
Using Software Maintenance and Evolution on
Large Open Source Projects

In An Introductory Software Engineering Course
Keith Gallagher, Mark Fioravanti and Alyssa Marcoux

Department of Computer Sciences and Cyber Security
Florida Institute of Technology

Melbourne, Florida, USA 32901
Email: {kgallagher@|mfioravani1994@my.|amrcoux@my.}fit.edu

Abstract—Background: Introductory undergraduate software
engineering courses are rife with pedagogical problems. There is
the matter of presentation. It appears that most of the widely used
texts use a breadth-first approach to the central ideas of software
engineering: requirements, architecture, design, code, test, etc.
The approach is important and outcomes crucial as this is an
introductory and is used as a feeder course to advanced individual
courses in requirements, architecture, design, etc. When using
this rubric, the course project is usually a greenfield development
effort: a project is started from scratch and pushed through to
delivery, as each major area of the software engineering process
is covered in the course, a deliverable is constructed. So as much
as we rail against it, a waterfall model is implied, because the
project follows the course content delivery.

Aim: So, we ask: what happens when the course content
follows (is directed by) the project? That is, what happens when
the project is delivered first, and as various questions arise about
the usual software engineering issues (design, requirements, etc)
are addressed via the mechanism of the project?

Method: The project presentation method that we use is not
greenfield; projects are not developed from scratch. We use
mature open-source projects, with long revision histories, many
open bugs and many feature enhancement requests. Students
select projects of 55 - 3000 KSLOC, made up of 470 to 6300 files,
in as many as 34 languages. The course project is then selecting a
collection of issues (bugs and enhancements), finding the issue in
the code base, and making a verifiable change, (without damage
to the existing system).

Results: The results are interesting, to say the least. Some
project teams write fewer than 100 lines of code for the entire
course, after they find out where.

Limitations: Usual limitations apply: one semester course;
undergraduate students; various technical majors and program-
ming ability, and familiarity with the implementation language.

Conclusion: By turning the project of the introductory soft-
ware engineering course into a software evolution exercise on
a sophisticated system, the major topics can still be easily
introduced and examined. Contributions to the open source
community can be made.

I. INTRODUCTION

A. In the Beginning

A collection of American college sophomores (second-year
students, in their second term) assemble. Computer Science
and Software Engineering students following the catalog plan
have had 2 courses in Java and one semester of Algorithms

and Data Structures, and they are also learning C++ this
term. There are other upper division students from various
engineering disciplines; these students may or may not have
been in an introductory course in C++.

It’s not the usual first day of class, with a course introduction
and syllabus. Instead, students’ names are placed in a hat,
then drawn out to form software engineering project teams.
The second day, the teams perform a Java debugging exercise
from Barr [1]. On the third day a collection of projects are
introduced to the students. These vary in size from 56,000
lines to some 3 million lines, when measured by a simple
line count. The repositories and issue tracker databases are
introduced. The teams then meet, as a lab exercise, to browse
the projects and the issue repositories and think about which
one they might like to work on. Before these projects were
introduced, the largest piece of code that anyone in the room
had worked on was less than 1000 lines (by themselves).

B. Playing Together and Putting Your Toys Back

So begins the Florida Institute of Technology course CSE
2410, Introduction to Software Engineering, whimsically sub-
titled the same as this subsection. We present and share an
approach to introducing Software Engineering to students with
no team project experience via a major maintenance and
evolution exercise. There is one caveat: this presentation is
about learning to do software engineering, not teaching it. [3]
An environment for learning is established. The outcome is
up to the student.

C. Outline and Contribution

This paper outlines the way we use the project to guide the
course, using Rajlich [2] as the course text. It is this approach
that we have been encouraged to share. It includes

• Course administration and grading.
• The available projects.
• A team evaluation approach.
• Laboratory administration.
• Group grading.
• Examination approach.

• A “Digression” section that lists other computing and
software engineering topics covered that depart from the
text; they may appear to be fun but each has a pedagogical
point.

• A summary of project outcomes.
• Student stories.
• A Perspective from the teaching assistant.
• Contrasts with others who have used a similar approach.
• A short reflective perspective.

II. BASIC COURSE OUTLINE

A. Administration

Rajlich [2] chapters 1 - 11 (Introduction up to and including
Conclusion of Software Change) form the basic structure of the
course. The term is 14 weeks; class has a lecture - laboratory
format with 6 hours of contact time. A laboratory is crucial for
at least two reasons. First, there is a fixed time in each student’s
schedule in which the entire team can have an uninterrupted
meeting, and everyone can attend as there are no timing
conflicts. Secondly, it provides the instructors with a time to
have individual sit downs with each team to audit the progress
and address any technical (or social) problems.

Given the project-based nature of the of the course, it
appears sometimes that the content lectures from the text are
squeezed around the project concerns. And indeed they are
supplementary to the project.

B. Grading

The projects are graded as a team. This is, of course,
disconcerting and perhaps upsetting to some, especially given
the nature of the team formation, and current academic prac-
tice. The response is thus: When you get hired by XYZ
corporation after graduation, you are not asked if you want
to work with your friends; you are placed on a team and
told to get the job done. Moreover, in industry, projects, not
individuals, succeed or fail. These ideas follows Harvey, who
contends that “connection with other persons is a requirement
for psychological and physical survival. Alternatively any act
(requiring that people work alone) leads to breakdown both
mental and physical.” [3]

Attendance is required at Laboratory Reviews. (See sec-
tion IV.) Failure to attend any scheduled laboratory review
results in the grade of F for the course.

1) It Gets Worse: From the syllabus: “If you do all work
perfectly on every evaluation instrument, you will have earned
a B.” and “To earn an A in my class, you must show
intellectual initiative.” [4] Enterprising students often ask:
“How do I show initiative?” The response is: “Please read
the supplemental and suggested text by Nelson, 1001 Ways to
Take Initiative at Work [5]” and not much more.

2) Then It Gets Better: How the grades are allocated:
• The syllabus will have Grading TBD.
• Marking allocation is not determined by me.
• Marking allocation is divided between projects and other

work.

• It is determined by the class as a whole, by a vote.
• The allocation of percentages between project[s] and / or

examination[s] is determined later in the term, by vote.
• This gives you [the student] a chance to control your own

outcomes, after you have had on opportunity to assess
how your effort allocation, learning style and methods
of presenting work mesh with my evaluation rubrics and
techniques.

3) And Even Better: Examinations are designed by the
instructors and students in a class. This serves as a “review
session.” It also takes the guess work out of what topics to
study. The exams are sprinkled throughout the term with 3
questions in an hour session. The questions are of two forms.
Performance: i.e., compute the supplier slice of this node in
this graph. And Reflection: i.e., what would happen to the
field of Software Engineering if one of Brooks’ five essential
difficulties were negated?

III. THE PROJECTS

As reported above, team creation is the first order of
business as “This course is the project!” Teams are always
four members or less. The second day serves as team-building
exercise; the team is given only one or two copies of the errant
program, so they have to share! At the end of the exercise,
the team reports its results to the instructors. Once teams have
been formed, they must sit together in lectures.

The class finds the project introductions daunting, to say
the least. But before they can catch their breath, the Enterprise
GitHub server is introduced. The first laboratory exercise for
the students is to get their respective teams set up on the
University’s GitHub server. (See section IX.) Each team can
choose its own (socially acceptable) name. The instructors are
given complete access to the group project. The issue tracking
feature of Enterprise GitHub is central to the operation and
success of the project, but it does generate a lot of email.

Figure 1 lists the possible projects and bug database lo-
cation; figure 2 shows the number of files and the lines of
codes. The measures are admittedly coarse, but consider that
the students have never seen anything like these! For instance,
7Zip has 968 files, Most are C and C++; there are about 100
other kinds: assembler, makes, Windows Support files, &C.
At the other end of the spectrum, node.js has some 6400
files in 34 languages, that include dialects, batches, scripts.
Pascal, Ada, Lisp and SAS are even sprinkled in! Pidgin was
abandoned in the Spring of 2016 as it has fallen into disuse.
Atom and VLC were added in the Spring of 2016.

Different groups can select the same project. Different
groups can even select the same issue. Different groups work-
ing on the same project can communicate and are encouraged
to do so [3].

IV. LABORATORY REVIEWS

A. Managing Groups and Group Meetings

Meeting with a collection of people who barely know each
other, have been thrown together on a project and must depend

Possible Projects Project Webpage Bug Database/Issue Tracker
Filezilla https://filezilla-project.org/ http://trac.filezilla-project.org/
Node.js http://nodejs.org/ https://github.com/nodejs/node/issues

Wireshark https://www.wireshark.org/ https://bugs.wireshark.org/bugzilla/
7-zip http://www.7-zip.org/ http://sourceforge.net/p/sevenzip/bugs/

Notepad++ https://notepad-plus-plus.org/ https://github.com/notepad-plus-plus/notepad-plus-plus/issues
VLC Media Player http://www.videolan.org/vlc/ https://trac.videolan.org/vlc/

Atom https://atom.io/ https://github.com/atom/atom/issues
Elastic Search https://github.com/elastic/elasticsearch https://github.com/elastic/elasticsearch/issues

Pidgin http://pidgin.im/ https://developer.pidgin.im/wiki/OpenTickets

Fig. 1. Possible Projects with Issue Locations

Project Number of files Lines
Filezilla 508 181K
Node.js 6390 1589K

Wireshark 3822 3026K
7-zip 968 176K

Notepad++ 745 305K
VLC Media Player 2357 572K

Atom 470 56K
Elastic Search 4878 488K

Pidgin 1039 375K

Fig. 2. Simple Size Data for Projects

on each other is fraught with difficulties. Mixing in “one from
every tribe and nation” further complicates matters.

B. Group Evaluation

The instructors must firmly, yet tactfully, set the tone. We
have accidentally stumbled upon psychological safety, “a sense
of confidence that the team will not embarrass, reject or punish
someone for speaking up,” [6] quoted in [7]. A question
directed at one team member cannot be answered by another.
No interrupting, eye-rolling or sighs. The instructors focus on
the person speaking and follow-up as needed. Everyone gets a
chance to show what they have done. Meetings start and end
with: “Are we talking to each other? . . . and listening?” and
“Is everyone being respected?”

A home grown web service permits the students to evaluate
themselves, their teammates and the group as a whole. At each
fortnightly audit meeting, students evaluate their own progress
and contribution, their individual team members progress and
contribution, and the group as a whole. For individual and
other team member evaluations we use a form adapted from
ReadWriteThink [8].

1) Identify yourself.
2) Describe your responsibilities in the group.
3) Assign yourself for grade: A - F.
4) What percentage of the work did you complete? (Total

team percentage must add up to 100.)
5) Did you complete your tasks? If you did not complete

your assigned tasks explain why.
6) How would you rate your participation in this group?

a) I was incredibly involved.
b) I completed my work but was not otherwise in-

volved.
c) I completed most of the work assigned to me but

other group members contributed more than I did.
d) I did not contribute.
e) if you need to defend your answer, do so here.

7) For each other group member:
a) Name.
b) Assign this person a grade: A - F.
c) What percentage of the work did this person com-

plete? (Total team percentage must add up to 100.)
d) This person was incredibly involved.
e) This person completed all assigned work but was

not otherwise involved.
f) This person completed most of the work assigned

but other group members contributed more.
g) This person did not contribute.
h) if you need to defend your answer, do so here.

For group process evaluation we use an adapted form from
Christianson [9]. Rate your entire team on a 1 to 5 scale with
respect to the following:

1) Goals: Goals are unclear or poorly understood, resulting
in little commitment to them. . . Goals are clear, under-
stood, and have the full commitment of team members.

2) Openness: Members are guarded or cautious in discus-
sions. . . Members express thoughts, feelings, and ideas
freely.

3) Mutual trust: Members are suspicious of one anothers
motives. . . Members trust one another and do not fear
ridicule or reprisal.

4) Attitude toward difference: Members smooth over
differences and suppress or avoid conflict. . . Members
feel free to voice differences and work through them.

5) Support: Members are reluctant to ask for or give
help. . . Members are comfortable giving and receiving
help.

6) Participation: Discussion is generally dominated by a
few members. . . All members are involved in discussion.

7) Flexibility: The group is locked into established
rules and procedures that members find difficult to
change. . . Members readily change procedures in re-
sponse to new situations.

8) Use of member resources: individual’s abilities, knowl-
edge and experience is not well utilized. . . Each mem-
bers abilities, knowledge, and experience are fully uti-
lized.

Self aggrandizement in self reporting is rare. Students who
are not participating are honest with their lack of contribution,
ultimately. While we have no data to support this, it seems that
since everyone is submitting, we have a better approximation
of the truth. Moreover, this gives the instructors a chance
to privately meet with under performing members, or under
performing groups.

Each term the same story repeats. At the first evaluation
everyone gets an A, and the work has been equally divided.
At the second evaluation, a member who is not doing their part
gets a B, and a slightly smaller percentage of the effort, while
everyone else has their value increased. Finally the charade
is abandoned and a member who is not participating gets the
same abysmal marks from all the other members. This person
is invited in for a private chat.

We believe that what makes this work is that these responses
are submitted online, with submitters known only to the
instructors, but not seen by other team members. Originally, it
was paper and pencil. The next incarnation was a quiz through
the Learning Management System. We now have a (brittle)
web service to do this.

Usually once a term, a team ”crashes and burns.” The team
is then disbanded and reformed or students are marked indi-
vidually. Individual students may have their mark separated
from the rest of the team when lack of performance warrants.

C. Laboratories

Once the team selects a project it must be uploaded onto the
server and compiled there. Then each student pulls the project
onto her local machine and compiles it there. These activities
are demonstrated in a laboratory. This is not as simple as it
seems. Students need to find, and perhaps install, the correct
IDE on their machines. Then get the project into the IDE
and get it to compile and run. Oftentimes, and under our
encouragement, the students set up virtual machines [10] on
their laptops. It provides a clean and clear environment for the
task.

The third review - audit is to put the team’s name in the
About box of the selected project. The results must be demon-
strated on a local machine without a complete re-compile. The
necessity of this activity is obvious: small changes, to be made
later, cannot induce complete recompilations. (It also serves
as a gentle introduction to concepts and concept location.)
This distinction is new to many who have not worked on any
large system before this class; they just recompile the whole
system, at 0 cost. When a complete recompile for a small

change takes 20 minutes, while the instructor is watching, the
lesson is learned.

All the while, the teams have been surveying the project’s
issue repository. The teams select a minimum of five issues,
one of which must be an enhancement request and one an
error repair. The next review is to demonstrate these issues to
the instructors.

The next demonstration to the instructors is a preliminary
location of the selected issues in the code. The demonstration
need not be as specific as a line of code (or even be correctly
located!). The goal is to get the team digging around in the
project.

Finally, the teams show the instructors the exact location of
the issue.

Audits through out the rest of the term are to check progress,
which we know anyway because GitHub is telling us so!

As the term winds down, we remind them that they must
present at the final, discussed below.

V. EXAMINATIONS

As noted previously, examinations are sprinkled throughout
the term. They are straightforward and student designed. The
idea behind having students help build the exams is that
everyone knows what the topics are.

A. The “Mid-Term”
The mid-term examination is an evaluation of the instructor,

submitted via the Learning Management System as follows:
1) Is the textbook easy to read and understand?
2) Are you going to keep it?
3) What are the objectives of this class? Are you accom-

plishing them? or not? Am I helping you to accomplish
them? or not?

4) Has your curiosity been stimulated? how? why?
5) Do you think and solve problems better now than when

you started this class?
6) What are the major weaknesses of the course? What is

least important thing you have learned?
7) What are the major strengths of the course? What is

most important thing you have learned?
8) What are your suggestions to improve the course? This

includes things to add and things to remove. What did
you think of the class format? time? etc?

9) Would you recommend this course, with this instructor,
to another student? why? or not?

10) Would you take or recommend this instructor for another
course? why? or not?

11) Jot down some thoughts, coherency optional, about your
‘lessons learned’ in the this class, both technical and
personal.

12) Anything else?

B. The Final
The final exam, which is a team presentation, is handed out

with the syllabus. The final project presentation includes, at
least, a memory stick with Individuals and Team Name and

• Source
• Executable
• List of Fixes

– For each fix:
– Estimated Impact Set
– Actual Impact Set
– Source Files Changed
– Estimated and Actual Times to fix
– Before/After Screenshots
– Tests
∗ To Reproduce
∗ Validate the fix

• Comments: interesting things that happened
• Unmaintainable Code [11] (see VI-D.)
• Summaries of team meetings: dates, attendance, prob-

lems, actions...
• Management issues: technical and organizational
• Any presentations given throughout term
• The final presentation

– a thorough demonstration of one issue from above
– a summary of the rest

VI. DIGRESSIONS

A. The Professor

I (KG) spend a day describing my interest in software
maintenance and evolution. I start with Weinberg’s charming
and inspiring (to me) “Kill That Code!” [12] and introduce my
own interests. I am always on the lookout for good students;
pointing them to my work is their first quest.

Later in the term, I present the results of the “Mid-Term”
from above. It makes for a fun day. When contradictory
answers are given by different folks for the same question,
(“Stop with the storytelling!” “I love your storytelling!”) and
interesting discussion ensues. It also gives a chance for reset,
to go back to the beginning, see what the course is about, and
get a seasoned view on things that may have been confusing
at the beginning.

The midterm indicates that I either “make it big” or “fail
miserably” with most reporting accomplishing the objectives,
a few absolutely hating the class, and almost none falling in
the middle. [3]

B. How Well Do You Play with Others?

A lecture on team structures, from democratic to hierarchi-
cal is presented. The old idea of “egoless programming” is
introduced. Technical roles, work styles and communication
styles are discussed. Programming teams with collective goals,
collective egos, internal walk-throughs and frequent code
reading are stressed.

Are you Rational? Intuitive? Introvert? Extrovert? Which
combination? The point that cannot be over stressed is that
this information is for self knowledge not judgment of others

knowledge. When a person has some idea of how they them-
selves behave under stress and can recognize it, everyone wins.
No one who has the courage to find out about themselves, and
share it with others, cannot have that information used against
them. “You rational extroverts are so bossy!!!” is a no-no.

C. Help!!

Once or twice a semester, sometimes more often, student
sends an email or requests a private meeting. These contacts
are: “I have absolutely no idea what to do in this course,” or
“Everyone in my group is so much smarter than me that I am
a drag on the team’s progress.”

Both concerns are addressed in the same manner. A lecture
is devoted to the issues and concerns raised by those students.
The people who have made private contact get to see that they
are not alone, and, as in the usual case, about half the class
will publicly admit having those same concerns. Everyone is
relieved. Working a large, undocumented system does have it
stressors!

D. Unmaintainable Code

Early in the term, a day is spent on Green’s “How To
Write Unmaintainable Code” [11]. Students find the digression
disturbingly charming, especially when asked: “None of you
have ever done this, right?” However, the teams are required
to report on Unmaintainable code discovered throughout the
term. It’s all fun and games until one is reading, changing and
recompiling it.

E. Compilation and Linking

Link editing and object file management are covered in
more depth than in Chapter 3. MonkeySort [13] is used as an
example of separate file compilation. (More on MonkeySort
follows.) The program is easily read. It has extern variables.
A simple makefile is used to display dependencies. Use of the
(*nix) link editing tools (ar and ld) are demonstrated: how
to build object libraries; how to edit object libraries; and how
link to one’s own object library. Static and dynamic linking are
demonstrated. The point of this exercise is to show students
that programs and systems are much, much more than the
actual source. Even students who use one of the popular IDE’s,
with its left side class management panel and build, button are
surprised at the underlying mechanisms.

Evidently students still struggle with object libraries: finding
the correct ones from the Internet and then getting them to link
with their chosen projects. (See section IX.) This is also the
a first experience of editing “non-readable” files; Emacs in
hex-mode is an eye-opener!

F. MonkeySort [13]

It’s abstract:
Monkeysort is a pedagogical program that turns the
usual concern of efficiency upside down by attempt-
ing to be as dumb as possible, yet still correct. In this
program, whose inner workings are accessible to all
students, MonkeySort exhibits significant ideas that

are central to computer science: partial correctness,
generate-and-test solutions to NP-hard problems,
Stirlings approximation of n!, and subtle applications
of the use of permutations. It also demonstrates
central software engineering ideas: integer overflow;
the use of coverage tools; CPU monitoring tools; and
timing analysis approaches more sophisticated than
mere statement counting. An appropriately tailored
classroom discussion of MonkeySort can be used
as fodder for graduate student homeworks, or to
illustrate to the non-scientist exactly what it is that
Computer Scientists do.

Big ideas abound in MonkeySort. It is NP. It is partially
correct. It is a simple while statement. Students who have
never read or thought deeply about while’s are often sur-
prised to learn that the negation of the entry condition is
true when the loop exits! The entry condition in this case is
!(checksort(a, n)), so whatever checksort does,
it is true when the loop exits. The issue of note is that the
loop may never exit!

The demonstration computer has eight processors. Running
the CPU-intensive MonkeySort many times in the background
constitutes a Denial of Service attack, which is easily shown
by examining the system monitor. Profiling tools give an em-
pirical, rather than analytical, demonstration of sorting times.
It is easy, if somewhat unpredictable, to have MonkeySort
to achieve an integer overflow, which makes counting data
useless. Finally, students see for the first time the astounding
Stirling approximation for n! that inexplicably involves π, e
and the square root!

G. Testing

Testing is introduced via the famous triangle problem of
Myers [14] and a faux “quiz”. The simple problem statement
(A program accepts three integers as input. These are taken
to be sides of a triangle. The output of the program is the
type of triangle determined by the three sides: Equilateral,
Isosceles or Scalene. Write a set of tests for this program.)
is placed the projector screen and students generate tests. Six
issues arise: that expected output is crucial to any test; that
viewing the source is not necessary to testing; that there is a
maximum integer., and when it is used as input the output is
unpredictable; that the integers may not form the sides of a
triangle; that the input need not be integers; and that there may
be more or less than three input values. Students who usually
test their programs with a few simple inputs are surprised that
we can come up with about 100 tests. Moreover, the students
realize that they will need a program to test this program;
scripting is introduced.

We have about a half dozen implementations, in various
languages, of the triangle program. Exploratory testing [15] is
applied here to again demonstrate that the source is not needed
for a test. Students use the information gleaned from the
Myers’ “quiz” to thoroughly exercise the program. The same

test can behave differently depending upon the implementa-
tion language, especially in languages that support arbitrary
integers.

Coverage tools are introduced in this digression. A particu-
larly “branchy” and state-variable filled version of the triangle
program from Jorgensen [16] demonstrates how difficult cov-
ering a “simple program” can be.

H. Opening Exercises

Occasionally, class is opened with a puzzle from Feuer’s
puzzle book [17]: a = a++ + ++a? or a particularly bizarre
snippet from the obfuscated C contest [18]. The obfuscated
programs afford another opportunity to edit executables. Care-
ful reading and outside-the-box thinking are re-enforced with
some infuriating puzzles [19].

I. Programs as State Machines, Debugging and “Proofs”

A program has a collection of live variables, and those
variables have values. This collection of variables and values
is called the state of the computation. An elementary version
of a Hoare triple is introduced [20]. Assertions are noted (from
earlier courses).

Programs are redescribed not as a collection of statements,
but a collection of states; the statements are artifacts that
change the states. This “state of computation model” is il-
lustrated in a visual debugger. When a statement changes the
state it is easily seen in the watch window. And “ How do we
know that our program is wrong?” It’s in the wrong state, of
course!

Then without thinking of which statement should be used,
the question is: What is the state that the program should be
in? The statement writes itself.

The “math haters” get uneasy when they find out that a
program is really a mathematical proof. The input state is the
hypothesis, the output state is the theorem, and the program
(all those statements) is the proof!

J. Fun with Max

A collection of C and C++ programs illustrate again
that computers cannot be trusted to compute, especially
with numbers. The harmonic series, a divergent sum, ac-
tually has a value! x = x + 1 leaves x unchanged for
certain values, such as FLT_MAX, and x decreases when 1
is added to INT MAX. Machine epsilon is calculated; the
nextafter() function is examined.

K. Reading, Thinking and Writing

A day is devoted to “The Task of the Referee,” by
Smith [21]. While ostensibly about refereeing articles, it also
give a clear set of instructions on writing them (and other
academic papers) too.

A day is spent on Perry’s tale of the “Abominable Mr.
Metzger” as reported in “Examsmanship and the Liberal Arts:
An Epistemological Inquiry” [22].

VII. OUTCOMES

Most groups complete the issues, and get a B. Occasional
teams and Individual students show initiative. Not all teams
submit changes back to the project repository.

. . . students either “make it big” or “fail miserably”
In a teaching environment, most people fall into
the middle (Some say that their performances form
a bell-shaped curve. I have concluded that well-
shaped distributions of performance in academia
are artifacts of an environment in which teaching
is stressed. In a learning environment, performance
is generally bimodally skewed, with most persons
performing very well, a few performing very badly,
and almost none falling in the middle.) Harvey [3]

This course is about the process and not the product, so
reporting on the size and number of changes misses the point.
It is a major accomplishment when the student finds the one
line that needs an additional parameter, makes the change and
makes it work.

The actual data collected on project and submitted in the
final is secondary to the task of actually collecting it. Students
are typically over prepared at the final.

Figure 3 gives some historical data for the system selected
most often, 7Zip. It has been selected 10 times over the
years. There are not 50 distinct changes because some groups
implement the same change and other groups find the same
change available in the next term. The other projects have
similar results.

Not all resubmit to the repository. It is not required. The
students who do submit to the repository get the unfortunate
experience that too many have when submitting to open
source: their properly submitted changes are “flamed” yet
found in the next release. Only two groups intended to keep
contributing; only one individual did.

Different Different Biggest Smallest Submitted
Teams Changes Change Change to Project

& Impact & Impact
10 35 40 loc 1 loc 4 of 10

6 files 1 file

Fig. 3. Some 7Zip Data

VIII. STUDENT STORIES

The end of term evaluations are not available [3]. Here are
some quotes from “the midterm” and student posts. They are
subject to observer and confirmation bias. [Edited for grammar
and spelling.]

• That first day was very interesting. . .
• This is not an easy world and I am pretty sure he knows

that, that is why he pushes us the way he does.
• I had no idea of what I was getting myself into. . .
• I believed I was ready for this class and ready to pass

with ease. [Failed student.]

• This class is here to show us and teach us how to read
another person’s code and understand it.

• The hardest obstacle to overcome before progress could
be made was compiling the open source program.

• It would have been useful to go over basic conventions
in the open source community like build scripts, and go
over a sample dependency problem resolution.

• Treat it more like a real-life job. Have people who
feel confident or have experience volunteer to be their
team’s “lead”and give them the ability to assign tasks
and deadlines to others and themselves. They should
also be the ones to schedule team meetings and ensure
the project is on track. The course is great to introduce
people to coding in the open source world, but I felt
the administrative side of things was lacking a bit and
the projects might be able to flow more smoothly with a
system like that in place.

• CSE 2410 was the first major software project I worked
on. I believe that for “newer” programmers 2410 is a
course we are very nervous about. We feel like we have
something to prove.

• I thought the course was going to be much easier than it
ended up being. . .

• I can say I contributed to the Open Source community in
my job interviews.

• I would like to see more time spent on how to build
large projects, maybe covering maven/gradle to better
understand how to use them as well as to understand how
they work. I think a little bit more time could be spent
on git, and dealing with things such as how to resolve
merge conflicts.

• This course gave me everything I needed to know to
succeed in my summer internship.

• Find open source projects that aren’t stale, find open
source projects using new technologies especially ones
that aren’t necessarily even well documented, and where
the answers to bugs require both research and original-
ity. Projects like I2P, hypervisors, rabbitmq, etc.; those
projects are what truly stretch people.

• I was pretty excited to finally get my hands dirty with
my first open source project.

• What helped the most getting started was the idea of
having a safe-net in case things went wrong: the Git
repository. I hadn’t used Git too much prior to this class
and I imagine it’s the same with a lot of my classmates. I
wasn’t worried about trying to poke around looking for a
bug without breaking things because I knew that I could
tinker with any part of the program I wanted to without
consequences. If things went south, I could always roll
back to the last master branch version and try again. In
that sense, my goal was to break things.

• It was the first coding experience I had where I’d be
reading/understanding less than 1% of the codebase -
a scary thought when every program I’ve worked with
previously had been my own.

It’s clear that we need to spend more time on building
code bases and managing repositories. The presumption has
been this is just another tool, another environment, another
installation that students have to perform, They are doing this
all the time on their rooted phones, gameboxes and laptops.
Evidently, that experience is insufficient.

IX. THE GRADUATE STUDENT ASSISTANT (MF) SAYS:

From the perspective of the GSA, there are a number of
issues that the assistant must be prepared to support throughout
the semester. The four major areas of concern are: issues
with version control, resolving compiler dependencies, tran-
sitioning to an understanding of event driven programming
and documenting progress. Most students participating in
the class are likely second or third year computer science
or computer engineering students. The projects they have
previously worked on as part of their coursework have not
been sufficiently complex or required working in larger teams
to warrant the use of version control.

The first problem that students will encounter with version
control is understanding and setting up their team repositories.
Students tend to require a few days to setup the repository and
perform their first commit with the code from their selected
project.

As the semester progresses two different issues tend to sur-
face; performing rollbacks to a previous commit and merging
branches. Some teams have the problem in which one student
fixes an issue and commits a change, but as all of the students
are working from the master branch, the fix ripples through
the code and causes other team members builds to suddenly
stop working. Performing a reset on the branch is not difficult
with a version control system such as git, but students are
often not familiar enough with the terminology to know what
to search for when attempting to reset to a previous commit.

The other issue is encountered with teams which have a
student who is previously familiar with version control and
has created multiple branches so each team member can work
on their own issue in their own separate branch. These teams
know enough to get themselves into situations with the version
control system that are not easily resolved, and may require
assistance to merge all of the branches back into the master
branch at the end of the semester.

The next major issue after teams have successfully es-
tablished their repositories is often encountered as students
attempt to create their first build. Most of the projects available
for students to choose from are written in C/C++ while most
students have only had a single semester previous with C/C++.
Students are faced with issues in getting complex projects to
compile and some of the build processes online are inaccurate
due to updated dependencies or compiler options. For example,
Filezilla has a number of specific dependencies which must be
resolved during the build process and some projects such as 7-
zip require that the build scripts be edited to account for newer
compiler settings and options. Although most students are
working from a Microsoft Windows host, some teams discover

that it is easier to make use of a virtualization product such
as VMware Workstation to build their projects on a Ubuntu
guest.

The third problem is transitioning to a new programming
paradigm of event driven programming. Up to this point
most projects that the student has completed as part of their
coursework have been simple toy programs which accomplish
a single task. Of the selected projects, almost all of them make
use of a GUI framework such as Qt, GTK or the Microsoft
Windows API. In addition to understanding how to program a
GUI the students must deal with Event-Driven Programming.
When tracing an issue, students are confronted with an event
handler and are often confused as the event handlers do not
seem to be directly tied to the programs entry point.

Finally there is the issue of documentation, students often
fall into two different categories with regards to documentation
at the beginning of the semester; they do not document their
progress at all or they record too much detail. Students can
often be convinced to documenting their progress when they
understand that the issue tracker is a place which can retain
notes on discoveries during the process of correcting the issue.
The teams which are most successful during the semester often
have made use of the issue tracker to record their progress and
the wiki to record information that is generally useful to the
rest of the team (such as build notes).

X. RELATED WORK AND COMPARISON

This theme reported herein is not new. Many others have
used open source projects and used software maintenance
in software engineering classes. This section summarizes,
compares and draws distinctions between those offerings and
ours.

As early as 1992, Pierce [23] noted in this conference,
following Cornelius, et al. [24], that students may learn more
in a maintenance exercise in a project course than they
might in a greenfield exercise. These were necessarily small
projects with respect to those now found on the Internet,
but nonetheless pointed the way that students could learn
more by changing existing code than by writing from scratch.
Van Deursen and Letherbridge [25] convened a panel at this
conference in 2002, to how and where software maintenance
and evolution could and should be in incorporated into a
software engineering curriculum. Rajlich and Gosavi [26]
further noted that impact analysis and incremental change were
fundamental to a medium sized software engineering exercise.

As the Internet and open source communities blossomed
Carrington and Kim [27] used open source, albeit in a course
on design and testing. Buchta, et al. [28], [29] demonstrated
that small to medium sized open source projects could be used
as a class project, with a modicum of support tools. Dionisio,
et al. [30] attempt to restructure the entire undergraduate
computing curriculum around open source, while Xing [31]
also used open source in a graduate course. Pedroni, et
al. [32] studied motivation and inclination of graduate students
to continue to work on open source projects. Nandigam, et
al.,[33] used source code exploration to examine open source.

Meneely, et al., [34] attempt to assuage the difficulties of using
open source by creating a repository, ROSE, (A Repository
of Education-friendly Open-source Projects) for all aspects of
software engineering education.

Rajlich presented a tutorial at this conference [35]. In addi-
tion to addressing concept location, change, etc., introductions
to agile programming and the personal software process were
presented. Marmorstein [36] describes a course similar to ours,
but has more structure and an insistence on interaction with the
open source community. Students were not required to work in
teams. Dorman and Rajlich [37] report on a single programmer
working on an open source project. McCartney, et al., [38]
have students reverse engineer an open source project, then
make a change. Teel, et al., [39] investigate open-source tool
usage in a two term project, while Stroulia, et al., [40] focus on
capstone project. Gokhale, et al., [41] compare design - centric
and maintenance - centric approaches in the same software
engineering class, and note the difference between the two
cohorts. Rajlich [42] outlines a team-based project course, as
first course in software engineering. The students are graded
individually.

XI. PERSPECTIVES AND CONCLUSION

In 1979, Mills, et al., [43] advocated reading programs
before writing programs. Their approach is wholeheartedly ac-
cepted and practiced here. Students can read and comprehend
programs that are much more sophisticated than they could
ever write at this stage of their studies.

The course is about learning software maintenance, not
teaching it, hence the awkward title. The goal is to establish
an environment for learning, not an environment for teaching.

Students report that it succeeds. That’s enough.
I tend to agree with Carl Rogers’ (1961) “Personal
Thoughts on Teaching and Learning.” In essence, he
contends that anything of value can’t be taught, but
that much of value can be learned. . . Harvey[3]

ACKNOWLEDGMENTS

The authors would like to David Binkley, Vaclav Rajlch,
The Program Chairs, William Nyffenegger, Luke Wiskowski,
Giordano Benitez, Taylor McRae, Pablo Canseco and Borja
“Pablo 2.0””Canseco for ideas, suggestions, comments and
experience reports. And all previous students in CSE 2410,
infuriating and inspiring as they are!

REFERENCES

[1] A. Barr, Find the Bug. Addison Wesley, 2004.
[2] V. Rajlich, Software Engineering: The Current Practice. Chapman Hall

CRC Press, 2011.
[3] J. B. Harvey, How Come Every Time I Get Stabbed in Back, My

Fingerprints are on the Knife? Josey Bass, 1999, ch. 4: Learning
to Not*Teach, pp. 71– 84.

[4] K. Gallagher, “Standard stuff.” [Online]. Available: http://cs.fit.edu/
∼kgallagher/Courses/Standard\%20Stuff/Grading.html

[5] B. Nelson, 1001 Ways to Take Initiative at Work. Workman Press,
1999.

[6] A. Edmondson, “Psychological safety and learning behavior in work
teams.” Administrative Science Quarterly, vol. 44, no. 2, pp. 350 –
383, 1999. [Online]. Available: http://search.ebscohost.com/login.aspx?
direct=true&db=bth&AN=2003235&site=ehost-live

[7] C. Duhigg, “What google learned from its quest to build the perfect
team,” The New York Times Magazine, Feb 2016.

[8] ReadWriteThink, “Group assessment.” [Online]. Available:
readwritethink.org

[9] R. Christianson, “Group process evaluation form.” [Online]. Available:
http://www.coopzone.coop

[10] “vmware.” [Online]. Available: http://www.vmware.com
[11] R. Green, “How to write unmaintainable code.” [Online]. Available:

http://mindprod.com/jgloss/unmain.html
[12] G. M.Weinberg, “Kill that code!” Infosystems, Aug 1983.
[13] K. Gallagher, “MonkeySort,” The Journal of Computing Sciences in

Colleges, vol. 15, no. 3, pp. 70 – 81, February 2005.
[14] G. Myers, The Art of Software Testing. Wiley, 1979.
[15] C. Kaner, “A tutorial in exploratory tesing,” in Quality Engineered

Software and Testing Conference. QAI Global, September 2008.
[16] P. C. Jorgensen, Software Testing: A Craftsman’s Approach, 4th ed.

CRC Press, 2014.
[17] A. R. Feuer, The C Puzzle Book. Prentice Hall, 1982.
[18] “The international obfuscated c code contest.” [Online]. Available:

http://www.ioccc.org/
[19] P. Sloane and D. McHale, Eds., Infuriating Lateral Thinking Puzzles.

Puzzlewright Press (Sterling), 2010.
[20] C. A. R. Hoare, “An axiomatic basis for computer programming,”

Commun. ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969. [Online].
Available: http://doi.acm.org/10.1145/363235.363259

[21] A. J. Smith, “The task of the referee,” Computer, vol. 23, no. 4, pp.
65–71, April 1990.

[22] A. M. Eastman, Ed., The Norton reader; an anthology of expository
prose. Norton, 1969, ch. Examsmanship and the Liberal Arts: An
Epistemological Inquiry, by William Perry, Jr.

[23] K. R. Pierce, “The benefits of maintenance exercises in project-based
courses in software engineering,” in , Conference on Software Mainte-
nance, 1992. Proceedings, Nov. 1992, pp. 324–325.

[24] B. J. Cornelius, M. Munro, and D. J. Robson, “An approach to software
maintenance,” Software Engineering Journal, pp. 233–236, July 1989.

[25] A. v. Deursen and T. C. Lethbridge, “How should software evolution
and maintenance be taught?” in International Conference on Software
Maintenance, 2002. Proceedings, 2002, pp. 248–250.

[26] V. Rajlich and P. Gosavi, “Incremental change in object-oriented pro-
gramming,” IEEE Software, vol. 21, no. 4, pp. 62–69, Jul. 2004.

[27] D. Carrington and S. K. Kim, “Teaching software design with open
source software,” in Frontiers in Education, 2003. FIE 2003 33rd
Annual, vol. 3, Nov. 2003, pp. S1C–9–14 vol.3.

[28] J. Buchta, M. Petrenko, D. Poshyvanyk, and V. Rajlich, “Teaching
Evolution of Open-Source Projects in Software Engineering Courses,”
in 22nd IEEE International Conference on Software Maintenance, 2006.
ICSM ’06, Sep. 2006, pp. 136–144.

[29] M. Petrenko, D. Poshyvanyk, V. Rajlich, and J. Buchta, “Teaching
Software Evolution in Open Source,” Computer, vol. 40, no. 11, pp.
25–31, Nov. 2007.

[30] J. D. N. Dionisio, C. L. Dickson, S. E. August, P. M. Dorin, and R. Toal,
“An Open Source Software Culture in the Undergraduate Computer
Science Curriculum,” SIGCSE Bull., vol. 39, no. 2, pp. 70–74, Jun.
2007. [Online]. Available: http://doi.acm.org/10.1145/1272848.1272888

[31] G. Xing, “Teaching Software Engineering Using Open Source Software,”
in Proceedings of the 48th Annual Southeast Regional Conference, ser.
ACM SE ’10. New York, NY, USA: ACM, 2010, pp. 57:1–57:3.
[Online]. Available: http://doi.acm.org/10.1145/1900008.1900085

[32] M. Pedroni, T. Bay, M. Oriol, and A. Pedroni, “Open Source Projects in
Programming Courses,” in Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’07. New
York, NY, USA: ACM, 2007, pp. 454–458. [Online]. Available:
http://doi.acm.org/10.1145/1227310.1227465

[33] J. Nandigam, V. N. Gudivada, and A. Hamou-Lhadj, “Learning software
engineering principles using open source software,” in Frontiers in
Education Conference, 2008. FIE 2008. 38th Annual, Oct. 2008, pp.
S3H–18–S3H–23.

[34] A. Meneely, L. Williams, and E. F. Gehringer, “ROSE: A Repository of
Education-friendly Open-source Projects,” in Proceedings of the 13th
Annual Conference on Innovation and Technology in Computer Science

Education, ser. ITiCSE ’08. New York, NY, USA: ACM, 2008, pp.
7–11. [Online]. Available: http://doi.acm.org/10.1145/1384271.1384276

[35] V. Rajlich, “Teaching undergraduate software engineering,” in 2010
IEEE International Conference on Software Maintenance (ICSM), Sep.
2010, pp. 1–2.

[36] R. Marmorstein, “Open Source Contribution As an Effective Software
Engineering Class Project,” in Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’11. New York, NY, USA: ACM, 2011, pp. 268–
272. [Online]. Available: http://doi.acm.org/10.1145/1999747.1999823

[37] C. Dorman and V. Rajlich, “Software Change in the Solo Iterative
Process: An Experience Report,” in Agile Conference (AGILE), 2012,
Aug. 2012, pp. 21–30.

[38] R. McCartney, S. S. Gokhale, and T. M. Smith, “Evaluating an Early
Software Engineering Course with Projects and Tools from Open
Source Software,” in Proceedings of the Ninth Annual International
Conference on International Computing Education Research, ser. ICER
’12. New York, NY, USA: ACM, 2012, pp. 5–10. [Online]. Available:
http://doi.acm.org/10.1145/2361276.2361279

[39] S. Teel, D. Schweitzer, and S. Fulton, “Teaching undergraduate software
engineering using open source development tools,” Issues in Informing
Science & Information Technology, vol. 9, pp. 63+, 2012, 63.

[40] E. Stroulia, K. Bauer, M. Craig, K. Reid, and G. Wilson,
“Teaching Distributed Software Engineering with UCOSP: The
Undergraduate Capstone Open-source Project,” in Proceedings of
the 2011 Community Building Workshop on Collaborative Teaching
of Globally Distributed Software Development, ser. CTGDSD ’11.
New York, NY, USA: ACM, 2011, pp. 20–25. [Online]. Available:
http://doi.acm.org/10.1145/1984665.1984670

[41] S. Gokhale, R. McCartney, and T. Smith, “Teaching Software
Engineering from a Maintenance-centric View,” J. Comput. Sci.
Coll., vol. 28, no. 6, pp. 42–49, Jun. 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2460156.2460166

[42] V. Rajlich, “Teaching developer skills in the first software engineering
course,” in 2013 35th International Conference on Software Engineering
(ICSE), May 2013, pp. 1109–1116.

[43] H. D. Mills, R. C. Linger, and B. I. Witt, Structured Programming:
theory and practice. Addison-Wesley, 1979, ch. 5: Reading Structured
Programs. ch 7: Writing Structured Programs.

