CSE 4001 Operating Systems Concepts

E. Ribeiro

January 24, 2022

Outline

© What is a process?

© Limited Direct Execution

© 05/161 Examples

What is a process?

- A process is an abstraction of a program in
execution.

CPU Memory

: code
: staticdata
H heap

Process

Loading:
Takes on-disk program
and reads it into the
address space of process

Figure from: OS in three easy pieces

Limited Direct Execution

Main question:

How can the OS regain control of the CPU from a process so that is
can switch to another process?

Life cycle of a process

admitted interrupt exit

terminated

scheduler dispatch

I/O or event completion I/0O or event wait

Figure adapted from Silberschatz, Galvin, and Gagne, 2009.

Limited Direct Execution

Main question:
How can the OS regain control of the CPU from a process so that is can switch to another
process?

Two Aproaches:

o Cooperative processes

@ Non-cooperative processes

Approach 1: Cooperative processes

@ OS trusts processes will cooperate and
give up control of CPU. For example,
process can periodically calls system call
yield().

@ Process gives up control when it causes a
trap.

Slide text adapted from original slide by Larry Zhang.

Approach 1: Cooperative processes

user process

execute system call

Figure adapted from Silberschatz, Galvin, and Gagne, 2009.

user moqe
user process executing » calls system call return from system call (mode bit = 1)
\ 7
LY 7 4
\ 7
k | trap return
omne mode bit = 0 mode bit = 1
kernel mode
(mode bit = 0)

Approach 2: Non-cooperative processes
e OS takes control periodically (e.g., timer
interrupt).

@ Timer can be programmed to raise an
interrupt periodically.

@ When interrupt is raised, OS Interrupt
Handler runs, and OS regains control.

- 1.4 u*
=" =

.. -

»
=7 Slide text adapted from original slide by Larry Zhang

Now, OS has control. How to switch to another process?

@ OS decides the process to which to switch (i.e., scheduler decides).

@ OS executes a piece of assembly code (i.e., context switch).

Context switch

Context-switch steps:

@ Save register values of current process to kernel stack.

@ Restore register values of the next process from its kernel stack.

In the next slides, let's see two examples of context switch in OS/161, one caused by the timer
and the other caused by a trap (or exception).

0S/161 Examples: Context switch triggered by timer.

function hardclock in /kern/thread/clock.c

is called HZ times a second (on each processor) by the timer

hardclock(void)

{
/*
* Collec tatistics here
%/

curcpu->c_hardclocks++;
if ((curcpu->c_hardclocks % MIGRATE_HARDCLOCKS) == 8) {

thread_consider_migration();

}

if ((curcpu->c_hardclocks % SCHEDULE_HARDCLOCKS) == @) {
schedule();

}

thread_yield();

0S/161 Examples: Context switch triggered by timer.

function thread_yield in /kern/thread/thread.c

/%
* Yield the cpu to another process, but stay runnable.
*/

void

thread_yield(void)

{

thread_switch(S_READY, NULL, NULL);

0S/161 Examples: Context switch triggered by timer.

function thread_switch in /kern/thread/thread.c calls low-level context switcher in
assembler in /kern/arch/mips/thread/switch.S

%/
curcpu->c_curthread = next;
curthread = next;

/* do the switch (in assembler in switch.S) x/

switchframe_switch(&cur->t_context, &next->t_context);

0S/161 Examples: Context switch triggered by timer.

https://github.com/eribeiroClassroom/
0s161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/
thread/switch.S

https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/thread/switch.S
https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/thread/switch.S
https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/thread/switch.S

0S/161 Examples: Context switch triggered by an exception or trap.

General exception occurs which causes the hardware to call:

https://github.com/eribeiroClassroom/

0os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/
locore/exception-mipsi.S

exception-mipsl.S creates and fills in the trapframe and then calls mips_trap(). This
C-language function is a general trap (exception) handling function.

https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/locore/exception-mips1.S
https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/locore/exception-mips1.S
https://github.com/eribeiroClassroom/os161-Kernel-Src-Add-System-Call-Assignment/blob/master/kern/arch/mips/locore/exception-mips1.S

0S/161 Examples: Context switch triggered by an exception or trap.

Space |exception-mips1.S E

________ s

mips_trap()
Key: t

syscall()
call I return t

N \
| Assembly | sys__time()

(T T ———

	What is a process?
	Limited Direct Execution
	OS/161 Examples

