
System Calls

CSE 4001 Operating Systems Concepts

E. Ribeiro

January 24, 2022

Outline

1 What is a process?

2 Limited Direct Execution

3 OS/161 Examples

What is a process?

- A process is an abstraction of a program in
execution.

4 THE ABSTRACTION: THE PROCESS

MemoryCPU

Disk

code
static data

heap

stack

Process

code
static data

Program Loading:
Takes on-disk program

and reads it into the
address space of process

Figure 4.1: Loading: From Program To Process

4.3 Process Creation: A Little More Detail
One mystery that we should unmask a bit is how programs are trans-

formed into processes. Specifically, how does the OS get a program up
and running? How does process creation actually work?

The first thing that the OS must do to run a program is to load its code
and any static data (e.g., initialized variables) into memory, into the ad-
dress space of the process. Programs initially reside on disk (or, in some
modern systems, flash-based SSDs) in some kind of executable format;
thus, the process of loading a program and static data into memory re-
quires the OS to read those bytes from disk and place them in memory
somewhere (as shown in Figure 4.1).

In early (or simple) operating systems, the loading process is done ea-
gerly, i.e., all at once before running the program; modern OSes perform
the process lazily, i.e., by loading pieces of code or data only as they are
needed during program execution. To truly understand how lazy loading
of pieces of code and data works, you’ll have to understand more about
the machinery of paging and swapping, topics we’ll cover in the future
when we discuss the virtualization of memory. For now, just remember
that before running anything, the OS clearly must do some work to get
the important program bits from disk into memory.

OPERATING
SYSTEMS
[VERSION 0.81] WWW.OSTEP.ORG

Figure from: OS in three easy pieces

Figure from: OS in three easy pieces

Limited Direct Execution

Main question:

How can the OS regain control of the CPU from a process so that is
can switch to another process?

Life cycle of a process

Adapted from Silberschatz, Galvin, and Gagne, 2009.

Life cycle of a process

States of a process:
• new: The process is being created
• running: Instructions are being executed
• waiting: The process is waiting for some event to occur
• ready: The process is waiting to be assigned to a processor
• terminated: The process has finished execution

Figure adapted from Silberschatz, Galvin, and Gagne, 2009.

Limited Direct Execution

Main question:

How can the OS regain control of the CPU from a process so that is can switch to another
process?

Two Aproaches:

Cooperative processes

Non-cooperative processes

Approach 1: Cooperative processes

OS trusts processes will cooperate and
give up control of CPU. For example,
process can periodically calls system call
yield().

Process gives up control when it causes a
trap.

Slide text adapted from original slide by Larry Zhang.

Approach 1: Cooperative processesTransition from user to kernel mode

Silberschatz, Galvin and Gagne ©2009

Figure adapted from Silberschatz, Galvin, and Gagne, 2009.

Approach 2: Non-cooperative processes

OS takes control periodically (e.g., timer
interrupt).

Timer can be programmed to raise an
interrupt periodically.

When interrupt is raised, OS Interrupt
Handler runs, and OS regains control.

Approach 2: Non-Cooperative
Processes

OS takes control periodically (e.g.,
timer interrupt).

Timer can be programmed to raise
an interrupt periodically.

When interrupt is raised, OS
Interrupt Handler runs, and OS
regains control.

Slide text adapted from original slide by Larry Zhang

Now, OS has control. How to switch to another process?

OS decides the process to which to switch (i.e., scheduler decides).

OS executes a piece of assembly code (i.e., context switch).

Context switch

Context-switch steps:

1 Save register values of current process to kernel stack.

2 Restore register values of the next process from its kernel stack.

In the next slides, let’s see two examples of context switch in OS/161, one caused by the timer
and the other caused by a trap (or exception).

OS/161 Examples: Context switch triggered by timer.

function hardclock in /kern/thread/clock.c

OS/161 Examples: Context switch triggered by timer.

function thread yield in /kern/thread/thread.c

OS/161 Examples: Context switch triggered by timer.

function thread switch in /kern/thread/thread.c calls low-level context switcher in
assembler in /kern/arch/mips/thread/switch.S

OS/161 Examples: Context switch triggered by timer.

https://github.com/eribeiroClassroom/

os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/

thread/switch.S

https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/thread/switch.S
https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/thread/switch.S
https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/thread/switch.S

OS/161 Examples: Context switch triggered by an exception or trap.

General exception occurs which causes the hardware to call:

https://github.com/eribeiroClassroom/

os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/

locore/exception-mips1.S

exception-mips1.S creates and fills in the trapframe and then calls mips trap(). This
C-language function is a general trap (exception) handling function.

https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/locore/exception-mips1.S
https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/locore/exception-mips1.S
https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/locore/exception-mips1.S

OS/161 Examples: Context switch triggered by an exception or trap.

	What is a process?
	Limited Direct Execution
	OS/161 Examples

