5 Blocked Running so Process1 runs
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process1 now done
9 Running –
10 Running – Process0 now done

Table 4.2: Tracing Process State: CPU and I/O

ing from a disk or waiting for a packet from a network. The OS recog-
nizes Process0 is not using the CPU and starts running Process1. While
Process1 is running, the I/O completes, moving Process0 back to ready.
Finally, Process1 finishes, and Process0 runs and then is done.

Note that there are many decisions the OS must make, even in this
simple example. First, the system had to decide to run Process1 while
Process0 issued an I/O; doing so improves resource utilization by keep-
ing the CPU busy. Second, the system decided not to switch back to
Process0 when its I/O completed; it is not clear if this is a good deci-
sion or not. What do you think? These types of decisions are made by the
OS scheduler, a topic we will discuss a few chapters in the future.

4.5 Data Structures

The OS is a program, and like any program, it has some key data struc-
tures that track various relevant pieces of information. To track the state
of each process, for example, the OS likely will keep some kind of process
list for all processes that are ready, as well as some additional informa-
tion to track which process is currently running. The OS must also track,
in some way, blocked processes; when an I/O event completes, the OS
should make sure to wake the correct process and ready it to run again.

Figure 4.3 shows what type of information an OS needs to track about
each process in the xv6 kernel [CK+08]. Similar process structures exist
in “real” operating systems such as Linux, Mac OS X, or Windows; look
them up and see how much more complex they are.

From the figure, you can see a couple of important pieces of informa-
tion the OS tracks about a process. The register context will hold, for a
stopped process, the contents of its registers. When a process is stopped,
its registers will be saved to this memory location; by restoring these reg-
isters (i.e., placing their values back into the actual physical registers), the
OS can resume running the process. We’ll learn more about this technique
known as a context switch in future chapters.

c© 2014, ARPACI-DUSSEAU
THREE

EASY
PIECES

Process states (Unix)Process States (Unix)

preempted
created

asleep in
memory

ready to run
in memory

kernel
running

zombie

user
running

wakeupsleep
exitinterrupt,

interrupt return

system call,
interrupt

return

return to user

reschedule
process

preempt

fork()

Figure adapted from Stallings’ book

Preempted: Process is returning from
kernel to user mode, but the kernel
preempts it and does a process switch
to schedule another process.

Created: Process is newly created but
it is not ready to run yet.

Zombie: Process is no longer exists,
but it leaves a record for its parent
process to collect.

Process states (Unix) without hard drive

preempted
created

asleep in
memory

ready to run
in memory

kernel
running

zombie

user
running

wakeupsleep
exitinterrupt,

interrupt return

system call,
interrupt

return

return to user

reschedule
process

preempt

fork()

Figure adapted from Stallings’ book

Process States (Unix)

Process states (Unix) with hard drive

preempted
created

ready to run
swapped

sleep
swapped

asleep in
memory

ready to run
in memory

kernel
running

zombie

user
running

wakeupwakeup

swap out

swap out

swap in

sleep
exitinterrupt,

interrupt return

system call,
interrupt

return

return to user enough
memory

not enough
memory

reschedule
process

fork()

Figure adapted from Stallings’ book

preempt

Process States (Unix)

Ready queue and various I/O queue: process waitingReady queue and various I/O queues

Adapted from Silberschatz, Galvin, and Gagne, 2009.

© 2007 Ma& We ls h – Harvard Unive rs i9 21

 State Queues
The OS maintains a set of state queues for each process state

● Separate queues for ready and waiting states

● Generally separate queues for each kind of waiting process

● e.g., One queue for processes waiting for disk I/O

● Another queue for processes waiting for network I/O, etc.

PC

Re gis' rs

PID 4277
S ta' : Re ady

PC

Re gis' rs

PID 4110
S ta' : Wai%ng

PC

Re gis' rs

PID 4002
S ta' : Wai%ng

PC

Re gis' rs

PID 4923
S ta' : Wai%ng

PC

Re gis' rs

PID 4391
S ta' : Re ady

Ready queue

Disk I/O queue

Process waiting
• OS maintains a set of queues

• Each PCB is queued on a state queue
based on the process’ current state.

• As processes change states, PCBs are
unlinked from one queue and linked into
another.

Ready queue and various I/O queue: process moved to ready

© 2007 Ma& We ls h – Harvard Unive rs i9 22

 State Queue Transitions
PCBs move between these queues as their state changes

● When scheduling a process, pop the head off of the ready queue

● When I/O has completed, move PCB from waiting queue to ready queue

PC

Re gis' rs

PID 4277
S ta' : Re ady

PC

Re gis' rs

PID 4110
S ta' : Wai%ng

PC

Re gis' rs

PID 4002
S ta' : Wai%ng

PC

Re gis' rs

PID 4391
S ta' : Re ady

PC

Re gis' rs

PID 4923
S ta' : Wai%ng

Ready queue

Disk I/O queue

PC

Re gis' rs

PID 4923
S ta' : Re ady

Disk I/O completes

Ready queue and various I/O queues

Adapted from Silberschatz, Galvin, and Gagne, 2009.

• OS maintains a set of queues

• Each PCB is queued on a state queue
based on the process’ current state.

• As processes change states, PCBs are
unlinked from one queue and linked into
another.

	Processes

