

Guide to the Software Engineering
Body of Knowledge

Version 3.0

SWEBOK®

A Project of the IEEE Computer Society

Guide to the Software Engineering
Body of Knowledge

Version 3.0

Editors

Pierre Bourque, École de technologie supérieure (ÉTS)
Richard E. (Dick) Fairley, Software and Systems Engineering Associates (S2EA)

Copyright and Reprint Permissions. Educational or personal use of this material is permitted without fee provided such copies
1) are not made for profit or in lieu of purchasing copies for classes, and that this notice and a full citation to the original work
appear on the first page of the copy and 2) do not imply IEEE endorsement of any third-party products or services. Permission
to reprint/republish this material for commercial, advertising or promotional purposes or for creating new collective works for
resale or redistribution must be obtained from IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane,
Piscataway, NJ 08854-4141 or pubs-permissions@ieee.org.

Reference to any specific commercial products, process, or service does not imply endorsement by IEEE. The views and opin-
ions expressed in this work do not necessarily reflect those of IEEE.

IEEE makes this document available on an “as is” basis and makes no warranty, express or implied, as to the accuracy, capabil-
ity, efficiency merchantability, or functioning of this document. In no event will IEEE be liable for any general, consequential,
indirect, incidental, exemplary, or special damages, even if IEEE has been advised of the possibility of such damages.

Copyright © 2014 IEEE. All rights reserved.
Paperback ISBN-10: 0-7695-5166-1
Paperback ISBN-13: 978-0-7695-5166-1

Digital copies of SWEBOK Guide V3.0 may be downloaded free of charge for personal and academic use via www.swebok.org.

IEEE Computer Society Staff for This Publication
Angela Burgess, Executive Director
Anne Marie Kelly, Associate Executive Director, Director of Governance
Evan M. Butterfield, Director of Products and Services
John Keppler, Senior Manager, Professional Education
Kate Guillemette, Product Development Editor
Dorian McClenahan, Education Program Product Developer
Michelle Phon, Professional Education & Certification Program Coordinator
Jennie Zhu-Mai, Editorial Designer

IEEE Computer Society Products and Services. The world-renowned IEEE Computer Society publishes, promotes, and dis-
tributes a wide variety of authoritative computer science and engineering journals, magazines, conference proceedings, and
professional education products. Visit the Computer Society at www.computer.org for more information.

http://www.computer.org

v

TABLE OF CONTENTS

Foreword xvii
Foreword to the 2004 Edition xix
Editors xxi
Coeditors xxi
Contributing Editors xxi
Change Control Board xxi
Knowledge Area Editors xxiii
Knowledge Area Editors of Previous SWEBOK Versions xxv
Review Team xxvii
Acknowledgements xxix
Professional Activities Board, 2013 Membership xxix
Motions Regarding the Approval of SWEBOK Guide V3.0 xxx
Motions Regarding the Approval of SWEBOK Guide 2004 Version xxx
Introduction to the Guide xxxi

Chapter 1: Software Requirements 1-1
1. Software Requirements Fundamentals 1-1
1.1. Definition of a Software Requirement  1-1
1.2. Product and Process Requirements  1-2
1.3. Functional and Nonfunctional Requirements  1-3
1.4. Emergent Properties  1-3
1.5. Quantifiable Requirements  1-3
1.6. System Requirements and Software Requirements  1-3

2. Requirements Process 1-3
2.1. Process Models  1-4
2.2. Process Actors  1-4
2.3. Process Support and Management  1-4
2.4. Process Quality and Improvement  1-4

3. Requirements Elicitation 1-5
3.1. Requirements Sources  1-5
3.2. Elicitation Techniques  1-6

4. Requirements Analysis 1-7
4.1. Requirements Classification  1-7
4.2. Conceptual Modeling   1-8
4.3. Architectural Design and Requirements Allocation  1-9
4.4. Requirements Negotiation  1-9
4.5. Formal Analysis  1-10

5. Requirements Specification 1-10
5.1. System Definition Document  1-10
5.2. System Requirements Specification  1-10
5.3. Software Requirements Specification  1-11

6. Requirements Validation 1-11
6.1. Requirements Reviews  1-11
6.2. Prototyping  1-12

vi SWEBOK® Guide V3.0

6.3. Model Validation  1-12
6.4. Acceptance Tests  1-12

7. Practical Considerations 1-12
7.1. Iterative Nature of the Requirements Process  1-13
7.2. Change Management  1-13
7.3. Requirements Attributes  1-13
7.4. Requirements Tracing  1-14
7.5. Measuring Requirements  1-14

8. Software Requirements Tools 1-14
Matrix of Topics vs. Reference Material 1-15

Chapter 2: Software Design 2-1
1. Software Design Fundamentals 2-2
1.1. General Design Concepts  2-2
1.2. Context of Software Design  2-2
1.3. Software Design Process  2-2
1.4. Software Design Principles  2-3

2. Key Issues in Software Design 2-3
2.1. Concurrency  2-4
2.2. Control and Handling of Events  2-4
2.3. Data Persistence   2-4
2.4. Distribution of Components  2-4
2.5. Error and Exception Handling and Fault Tolerance  2-4
2.6. Interaction and Presentation   2-4
2.7. Security  2-4

3. Software Structure and Architecture 2-4
3.1. Architectural Structures and Viewpoints  2-5
3.2. Architectural Styles  2-5
3.3. Design Patterns  2-5
3.4. Architecture Design Decisions  2-5
3.5. Families of Programs and Frameworks   2-5

4. User Interface Design 2-5
4.1. General User Interface Design Principles  2-6
4.2. User Interface Design Issues  2-6
4.3. The Design of User Interaction Modalities  2-6
4.4. The Design of Information Presentation  2-6
4.5. User Interface Design Process  2-7
4.6. Localization and Internationalization  2-7
4.7. Metaphors and Conceptual Models  2-7

5. Software Design Quality Analysis and Evaluation 2-7
5.1. Quality Attributes  2-7
5.2. Quality Analysis and Evaluation Techniques  2-8
5.3. Measures  2-8

6. Software Design Notations 2-8
6.1. Structural Descriptions (Static View)  2-8
6.2. Behavioral Descriptions (Dynamic View)   2-9

7. Software Design Strategies and Methods 2-10
7.1. General Strategies   2-10
7.2. Function-Oriented (Structured) Design  2-10
7.3. Object-Oriented Design  2-10

Table of Contents vii

7.4. Data Structure-Centered Design  2-10
7.5. Component-Based Design (CBD)  2-10
7.6. Other Methods  2-10

8. Software Design Tools 2-11
Matrix of Topics vs. Reference Material 2-12

Chapter 3: Software Construction 3-1
1. Software Construction Fundamentals 3-1
1.1. Minimizing Complexity  3-3
1.2. Anticipating Change   3-3
1.3. Constructing for Verification  3-3
1.4. Reuse  3-3
1.5. Standards in Construction   3-3

2. Managing Construction 3-4
2.1. Construction in Life Cycle Models  3-4
2.2. Construction Planning  3-4
2.3. Construction Measurement   3-4

3. Practical Considerations 3-5
3.1. Construction Design  3-5
3.2. Construction Languages  3-5
3.3. Coding  3-6
3.4. Construction Testing  3-6
3.5. Construction for Reuse  3-6
3.6. Construction with Reuse  3-7
3.7. Construction Quality  3-7
3.8. Integration  3-7

4. Construction Technologies 3-8
4.1. API Design and Use  3-8
4.2. Object-Oriented Runtime Issues   3-8
4.3. Parameterization and Generics  3-8
4.4. Assertions, Design by Contract, and Defensive Programming  3-8
4.5. Error Handling, Exception Handling, and Fault Tolerance  3-9
4.6. Executable Models   3-9
4.7. State-Based and Table-Driven Construction Techniques  3-9
4.8. Runtime Configuration and Internationalization  3-10
4.9. Grammar-Based Input Processing   3-10
4.10. Concurrency Primitives  3-10
4.11. Middleware  3-10
4.12. Construction Methods for Distributed Software  3-11
4.13. Constructing Heterogeneous Systems  3-11
4.14. Performance Analysis and Tuning  3-11
4.15. Platform Standards  3-11
4.16. Test-First Programming  3-11

5. Software Construction Tools 3-12
5.1. Development Environments  3-12
5.2. GUI Builders  3-12
5.3. Unit Testing Tools  3-12
5.4. Profiling, Performance Analysis, and Slicing Tools  3-12

Matrix of Topics vs. Reference Material 3-13

viii SWEBOK® Guide V3.0

Chapter 4: Software Testing 4-1
1. Software Testing Fundamentals 4-3
1.1. Testing-Related Terminology  4-3
1.2. Key Issues  4-3
1.3. Relationship of Testing to Other Activities  4-4

2. Test Levels 4-5
2.1. The Target of the Test   4-5
2.2. Objectives of Testing   4-5

3. Test Techniques 4-7
3.1. Based on the Software Engineer’s Intuition and Experience   4-8
3.2. Input Domain-Based Techniques  4-8
3.3. Code-Based Techniques  4-8
3.4. Fault-Based Techniques   4-9
3.5. Usage-Based Techniques  4-9
3.6. Model-Based Testing Techniques  4-10
3.7. Techniques Based on the Nature of the Application  4-10
3.8. Selecting and Combining Techniques   4-11

4. Test-Related Measures 4-11
4.1. Evaluation of the Program Under Test   4-11
4.2. Evaluation of the Tests Performed  4-12

5. Test Process 4-12
5.1. Practical Considerations  4-13
5.2. Test Activities  4-14

6. Software Testing Tools 4-15
6.1. Testing Tool Support   4-15
6.2. Categories of Tools   4-15

Matrix of Topics vs. Reference Material 4-17

Chapter 5: Software Maintenance 5-1
1. Software Maintenance Fundamentals 5-1
1.1. Definitions and Terminology  5-1
1.2. Nature of Maintenance  5-2
1.3. Need for Maintenance   5-3
1.4. Majority of Maintenance Costs   5-3
1.5. Evolution of Software   5-3
1.6. Categories of Maintenance   5-3

2. Key Issues in Software Maintenance 5-4
2.1. Technical Issues  5-4
2.2. Management Issues  5-5
2.3. Maintenance Cost Estimation  5-6
2.4. Software Maintenance Measurement  5-7

3. Maintenance Process 5-7
3.1. Maintenance Processes  5-7
3.2. Maintenance Activities  5-8

4. Techniques for Maintenance 5-10
4.1. Program Comprehension  5-10
4.2. Reengineering  5-10
4.3. Reverse Engineering  5-10
4.4. Migration  5-10
4.5. Retirement   5-11

Table of Contents ix

5. Software Maintenance Tools 5-11
Matrix of Topics vs. Reference Material 5-12

Chapter 6: Software Configuration Management 6-1
1. Management of the SCM Process 6-2
1.1. Organizational Context for SCM   6-2
1.2. Constraints and Guidance for the SCM Process   6-3
1.3. Planning for SCM   6-3
1.4. SCM Plan  6-5
1.5. Surveillance of Software Configuration Management   6-5

2. Software Configuration Identification 6-6
2.1. Identifying Items to Be Controlled   6-6
2.2. Software Library  6-8

3. Software Configuration Control 6-8
3.1. Requesting, Evaluating, and Approving Software Changes   6-8
3.2. Implementing Software Changes   6-9
3.3. Deviations and Waivers   6-10

4. Software Configuration Status Accounting 6-10
4.1. Software Configuration Status Information   6-10
4.2. Software Configuration Status Reporting   6-10

5. Software Configuration Auditing 6-10
5.1. Software Functional Configuration Audit   6-11
5.2. Software Physical Configuration Audit  6-11
5.3. In-Process Audits of a Software Baseline  6-11

6. Software Release Management and Delivery 6-11
6.1. Software Building   6-11
6.2. Software Release Management   6-12

7. Software Configuration Management Tools 6-12
Matrix of Topics vs. Reference Material 6-13

Chapter 7: Software Engineering Management 7-1
1. Initiation and Scope Definition 7-4
1.1. Determination and Negotiation of Requirements  7-4
1.2. Feasibility Analysis  7-4
1.3. Process for the Review and Revision of Requirements  7-5

2. Software Project Planning 7-5
2.1. Process Planning   7-5
2.2. Determine Deliverables  7-5
2.3. Effort, Schedule, and Cost Estimation  7-6
2.4. Resource Allocation  7-6
2.5. Risk Management  7-6
2.6. Quality Management  7-6
2.7. Plan Management  7-7

3. Software Project Enactment 7-7
3.1. Implementation of Plans  7-7
3.2. Software Acquisition and Supplier Contract Management  7-7
3.3. Implementation of Measurement Process  7-7
3.4. Monitor Process  7-7
3.5. Control Process  7-8
3.6. Reporting  7-8

x SWEBOK® Guide V3.0

4. Review and Evaluation 7-8
4.1. Determining Satisfaction of Requirements  7-8
4.2. Reviewing and Evaluating Performance  7-9

5. Closure 7-9
5.1. Determining Closure  7-9
5.2. Closure Activities  7-9

6. Software Engineering Measurement 7-9
6.1. Establish and Sustain Measurement Commitment  7-9
6.2. Plan the Measurement Process   7-10
6.3. Perform the Measurement Process  7-11
6.4. Evaluate Measurement  7-11

7. Software Engineering Management Tools 7-11
Matrix of Topics vs. Reference Material 7-13

Chapter 8: Software Engineering Process 8-1
1. Software Process Definition 8-2
1.1. Software Process Management   8-3
1.2. Software Process Infrastructure  8-4

2. Software Life Cycles 8-4
2.1. Categories of Software Processes  8-5
2.2. Software Life Cycle Models   8-5
2.3. Software Process Adaptation  8-6
2.4. Practical Considerations  8-6

3. Software Process Assessment and Improvement 8-6
3.1. Software Process Assessment Models  8-7
3.2. Software Process Assessment Methods  8-7
3.3. Software Process Improvement Models   8-7
3.4. Continuous and Staged Software Process Ratings  8-8

4. Software Measurement 8-8
4.1. Software Process and Product Measurement   8-9
4.2. Quality of Measurement Results  8-10
4.3. Software Information Models  8-10
4.4. Software Process Measurement Techniques  8-11

5. Software Engineering Process Tools 8-12
Matrix of Topics vs. Reference Material 8-13

Chapter 9: Software Engineering Models and Methods 9-1
1. Modeling 9-1
1.1. Modeling Principles   9-2
1.2. Properties and Expression of Models  9-3
1.3. Syntax, Semantics, and Pragmatics  9-3
1.4. Preconditions, Postconditions, and Invariants  9-4

2. Types of Models 9-4
2.1. Information Modeling  9-5
2.2. Behavioral Modeling  9-5
2.3. Structure Modeling  9-5

3. Analysis of Models 9-5
3.1. Analyzing for Completeness  9-5
3.2. Analyzing for Consistency  9-6

Table of Contents xi

3.3. Analyzing for Correctness  9-6
3.4. Traceability  9-6
3.5. Interaction Analysis  9-6

4. Software Engineering Methods 9-7
4.1. Heuristic Methods  9-7
4.2. Formal Methods  9-7
4.3. Prototyping Methods  9-8
4.4. Agile Methods   9-9

Matrix of Topics vs. Reference Material 9-10

Chapter 10: Software Quality 10-1
1. Software Quality Fundamentals 10-2
1.1. Software Engineering Culture and Ethics  10-2
1.2. Value and Costs of Quality  10-3
1.3. Models and Quality Characteristics  10-3
1.4. Software Quality Improvement  10-4
1.5. Software Safety   10-4

2. Software Quality Management Processes 10-5
2.1. Software Quality Assurance  10-5
2.2. Verification & Validation  10-6
2.3. Reviews and Audits  10-6

3. Practical Considerations 10-9
3.1. Software Quality Requirements  10-9
3.2. Defect Characterization  10-10
3.3. Software Quality Management Techniques  10-11
3.4. Software Quality Measurement  10-12

4. Software Quality Tools 10-12
Matrix of Topics vs. Reference Material 10-14

Chapter 11: Software Engineering Professional Practice 11-1
1. Professionalism 11-2
1.1. Accreditation, Certification, and Licensing  11-3
1.2. Codes of Ethics and Professional Conduct   11-4
1.3. Nature and Role of Professional Societies  11-4
1.4. Nature and Role of Software Engineering Standards   11-4
1.5. Economic Impact of Software  11-5
1.6. Employment Contracts  11-5
1.7. Legal Issues   11-5
1.8. Documentation   11-7
1.9. Tradeoff Analysis   11-8

2. Group Dynamics and Psychology 11-9
2.1. Dynamics of Working in Teams/Groups   11-9
2.2. Individual Cognition  11-9
2.3. Dealing with Problem Complexity   11-10
2.4. Interacting with Stakeholders  11-10
2.5. Dealing with Uncertainty and Ambiguity   11-10
2.6. Dealing with Multicultural Environments   11-10

3. Communication Skills 11-11
3.1. Reading, Understanding, and Summarizing   11-11

xii SWEBOK® Guide V3.0

3.2. Writing   11-11
3.3. Team and Group Communication   11-11
3.4. Presentation Skills   11-12

Matrix of Topics vs. Reference Material 11-13

Chapter 12: Software Engineering Economics 12-1
1. Software Engineering Economics Fundamentals 12-3
1.1. Finance  12-3
1.2. Accounting  12-3
1.3. Controlling  12-3
1.4. Cash Flow  12-3
1.5. Decision-Making Process  12-4
1.6. Valuation  12-5
1.7. Inflation  12-6
1.8. Depreciation  12-6
1.9. Taxation  12-6
1.10. Time-Value of Money  12-6
1.11. Efficiency  12-6
1.12. Effectiveness  12-6
1.13. Productivity  12-6

2. Life Cycle Economics 12-7
2.1. Product  12-7
2.2. Project  12-7
2.3. Program  12-7
2.4. Portfolio  12-7
2.5. Product Life Cycle  12-7
2.6. Project Life Cycle  12-7
2.7. Proposals  12-8
2.8. Investment Decisions  12-8
2.9. Planning Horizon  12-8
2.10. Price and Pricing  12-8
2.11. Cost and Costing  12-9
2.12. Performance Measurement  12-9
2.13. Earned Value Management  12-9
2.14. Termination Decisions  12-9
2.15. Replacement and Retirement Decisions   12-10

3. Risk and Uncertainty 12-10
3.1. Goals, Estimates, and Plans  12-10
3.2. Estimation Techniques  12-11
3.3. Addressing Uncertainty  12-11
3.4. Prioritization  12-11
3.5. Decisions under Risk  12-11
3.6. Decisions under Uncertainty  12-12

4. Economic Analysis Methods 12-12
4.1. For-Profit Decision Analysis  12-12
4.2. Minimum Acceptable Rate of Return  12-13
4.3. Return on Investment  12-13
4.4. Return on Capital Employed  12-13
4.5. Cost-Benefit Analysis  12-13

Table of Contents xiii

4.6. Cost-Effectiveness Analysis  12-13
4.7. Break-Even Analysis  12-13
4.8. Business Case  12-13
4.9. Multiple Attribute Evaluation  12-14
4.10. Optimization Analysis  12-14

5. Practical Considerations 12-14
5.1. The “Good Enough” Principle  12-14
5.2. Friction-Free Economy  12-15
5.3. Ecosystems  12-15
5.4. Offshoring and Outsourcing  12-15

Matrix of Topics vs. Reference Material 12-16

Chapter 13: Computing Foundations 13-1
1. Problem Solving Techniques 13-3
1.1. Definition of Problem Solving  13-3
1.2. Formulating the Real Problem  13-3
1.3. Analyze the Problem  13-3
1.4. Design a Solution Search Strategy  13-3
1.5. Problem Solving Using Programs  13-3

2. Abstraction 13-4
2.1. Levels of Abstraction  13-4
2.2. Encapsulation  13-4
2.3. Hierarchy  13-4
2.4. Alternate Abstractions  13-5

3. Programming Fundamentals 13-5
3.1. The Programming Process  13-5
3.2. Programming Paradigms  13-5

4. Programming Language Basics 13-6
4.1. Programming Language Overview  13-6
4.2. Syntax and Semantics of Programming Languages  13-6
4.3. Low-Level Programming Languages  13-7
4.4. High-Level Programming Languages  13-7
4.5. Declarative vs. Imperative Programming Languages  13-7

5. Debugging Tools and Techniques 13-8
5.1. Types of Errors  13-8
5.2. Debugging Techniques  13-8
5.3. Debugging Tools  13-8

6. Data Structure and Representation 13-9
6.1. Data Structure Overview  13-9
6.2. Types of Data Structure  13-9
6.3. Operations on Data Structures  13-9

7. Algorithms and Complexity 13-10
7.1. Overview of Algorithms  13-10
7.2. Attributes of Algorithms  13-10
7.3. Algorithmic Analysis  13-10
7.4. Algorithmic Design Strategies  13-11
7.5. Algorithmic Analysis Strategies  13-11

8. Basic Concept of a System 13-11
8.1. Emergent System Properties  13-11

xiv SWEBOK® Guide V3.0

8.2. Systems Engineering  13-12
8.3. Overview of a Computer System  13-12

9. Computer Organization 13-13
9.1. Computer Organization Overview  13-13
9.2. Digital Systems  13-13
9.3. Digital Logic  13-13
9.4. Computer Expression of Data  13-13
9.5. The Central Processing Unit (CPU)  13-14
9.6. Memory System Organization  13-14
9.7. Input and Output (I/O)  13-14

10. Compiler Basics 13-15
10.1. Compiler/Interpreter Overview  13-15
10.2. Interpretation and Compilation  13-15
10.3. The Compilation Process  13-15

11. Operating Systems Basics 13-16
11.1. Operating Systems Overview  13-16
11.2. Tasks of an Operating System  13-16
11.3. Operating System Abstractions  13-17
11.4. Operating Systems Classification  13-17

12. Database Basics and Data Management 13-17
12.1. Entity and Schema  13-18
12.2. Database Management Systems (DBMS)  13-18
12.3. Database Query Language  13-18
12.4. Tasks of DBMS Packages  13-18
12.5. Data Management  13-19
12.6. Data Mining  13-19

13. Network Communication Basics 13-19
13.1. Types of Network  13-19
13.2. Basic Network Components  13-19
13.3. Networking Protocols and Standards  13-20
13.4. The Internet   13-20
13.5. Internet of Things  13-20
13.6. Virtual Private Network (VPN)   13-21

14. Parallel and Distributed Computing 13-21
14.1. Parallel and Distributed Computing Overview  13-21
14.2. Difference between Parallel and Distributed Computing  13-21
14.3. Parallel and Distributed Computing Models  13-21
14.4. Main Issues in Distributed Computing  13-22

15. Basic User Human Factors 13-22
15.1. Input and Output  13-22
15.2. Error Messages  13-23
15.3. Software Robustness  13-23

16. Basic Developer Human Factors 13-23
16.1. Structure   13-24
16.2. Comments  13-24

17. Secure Software Development and Maintenance 13-24
17.1. Software Requirements Security  13-24
17.2. Software Design Security  13-25
17.3. Software Construction Security  13-25
17.4. Software Testing Security  13-25

Table of Contents xv

17.5. Build Security into Software Engineering Process  13-25
17.6. Software Security Guidelines  13-25

Matrix of Topics vs. Reference Material 13-27

Chapter 14: Mathematical Foundations 14-1
1. Set, Relations, Functions 14-1
1.1. Set Operations  14-2
1.2. Properties of Set  14-3
1.3. Relation and Function  14-4

2. Basic Logic 14-5
2.1. Propositional Logic  14-5
2.2. Predicate Logic   14-5

3. Proof Techniques 14-6
3.1. Methods of Proving Theorems  14-6

4. Basics of Counting 14-7
5. Graphs and Trees 14-8
5.1. Graphs   14-8
5.2. Trees   14-10

6. Discrete Probability 14-13
7. Finite State Machines 14-14
8. Grammars 14-15
8.1. Language Recognition   14-16

9. Numerical Precision, Accuracy, and Errors 14-17
10. Number Theory 14-18
10.1. Divisibility   14-18
10.2. Prime Number, GCD   14-19

11. Algebraic Structures 14-19
11.1. Group  14-19
11.2. Rings   14-20

Matrix of Topics vs. Reference Material 14-21

Chapter 15: Engineering Foundations 15-1
1. Empirical Methods and Experimental Techniques 15-1
1.1. Designed Experiment  15-1
1.2. Observational Study  15-2
1.3. Retrospective Study  15-2

2. Statistical Analysis 15-2
2.1. Unit of Analysis (Sampling Units), Population, and Sample  15-2
2.2. Concepts of Correlation and Regression   15-5

3. Measurement 15-5
3.1. Levels (Scales) of Measurement   15-6
3.2. Direct and Derived Measures   15-7
3.3. Reliability and Validity  15-8
3.4. Assessing Reliability   15-8

4. Engineering Design 15-8
4.1. Engineering Design in Engineering Education  15-8
4.2. Design as a Problem Solving Activity   15-9
4.3. Steps Involved in Engineering Design  15-9

5. Modeling, Simulation, and Prototyping 15-10
5.1. Modeling  15-10

xvi SWEBOK® Guide V3.0

5.2. Simulation   15-11
5.3. Prototyping  15-11

6. Standards 15-12
7. Root Cause Analysis 15-12
7.1. Techniques for Conducting Root Cause Analysis  15-13

Matrix of Topics vs. Reference Material 15-14

Appendix A: Knowledge Area Description Specifications A-1

Appendix B: IEEE and ISO/IEC Standards Supporting the Software Engineering
Body of Knowledge (SWEBOK) B-1

Appendix C: Consolidated Reference List C-1

xvii

FOREWORD

Every profession is based on a body of knowl-
edge, although that knowledge is not always
defined in a concise manner. In cases where no
formality exists, the body of knowledge is “gen-
erally recognized” by practitioners and may
be codified in a variety of ways for a variety of
different uses. But in many cases, a guide to a
body of knowledge is formally documented, usu-
ally in a form that permits it to be used for such
purposes as development and accreditation of
academic and training programs, certification of
specialists, or professional licensing. Generally,
a professional society or similar body maintains
stewardship of the formal definition of a body of
knowledge.

During the past forty-five years, software engi-
neering has evolved from a conference catch-
phrase into an engineering profession, character-
ized by 1) a professional society, 2) standards that
specify generally accepted professional practices,
3) a code of ethics, 4) conference proceedings,
5) textbooks, 6) curriculum guidelines and cur-
ricula, 7) accreditation criteria and accredited
degree programs, 8) certification and licensing,
and 9) this Guide to the Body of Knowledge.

In this Guide to the Software Engineering Body 
of Knowledge, the IEEE Computer Society pres-
ents a revised and updated version of the body of
knowledge formerly documented as SWEBOK
2004; this revised and updated version is denoted
SWEBOK V3. This work is in partial fulfillment
of the Society’s responsibility to promote the
advancement of both theory and practice for the
profession of software engineering.

It should be noted that this Guide does not
present the entire the body of knowledge for soft-
ware engineering but rather serves as a guide to
the body of knowledge that has been developed
over more than four decades. The software engi-
neering body of knowledge is constantly evolv-
ing. Nevertheless, this Guide constitutes a valu-
able characterization of the software engineering
profession.

In 1958, John Tukey, the world-renowned stat-
istician, coined the term software. The term soft-
ware engineering was used in the title of a NATO
conference held in Germany in 1968. The IEEE
Computer Society first published its Transactions 
on Software Engineering in 1972, and a commit-
tee for developing software engineering stan-
dards was established within the IEEE Computer
Society in 1976.

In 1990, planning was begun for an interna-
tional standard to provide an overall view of soft-
ware engineering. The standard was completed in
1995 with designation ISO/IEC 12207 and given
the title of Standard for Software Life Cycle Pro-
cesses. The IEEE version of 12207 was published
in 1996 and provided a major foundation for the
body of knowledge captured in SWEBOK 2004.
The current version of 12207 is designated as
ISO/IEC 12207:2008 and IEEE 12207-2008; it
provides the basis for this SWEBOK V3.

This Guide to the Software Engineering Body 
of Knowledge is presented to you, the reader, as
a mechanism for acquiring the knowledge you
need in your lifelong career development as a
software engineering professional.

Dick Fairley, Chair
Software and Systems Engineering Committee

IEEE Computer Society

Don Shafer, Vice President
Professional Activities Board

IEEE Computer Society

xix

FOREWORD TO THE 2004 EDITION

In this Guide, the IEEE Computer Society estab-
lishes for the first time a baseline for the body
of knowledge for the field of software engineer-
ing, and the work partially fulfills the Society’s
responsibility to promote the advancement of
both theory and practice in this field. In so doing,
the Society has been guided by the experience
of disciplines with longer histories but was not
bound either by their problems or their solutions.

It should be noted that the Guide does not pur-
port to define the body of knowledge but rather to
serve as a compendium and guide to the body of
knowledge that has been developing and evolv-
ing over the past four decades. Furthermore,
this body of knowledge is not static. The Guide
must, necessarily, develop and evolve as software
engineering matures. It nevertheless constitutes
a valuable element of the software engineering
infrastructure.

In 1958, John Tukey, the world-renowned stat-
istician, coined the term software. The term soft-
ware engineering was used in the title of a NATO
conference held in Germany in 1968. The IEEE
Computer Society first published its Transactions 
on Software Engineering in 1972. The committee
established within the IEEE Computer Society
for developing software engineering standards
was founded in 1976.

The first holistic view of software engineer-
ing to emerge from the IEEE Computer Society
resulted from an effort led by Fletcher Buckley
to develop IEEE standard 730 for software qual-
ity assurance, which was completed in 1979.
The purpose of IEEE Std. 730 was to provide
uniform, minimum acceptable requirements for
preparation and content of software quality assur-
ance plans. This standard was influential in com-
pleting the developing standards in the following
topics: configuration management, software test-
ing, software requirements, software design, and
software verification and validation.

During the period 1981–1985, the IEEE Com-
puter Society held a series of workshops con-
cerning the application of software engineering

standards. These workshops involved practitio-
ners sharing their experiences with existing stan-
dards. The workshops also held sessions on plan-
ning for future standards, including one involving
measures and metrics for software engineer-
ing products and processes. The planning also
resulted in IEEE Std. 1002, Taxonomy of Software 
Engineering Standards (1986), which provided a
new, holistic view of software engineering. The
standard describes the form and content of a soft-
ware engineering standards taxonomy. It explains
the various types of software engineering stan-
dards, their functional and external relationships,
and the role of various functions participating in
the software life cycle.

In 1990, planning for an international stan-
dard with an overall view was begun. The plan-
ning focused on reconciling the software process
views from IEEE Std. 1074 and the revised US
DoD standard 2167A. The revision was eventu-
ally published as DoD Std. 498. The international
standard was completed in 1995 with designa-
tion, ISO/IEC 12207, and given the title of Stan-
dard for Software Life Cycle Processes. Std. ISO/
IEC 12207 provided a major point of departure
for the body of knowledge captured in this book.

It was the IEEE Computer Society Board of
Governors’ approval of the motion put forward
in May 1993 by Fletcher Buckley which resulted
in the writing of this book. The Association for
Computing Machinery (ACM) Council approved
a related motion in August 1993. The two motions
led to a joint committee under the leadership of
Mario Barbacci and Stuart Zweben who served as
cochairs. The mission statement of the joint com-
mittee was “To establish the appropriate sets(s)
of criteria and norms for professional practice of
software engineering upon which industrial deci-
sions, professional certification, and educational
curricula can be based.” The steering committee
organized task forces in the following areas:

1. Define Required Body of Knowledge and
Recommended Practices.

xx SWEBOK® Guide V3.0

2. Define Ethics and Professional Standards.
3. Define Educational Curricula for undergradu-

ate, graduate, and continuing education.

This book supplies the first component: required
body of knowledge and recommend practices.

The code of ethics and professional practice
for software engineering was completed in 1998
and approved by both the ACM Council and the
IEEE Computer Society Board of Governors. It
has been adopted by numerous corporations and
other organizations and is included in several
recent textbooks.

The educational curriculum for undergraduates
is being completed by a joint effort of the IEEE
Computer Society and the ACM and is expected
to be completed in 2004.

Every profession is based on a body of knowl-
edge and recommended practices, although they
are not always defined in a precise manner. In
many cases, these are formally documented, usu-
ally in a form that permits them to be used for
such purposes as accreditation of academic pro-
grams, development of education and training
programs, certification of specialists, or profes-
sional licensing. Generally, a professional society
or related body maintains custody of such a for-
mal definition. In cases where no such formality
exists, the body of knowledge and recommended
practices are “generally recognized” by practitio-
ners and may be codified in a variety of ways for
different uses.

It is hoped that readers will find this book use-
ful in guiding them toward the knowledge and
resources they need in their lifelong career devel-
opment as software engineering professionals.

The book is dedicated to Fletcher Buckley in
recognition of his commitment to promoting soft-
ware engineering as a professional discipline and
his excellence as a software engineering practi-
tioner in radar applications.

Leonard L. Tripp, IEEE Fellow 2003
Chair, Professional Practices Committee, IEEE 

Computer Society (2001–2003)

Chair, Joint IEEE Computer Society and ACM 
Steering Committee for the Establishment of  

Software Engineering as a Profession (1998–1999)

Chair, Software Engineering Standards  Committee, 
IEEE Computer Society (1992–1998)

xxi

EDITORS

Pierre Bourque, Department of Software and IT Engineering, École de technologie supérieure (ÉTS),
Canada, pierre.bourque@etsmtl.ca

Richard E. (Dick) Fairley, Software and Systems Engineering Associates (S2EA), USA,
dickfairley@gmail.com

COEDITORS

Alain Abran, Department of Software and IT Engineering, École de technologie supérieure (ÉTS),
Canada, alain.abran@etsmtl.ca

Juan Garbajosa, Universidad Politecnica de Madrid (Technical University of Madrid, UPM), Spain,
juan.garbajosa@upm.es

Gargi Keeni, Tata Consultancy Services, India, gargi@ieee.org
Beijun Shen, School of Software, Shanghai Jiao Tong University, China, bjshen@sjtu.edu.cn

CONTRIBUTING EDITORS

The following persons contributed to editing the SWEBOK Guide V3:
Don Shafer

Linda Shafer
Mary Jane Willshire

Kate Guillemette

CHANGE CONTROL BOARD

The following persons served on the SWEBOK Guide V3 Change Control Board:
Pierre Bourque

Richard E. (Dick) Fairley, Chair
Dennis Frailey
Michael Gayle

Thomas Hilburn
Paul Joannou

James W. Moore
Don Shafer

Steve Tockey

xxiii

KNOWLEDGE AREA EDITORS

Software Requirements
Gerald Kotonya, School of Computing and Communications, Lancaster University, UK,

gerald@comp.lancs.ac.uk
Peter Sawyer, School of Computing and Communications, Lancaster University, UK,

sawyer@comp.lancs.ac.uk

Software Design
Yanchun Sun, School of Electronics Engineering and Computer Science, Peking University, China,

sunyc@pku.edu.cn

Software Construction
Xin Peng, Software School, Fudan University, China, pengxin@fudan.edu.cn

Software Testing
Antonia Bertolino, ISTI-CNR, Italy, antonia.bertolino@isti.cnr.it

Eda Marchetti, ISTI-CNR, Italy, eda.marchetti@isti.cnr.it

Software Maintenance
Alain April, École de technologie supérieure (ÉTS), Canada, alain.april@etsmtl.ca

Mira Kajko-Mattsson, School of Information and Communication Technology,
KTH Royal Institute of Technology, mekm2@kth.se

Software Configuration Management
Roger Champagne, École de technologie supérieure (ÉTS), Canada, roger.champagne@etsmtl.ca

Alain April, École de technologie supérieure (ÉTS), Canada, alain.april@etsmtl.ca

Software Engineering Management
James McDonald, Department of Computer Science and Software Engineering,

Monmouth University, USA, jamesmc@monmouth.edu

Software Engineering Process
Annette Reilly, Lockheed Martin Information Systems & Global Solutions, USA,

annette.reilly@computer.org
Richard E. Fairley, Software and Systems Engineering Associates (S2EA), USA,

dickfairley@gmail.com

Software Engineering Models and Methods
Michael F. Siok, Lockheed Martin Aeronautics Company, USA, mike.f.siok@lmco.com

Software Quality
J. David Blaine, USA, jdavidblaine@gmail.com

Durba Biswas, Tata Consultancy Services, India, durba.biswas@tcs.com

xxiv SWEBOK® Guide V3.0

Software Engineering Professional Practice
Aura Sheffield, USA, arsheff@acm.org

Hengming Zou, Shanghai Jiao Tong University, China, zou@sjtu.edu.cn

Software Engineering Economics
Christof Ebert, Vector Consulting Services, Germany, christof.ebert@vector.com

Computing Foundations
Hengming Zou, Shanghai Jiao Tong University, China, zou@sjtu.edu.cn

Mathematical Foundations
Nabendu Chaki, University of Calcutta, India, nabendu@ieee.org

Engineering Foundations
Amitava Bandyopadhayay, Indian Statistical Institute, India, bamitava@isical.ac.in
Mary Jane Willshire, Software and Systems Engineering Associates (S2EA), USA,

mj.fairley@gmail.com

Appendix B: IEEE and ISO/IEC Standards Supporting SWEBOK
James W. Moore, USA, James.W.Moore@ieee.org

xxv

KNOWLEDGE AREA EDITORS
OF PREVIOUS SWEBOK VERSIONS

The following persons served as Associate Editors for either the Trial version published in 2001 or for
the 2004 version.

Software Requirements
Peter Sawyer, Computing Department, Lancaster University, UK

Gerald Kotonya, Computing Department, Lancaster University, UK

Software Design
Guy Tremblay, Département d’informatique, UQAM, Canada

Software Construction
Steve McConnell, Construx Software, USA

Terry Bollinger, the MITRE Corporation, USA
Philippe Gabrini, Département d’informatique, UQAM, Canada

Louis Martin, Département d’informatique, UQAM, Canada

Software Testing
Antonia Bertolino, ISTI-CNR, Italy

Eda Marchetti, ISTI-CNR, Italy

Software Maintenance
Thomas M. Pigoski, Techsoft Inc., USA

Alain April, École de technologie supérieure, Canada

Software Configuration Management
John A. Scott, Lawrence Livermore National Laboratory, USA

David Nisse, USA

Software Engineering Management
Dennis Frailey, Raytheon Company, USA

Stephen G. MacDonell, Auckland University of Technology, New Zealand
Andrew R. Gray, University of Otago, New Zealand

Software Engineering Process
Khaled El Emam, served while at the Canadian National Research Council, Canada

Software Engineering Tools and Methods
David Carrington, School of Information Technology and Electrical Engineering,

The University of Queensland, Australia

xxvi SWEBOK® Guide V3.0

Software Quality
Alain April, École de technologie supérieure, Canada

Dolores Wallace, retired from the National Institute of Standards and Technology, USA
Larry Reeker, NIST, USA

References Editor
Marc Bouisset, Département d’informatique, UQAM

xxvii

REVIEW TEAM

The people listed below participated in the public review process of SWEBOK Guide V3. Member-
ship of the IEEE Computer Society was not a requirement to participate in this review process, and
membership information was not requested from reviewers. Over 1500 individual comments were
collected and duly adjudicated.

Carlos C. Amaro, USA
Mark Ardis, USA
Mora-Soto Arturo, Spain
Ohad Barzilay, Israel
Gianni Basaglia, Italy
Denis J. Bergquist, USA
Alexander Bogush, UK
Christopher Bohn, USA
Steve Bollweg, USA
Reto Bonderer, Switzerland
Alexei Botchkarev, Canada
Pieter Botman, Canada
Robert Bragner, USA
Kevin Brune, USA
Ogihara Bryan, USA
Luigi Buglione, Italy
Rick Cagle, USA
Barbara Canody, USA
Rogerio A. Carvalho, Brazil
Daniel Cerys, USA
Philippe Cohard, France
Ricardo Colomo-Palacios, Spain
Mauricio Coria, Argentina
Marek Cruz, UK
Stephen Danckert, USA
Bipul K. Das, Canada
James D. Davidson, USA
Jon Dehn, USA
Lincoln P. Djang, USA
Andreas Doblander, Austria
Yi-Ben Doo, USA
Scott J. Dougherty, UK
Regina DuBord, USA
Fedor Dzerzhinskiy, Russia
Ann M. Eblen, Australia
David M. Endres, USA
Marilyn Escue, USA
Varuna Eswer, India

Istvan Fay, Hungary
Jose L. Fernandez-Sanchez, Spain
Dennis J. Frailey, USA
Tihana Galinac Grbac, Croatia
Colin Garlick, New Zealand
Garth J.G. Glynn, UK
Jill Gostin, USA
Christiane Gresse von Wangenheim, Brazil
Thomas Gust, USA
H.N. Mok, Singapore
Jon D. Hagar, USA
Anees Ahmed Haidary, India
Duncan Hall, New Zealand
James Hart, USA
Jens H.J. Heidrich, Germany
Rich Hilliard, USA
Bob Hillier, Canada
Norman M. Hines, USA
Dave Hirst, USA
Theresa L. Hunt, USA
Kenneth Ingham, USA
Masahiko Ishikawa, Japan
Michael A. Jablonski, USA
G. Jagadeesh, India
Sebastian Justicia, Spain
Umut Kahramankaptan, Belgium
Pankaj Kamthan, Canada
Perry Kapadia, USA
Tarig A. Khalid, Sudan
Michael K.A. Klaes, Germany
Maged Koshty, Egypt
Claude C. Laporte, Canada
Dong Li, China
Ben Linders, Netherlands
Claire Lohr, USA
Vladimir Mandic, Serbia
Matt Mansell, New Zealand
John Marien, USA

xxviii SWEBOK® Guide V3.0

Stephen P. Masticola, USA
Nancy Mead, USA
Fuensanta Medina-Dominguez, Spain
Silvia Judith Meles, Argentina
Oscar A. Mondragon, Mexico
David W. Mutschler, USA
Maria Nelson, Brazil
John Noblin, USA
Bryan G. Ogihara, USA
Takehisa Okazaki, Japan
Hanna Oktaba, Mexico
Chin Hwee Ong, Hong Kong
Venkateswar Oruganti, India
Birgit Penzenstadler, Germany
Larry Peters, USA
S.K. Pillai, India
Vaclav Rajlich, USA
Kiron Rao, India
Luis Reyes, USA
Hassan Reza, USA
Steve Roach, USA
Teresa L. Roberts, USA
Dennis Robi, USA
Warren E. Robinson, USA
Jorge L. Rodriguez, USA
Alberto C. Sampaio, Portugal
Ed Samuels, USA
Maria-Isabel Sanchez-Segura, Spain
Vineet Sawant, USA
R. Schaaf, USA
James C. Schatzman, USA
Oscar A. Schivo, Argentina
Florian Schneider, Germany

Thom Schoeffling, USA
Reinhard Schrage, Germany
Neetu Sethia, India
Cindy C. Shelton, USA
Alan Shepherd, Germany
Katsutoshi Shintani, Japan
Erik Shreve, USA
Jaguaraci Silva, Brazil
M. Somasundaram, India
Peraphon Sophatsathit, Thailand
John Standen, UK
Joyce Statz, USA
Perdita P. Stevens, UK
David Struble, USA
Ohno Susumu, Japan
Urcun Tanik, USA
Talin Tasciyan, USA
J. Barrie Thompson, UK
Steve Tockey, USA
Miguel Eduardo Torres Moreno, Colombia
Dawid Trawczynski, USA
Adam Trendowicz, Germany
Norio Ueno, Japan
Cenk Uyan, Turkey
Chandra Sekar Veerappan, Singapore
Oruganti Venkateswar, India
Jochen Vogt, Germany
Hironori Washizaki, Japan
Ulf Westermann, Germany
Don Wilson, USA
Aharon Yadin, Israel
Hong Zhou, UK

xxix

ACKNOWLEDGEMENTS

Funding for the development of SWEBOK Guide
V3 has been provided by the IEEE Computer
Society. The editors and coeditors appreciate the
important work performed by the KA editors and
the contributing editors as well as by the the mem-
bers of the Change Control Board. The editorial
team must also acknowledge the indispensable
contribution of reviewers.

The editorial team also wishes to thank the fol-
lowing people who contributed to the project in

various ways: Pieter Botman, Evan Butterfield,
Carine Chauny, Pierce Gibbs, Diane Girard, John
Keppler, Dorian McClenahan, Kenza Meridji, Sam-
uel Redwine, Annette Reilly, and Pam Thompson.

Finally, there are surely other people who have
contributed to this Guide, either directly or indi-
rectly, whose names we have inadvertently omit-
ted. To those people, we offer our tacit appre-
ciation and apologize for having omitted explicit
recognition.

IEEE COMPUTER SOCIETY PRESIDENTS

Dejan Milojicic, 2014 President
David Alan Grier, 2013 President

Thomas Conte, 2015 President

PROFESSIONAL ACTIVITIES BOARD,
2013 MEMBERSHIP

Donald F. Shafer, Chair
Pieter Botman, CSDP

Pierre Bourque
Richard Fairley, CSDP

Dennis Frailey
S. Michael Gayle

Phillip Laplante, CSDP
Jim Moore, CSDP

Linda Shafer, CSDP
Steve Tockey, CSDP

Charlene “Chuck” Walrad

xxx SWEBOK® Guide V3.0

MOTIONS REGARDING THE APPROVAL
OF SWEBOK GUIDE V3.0

The SWEBOK Guide V3.0 was submitted to ballot by verified IEEE Computer Society members in
November 2013 with the following question: “Do you approve this manuscript of the SWEBOK Guide
V3.0 to move forward to formatting and publication?”

The results of this ballot were 259 Yes votes and 5 No votes.

The following motion was unanimously adopted by the Professional Activities Board of the IEEE Com-
puter Society in December 2013:

The Professional Activities Board of the IEEE Computer Society finds that the Guide to the Soft-
ware Engineering Body of Knowledge Version 3.0 has been successfully completed; and endorses 
the Guide to the Software Engineering Body of Knowledge Version 3.0 and commends it to the 
IEEE Computer Society Board of Governors for their approval.

The following motion was adopted by the IEEE Computer Society Board of Governors in December 2013:

MOVED, that the Board of Governors of the IEEE Computer Society approves Version 3.0 of the 
Guide to the Software Engineering Body of Knowledge and authorizes the Chair of the Profes-
sional Activities Board to proceed with printing.

MOTIONS REGARDING THE APPROVAL
OF SWEBOK GUIDE 2004 VERSION

The following motion was unanimously adopted by the Industrial Advisory Board of the SWEBOK Guide
project in February 2004:

The Industrial Advisory Board finds that the Software Engineering Body of Knowledge project ini-
tiated in 1998 has been successfully completed; and endorses the 2004 Version of the Guide to the
SWEBOK and commends it to the IEEE Computer Society Board of Governors for their approval.

The following motion was adopted by the IEEE Computer Society Board of Governors in February 2004:

MOVED, that the Board of Governors of the IEEE Computer Society approves the 2004 Edition of 
the Guide to the Software Engineering Body of Knowledge and authorizes the Chair of the Profes-
sional Practices Committee to proceed with printing.

Please also note that the 2004 edition of the Guide to the Software Engineering Body of Knowledge 
was submitted by the IEEE Computer Society to ISO/IEC without any change and was recognized as
Technical Report ISO/IEC TR 19759:2005.

xxxi

INTRODUCTION TO THE GUIDE

KA Knowledge Area

SWEBOK Software Engineering Body of
Knowledge

Publication of the 2004 version of this Guide to the 
Software Engineering Body of Knowledge (SWE-
BOK 2004) was a major milestone in establishing
software engineering as a recognized engineering
discipline. The goal in developing this update to
SWEBOK is to improve the currency, readability,
consistency, and usability of the Guide.

All knowledge areas (KAs) have been updated
to reflect changes in software engineering since
publication of SWEBOK 2004. Four new foun-
dation KAs and a Software Engineering Profes-
sional Practices KA have been added. The Soft-
ware Engineering Tools and Methods KA has
been revised as Software Engineering Models
and Methods. Software engineering tools is now
a topic in each of the KAs. Three appendices pro-
vide the specifications for the KA description, an
annotated set of relevant standards for each KA,
and a listing of the references cited in the Guide.

This Guide, written under the auspices of the
Professional Activities Board of the IEEE Com-
puter Society, represents a next step in the evolu-
tion of the software engineering profession.

WHAT IS SOFTWARE ENGINEERING?

ISO/IEC/IEEE Systems and Software Engineering
Vocabulary (SEVOCAB) defines software engi-
neering as “the application of a systematic, disci-
plined, quantifiable approach to the development,
operation, and maintenance of software; that is, the
application of engineering to software).”1

WHAT ARE THE OBJECTIVES OF THE
SWEBOK GUIDE?

The Guide should not be confused with the Body
of Knowledge itself, which exists in the published

1 See www.computer.org/sevocab.

literature. The purpose of the Guide is to describe
the portion of the Body of Knowledge that is gen-
erally accepted, to organize that portion, and to
provide topical access to it.

The Guide  to  the Software Engineering Body 
of Knowledge (SWEBOK Guide) was established
with the following five objectives:

1. To promote a consistent view of software
engineering worldwide

2. To specify the scope of, and clarify the place
of software engineering with respect to other
disciplines such as computer science, proj-
ect management, computer engineering, and
mathematics

3. To characterize the contents of the software
engineering discipline

4. To provide a topical access to the Software
Engineering Body of Knowledge

5. To provide a foundation for curriculum
development and for individual certification
and licensing material

The first of these objectives, a consistent world-
wide view of software engineering, was supported
by a development process which engaged approxi-
mately 150 reviewers from 33 countries. More
information regarding the development process can
be found on the website (www.swebok.org). Pro-
fessional and learned societies and public agencies
involved in software engineering were contacted,
made aware of this project to update SWEBOK, and
invited to participate in the review process. KA edi-
tors were recruited from North America, the Pacific
Rim, and Europe. Presentations on the project were
made at various international venues.

The second of the objectives, the desire to
specify the scope of software engineering, moti-
vates the fundamental organization of the Guide.
The material that is recognized as being within
this discipline is organized into the fifteen KAs
listed in Table I.1. Each of these KAs is treated in
a chapter in this Guide.

http://www.computer.org/sevocab

xxxii SWEBOK® Guide V3.0

Table I.1. The 15 SWEBOK KAs
Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance
Software Configuration Management
Software Engineering Management
Software Engineering Process
Software Engineering Models and Methods
Software Quality
Software Engineering Professional Practice
Software Engineering Economics
Computing Foundations
Mathematical Foundations
Engineering Foundations

In specifying scope, it is also important to iden-
tify the disciplines that intersect with software
engineering. To this end, SWEBOK V3 also rec-
ognizes seven related disciplines, listed in Table
I.2. Software engineers should, of course, have
knowledge of material from these disciplines
(and the KA descriptions in this Guide may make
reference to them). It is not, however, an objec-
tive of the SWEBOK Guide to characterize the
knowledge of the related disciplines.

Table I.2. Related Disciplines
Computer Engineering
Computer Science
General Management
Mathematics
Project Management
Quality Management
Systems Engineering

The relevant elements of computer science
and mathematics are presented in the Computing
Foundations and Mathematical Foundations KAs
of the Guide (Chapters 13 and 14).

HIERARCHICAL ORGANIZATION

The organization of the KA chapters supports the
third of the project’s objectives—a characteriza-
tion of the contents of software engineering. The
detailed specifications provided by the project’s
editorial team to the associate editors regarding
the contents of the KA descriptions can be found
in Appendix A.

The Guide uses a hierarchical organization to
decompose each KA into a set of topics with rec-
ognizable labels. A two (sometime three) level
breakdown provides a reasonable way to find
topics of interest. The Guide treats the selected
topics in a manner compatible with major schools
of thought and with breakdowns generally found
in industry and in software engineering literature
and standards. The breakdowns of topics do not
presume particular application domains, business
uses, management philosophies, development
methods, and so forth. The extent of each topic’s
description is only that needed to understand the
generally accepted nature of the topics and for
the reader to successfully find reference material;
the Body of Knowledge is found in the reference
materials themselves, not in the Guide.

REFERENCE MATERIAL AND MATRIX

To provide topical access to the knowledge—the
fourth of the project’s objectives—the Guide
identifies authoritative reference material for
each KA. Appendix C provides a Consolidated
Reference List for the Guide. Each KA includes
relevant references from the Consolidated Refer-
ence List and also includes a matrix relating the
reference material to the included topics.

It should be noted that the Guide does not
attempt to be comprehensive in its citations.
Much material that is both suitable and excellent
is not referenced. Material included in the Con-
solidated Reference List provides coverage of the
topics described.

DEPTH OF TREATMENT

To achieve the SWEBOK fifth objective—pro-
viding a foundation for curriculum development,

Introduction xxxiii

certification, and licensing, the criterion of gen-
erally accepted knowledge has been applied, to
be distinguished from advanced and research
knowledge (on the grounds of maturity) and from
specialized knowledge (on the grounds of gener-
ality of application).

The equivalent term generally  recognized 
comes from the Project Management Institute:
“Generally recognized means the knowledge
and practices described are applicable to most
projects most of the time, and there is consensus
about their value and usefulness.”2

However, the terms “generally accepted” or
“generally recognized” do not imply that the des-
ignated knowledge should be uniformly applied
to all software engineering endeavors—each proj-
ect’s needs determine that—but it does imply that
competent, capable software engineers should
be equipped with this knowledge for potential
application. More precisely, generally accepted
knowledge should be included in the study mate-
rial for the software engineering licensing exami-
nation that graduates would take after gaining
four years of work experience. Although this cri-
terion is specific to the US style of education and
does not necessarily apply to other countries, we
deem it useful.

STRUCTURE OF THE KA DESCRIPTIONS

The KA descriptions are structured as follows.
In the introduction, a brief definition of the KA

and an overview of its scope and of its relation-
ship with other KAs are presented.

2 A Guide to the Project Management Body of 
Knowledge, 5th ed., Project Management Institute,
2013; www.pmi.org.

The breakdown of topics in each KA consti-
tutes the core the KA description, describing
the decomposition of the KA into subareas, top-
ics, and sub-topics. For each topic or subtopic, a
short description is given, along with one or more
references.

The reference material was chosen because it is
considered to constitute the best presentation of
the knowledge relative to the topic. A matrix links
the topics to the reference material.

The last part of each KA description is the list
of recommended references and (optionally) fur-
ther readings. Relevant standards for each KA are
presented in Appendix B of the Guide.

APPENDIX A. KA DESCRIPTION
SPECIFICATIONS

Appendix A describes the specifications provided
by the editorial team to the associate editors for
the content, recommended references, format,
and style of the KA descriptions.

APPENDIX B. ALLOCATION OF STAN-
DARDS TO KAS

Appendix B is an annotated list of the relevant
standards, mostly from the IEEE and the ISO, for
each of the KAs of the SWEBOK Guide.

APPENDIX C. CONSOLIDATED
REFERENCE LIST

Appendix C contains the consolidated list of rec-
ommended references cited in the KAs (these
references are marked with an asterisk (*) in the
text).

1-1

CHAPTER 1

SOFTWARE REQUIREMENTS

ACRONYMS

CIA Confidentiality, Integrity, and
Availability

DAG Directed Acyclic Graph
FSM Functional Size Measurement

INCOSE International Council on Systems
Engineering

UML Unified Modeling Language
SysML Systems Modeling Language

INTRODUCTION

The Software Requirements knowledge area (KA)
is concerned with the elicitation, analysis, speci-
fication, and validation of software requirements
as well as the management of requirements dur-
ing the whole life cycle of the software product.
It is widely acknowledged amongst researchers
and industry practitioners that software projects
are critically vulnerable when the requirements-
related activities are poorly performed.

Software requirements express the needs and
constraints placed on a software product that
contribute to the solution of some real-world
problem.

The term “requirements engineering” is widely
used in the field to denote the systematic handling
of requirements. For reasons of consistency, the
term “engineering” will not be used in this KA
other than for software engineering per se.

For the same reason, “requirements engineer,”
a term which appears in some of the literature,
will not be used either. Instead, the term “software
engineer” or, in some specific cases, “require-
ments specialist” will be used, the latter where
the role in question is usually performed by an
individual other than a software engineer. This

does not imply, however, that a software engineer
could not perform the function.

A risk inherent in the proposed breakdown is
that a waterfall-like process may be inferred. To
guard against this, topic 2, Requirements Process,
is designed to provide a high-level overview of the
requirements process by setting out the resources
and constraints under which the process operates
and which act to configure it.

An alternate decomposition could use a prod-
uct-based structure (system requirements, soft-
ware requirements, prototypes, use cases, and
so on). The process-based breakdown reflects
the fact that the requirements process, if it is to
be successful, must be considered as a process
involving complex, tightly coupled activities
(both sequential and concurrent), rather than as a
discrete, one-off activity performed at the outset
of a software development project.

The Software Requirements KA is related
closely to the Software Design, Software Testing,
Software Maintenance, Software Configuration
Management, Software Engineering Manage-
ment, Software Engineering Process, Software
Engineering Models and Methods, and Software
Quality KAs.

BREAKDOWN OF TOPICS FOR
SOFTWARE REQUIREMENTS

The breakdown of topics for the Software
Requirements KA is shown in Figure 1.1.

1. Software Requirements Fundamentals
[1*, c4, c4s1, c10s1, c10s4] [2*, c1, c6, c12]

1.1. Definition of a Software Requirement

At its most basic, a software requirement is a
property that must be exhibited by something in

1-2 SWEBOK® Guide V3.0

order to solve some problem in the real world. It
may aim to automate part of a task for someone
to support the business processes of an organiza-
tion, to correct shortcomings of existing software,
or to control a device—to name just a few of the
many problems for which software solutions are
possible. The ways in which users, business pro-
cesses, and devices function are typically complex.
By extension, therefore, the requirements on par-
ticular software are typically a complex combina-
tion from various people at different levels of an
organization, and who are in one way or another
involved or connected with this feature from the
environment in which the software will operate.

An essential property of all software require-
ments is that they be verifiable as an individual
feature as a functional requirement or at the
system level as a nonfunctional requirement. It
may be difficult or costly to verify certain soft-
ware requirements. For example, verification
of the throughput requirement on a call center
may necessitate the development of simulation
software. Software requirements, software test-
ing, and quality personnel must ensure that the

requirements can be verified within available
resource constraints.

Requirements have other attributes in addi-
tion to behavioral properties. Common examples
include a priority rating to enable tradeoffs in
the face of finite resources and a status value to
enable project progress to be monitored. Typi-
cally, software requirements are uniquely identi-
fied so that they can be subjected to software con-
figuration management over the entire life cycle
of the feature and of the software.

1.2. Product and Process Requirements

A product requirement is a need or constraint on
the software to be developed (for example, “The
software shall verify that a student meets all pre-
requisites before he or she registers for a course”).

A process requirement is essentially a con-
straint on the development of the software (for
example, “The software shall be developed using
a RUP process”).

Some software requirements generate implicit
process requirements. The choice of verification

Figure 1.1. Breakdown of Topics for the Software Requirements KA

Software Requirements 1-3

technique is one example. Another might be the
use of particularly rigorous analysis techniques
(such as formal specification methods) to reduce
faults that can lead to inadequate reliability. Pro-
cess requirements may also be imposed directly
by the development organization, their customer,
or a third party such as a safety regulator.

1.3. Functional and Nonfunctional Requirements

Functional requirements describe the functions
that the software is to execute; for example, for-
matting some text or modulating a signal. They
are sometimes known as capabilities or features.
A functional requirement can also be described
as one for which a finite set of test steps can be
written to validate its behavior.
Nonfunctional requirements are the ones that

act to constrain the solution. Nonfunctional
requirements are sometimes known as constraints
or quality requirements. They can be further clas-
sified according to whether they are performance
requirements, maintainability requirements,
safety requirements, reliability requirements,
security requirements, interoperability require-
ments or one of many other types of software
requirements (see Models and Quality Character-
istics in the Software Quality KA).

1.4. Emergent Properties

Some requirements represent emergent proper-
ties of software—that is, requirements that can-
not be addressed by a single component but that
depend on how all the software components
interoperate. The throughput requirement for a
call center would, for example, depend on how
the telephone system, information system, and
the operators all interacted under actual operat-
ing conditions. Emergent properties are crucially
dependent on the system architecture.

1.5. Quantifiable Requirements

Software requirements should be stated as clearly
and as unambiguously as possible, and, where
appropriate, quantitatively. It is important to
avoid vague and unverifiable requirements that

depend for their interpretation on subjective
judgment (“the software shall be reliable”; “the
software shall be user-friendly”). This is par-
ticularly important for nonfunctional require-
ments. Two examples of quantified requirements
are the following: a call center’s software must
increase the center’s throughput by 20%; and a
system shall have a probability of generating a
fatal error during any hour of operation of less
than 1 * 10−8. The throughput requirement is at a
very high level and will need to be used to derive
a number of detailed requirements. The reliabil-
ity requirement will tightly constrain the system
architecture.

1.6. System Requirements and Software 
Requirements

In this topic, “system” means

an interacting combination of elements
to accomplish a defined objective. These
include hardware, software, firmware,
people, information, techniques, facilities,
services, and other support elements,

as defined by the International Council on Soft-
ware and Systems Engineering (INCOSE) [3].
System requirements are the requirements for

the system as a whole. In a system containing
software components, software requirements are
derived from system requirements.

This KA defines “user requirements” in a
restricted way, as the requirements of the sys-
tem’s customers or end users. System require-
ments, by contrast, encompass user requirements,
requirements of other stakeholders (such as regu-
latory authorities), and requirements without an
identifiable human source.

2. Requirements Process
[1*, c4s4] [2*, c1–4, c6, c22, c23]

This section introduces the software requirements
process, orienting the remaining five topics and
showing how the requirements process dovetails
with the overall software engineering process.

1-4 SWEBOK® Guide V3.0

2.1. Process Models

The objective of this topic is to provide an under-
standing that the requirements process

• is not a discrete front-end activity of the soft-
ware life cycle, but rather a process initiated
at the beginning of a project that continues to
be refined throughout the life cycle;

• identifies software requirements as configu-
ration items and manages them using the
same software configuration management
practices as other products of the software
life cycle processes;

• needs to be adapted to the organization and
project context.

In particular, the topic is concerned with how
the activities of elicitation, analysis, specifica-
tion, and validation are configured for different
types of projects and constraints. The topic also
includes activities that provide input into the
requirements process, such as marketing and fea-
sibility studies.

2.2. Process Actors

This topic introduces the roles of the people who
participate in the requirements process. This pro-
cess is fundamentally interdisciplinary, and the
requirements specialist needs to mediate between
the domain of the stakeholder and that of soft-
ware engineering. There are often many people
involved besides the requirements specialist, each
of whom has a stake in the software. The stake-
holders will vary across projects, but will always
include users/operators and customers (who need
not be the same).

Typical examples of software stakeholders
include (but are not restricted to) the following:

• Users: This group comprises those who will
operate the software. It is often a heteroge-
neous group involving people with different
roles and requirements.

• Customers: This group comprises those who
have commissioned the software or who rep-
resent the software’s target market.

• Market analysts: A mass-market product
will not have a commissioning customer, so

marketing people are often needed to estab-
lish what the market needs and to act as
proxy customers.

• Regulators: Many application domains, such
as banking and public transport, are regu-
lated. Software in these domains must com-
ply with the requirements of the regulatory
authorities.

• Software engineers: These individuals have
a legitimate interest in profiting from devel-
oping the software by, for example, reusing
components in or from other products. If,
in this scenario, a customer of a particu-
lar product has specific requirements that
compromise the potential for component
reuse, the software engineers must carefully
weigh their own stake against those of the
customer. Specific requirements, particu-
larly constraints, may have major impact on
project cost or delivery because they either
fit well or poorly with the skill set of the
engineers. Important tradeoffs among such
requirements should be identified.

It will not be possible to perfectly satisfy the
requirements of every stakeholder, and it is the
software engineer’s job to negotiate tradeoffs that
are both acceptable to the principal stakeholders
and within budgetary, technical, regulatory, and
other constraints. A prerequisite for this is that all
the stakeholders be identified, the nature of their
“stake” analyzed, and their requirements elicited.

2.3. Process Support and Management

This section introduces the project management
resources required and consumed by the require-
ments process. It establishes the context for the
first topic (Initiation and Scope Definition) of the
Software Engineering Management KA. Its prin-
cipal purpose is to make the link between the pro-
cess activities identified in 2.1 and the issues of
cost, human resources, training, and tools.

2.4. Process Quality and Improvement

This topic is concerned with the assessment of
the quality and improvement of the requirements
process. Its purpose is to emphasize the key role
the requirements process plays in terms of the

Software Requirements 1-5

cost and timeliness of a software product and of
the customer’s satisfaction with it. It will help to
orient the requirements process with quality stan-
dards and process improvement models for soft-
ware and systems. Process quality and improve-
ment is closely related to both the Software
Quality KA and Software Engineering Process
KA, comprising

• requirements process coverage by process
improvement standards and models;

• requirements process measures and
benchmarking;

• improvement planning and implementation;
• security/CIA improvement/planning and

implementation.

3. Requirements Elicitation
[1*, c4s5] [2*, c5, c6, c9]

Requirements elicitation is concerned with the
origins of software requirements and how the
software engineer can collect them. It is the first
stage in building an understanding of the problem
the software is required to solve. It is fundamen-
tally a human activity and is where the stakehold-
ers are identified and relationships established
between the development team and the customer.
It is variously termed “requirements capture,”
“requirements discovery,” and “requirements
acquisition.”

One of the fundamental principles of a good
requirements elicitation process is that of effec-
tive communication between the various stake-
holders. This communication continues through
the entire Software Development Life Cycle
(SDLC) process with different stakeholders at
different points in time. Before development
begins, requirements specialists may form the
conduit for this communication. They must medi-
ate between the domain of the software users (and
other stakeholders) and the technical world of the
software engineer. A set of internally consistent
models at different levels of abstraction facilitate
communications between software users/stake-
holders and software engineers.

A critical element of requirements elicitation is
informing the project scope. This involves provid-
ing a description of the software being specified
and its purpose and prioritizing the deliverables

to ensure the customer’s most important business
needs are satisfied first. This minimizes the risk
of requirements specialists spending time elicit-
ing requirements that are of low importance, or
those that turn out to be no longer relevant when
the software is delivered. On the other hand, the
description must be scalable and extensible to
accept further requirements not expressed in the
first formal lists and compatible with the previous
ones as contemplated in recursive methods.

3.1. Requirements Sources

Requirements have many sources in typical soft-
ware, and it is essential that all potential sources
be identified and evaluated. This topic is designed
to promote awareness of the various sources of
software requirements and of the frameworks for
managing them. The main points covered are as
follows:

• Goals. The term “goal” (sometimes called
“business concern” or “critical success fac-
tor”) refers to the overall, high-level objec-
tives of the software. Goals provide the moti-
vation for the software but are often vaguely
formulated. Software engineers need to pay
particular attention to assessing the value
(relative to priority) and cost of goals. A fea-
sibility study is a relatively low-cost way of
doing this.

• Domain knowledge. The software engineer
needs to acquire or have available knowl-
edge about the application domain. Domain
knowledge provides the background against
which all elicited requirements knowledge
must be set in order to understand it. It’s
a good practice to emulate an ontological
approach in the knowledge domain. Rela-
tions between relevant concepts within the
application domain should be identified.

• Stakeholders (see section 2.2, Process
Actors). Much software has proved unsat-
isfactory because it has stressed the require-
ments of one group of stakeholders at the
expense of others. Hence, the delivered
software is difficult to use, or subverts the
cultural or political structures of the cus-
tomer organization. The software engineer
needs to identify, represent, and manage

1-6 SWEBOK® Guide V3.0

the “viewpoints” of many different types of
stakeholders.

• Business rules. These are statements that
define or constrain some aspect of the struc-
ture or the behavior of the business itself. “A
student cannot register in next semester’s
courses if there remain some unpaid tuition
fees” would be an example of a business rule
that would be a requirement source for a uni-
versity’s course-registration software.

• The operational environment. Requirements
will be derived from the environment in
which the software will be executed. These
may be, for example, timing constraints
in real-time software or performance con-
straints in a business environment. These
must be sought out actively because they can
greatly affect software feasibility and cost as
well as restrict design choices.

• The organizational environment. Software
is often required to support a business pro-
cess, the selection of which may be condi-
tioned by the structure, culture, and internal
politics of the organization. The software
engineer needs to be sensitive to these since,
in general, new software should not force
unplanned change on the business process.

3.2. Elicitation Techniques

Once the requirements sources have been iden-
tified, the software engineer can start eliciting
requirements information from them. Note that
requirements are seldom elicited ready-made.
Rather, the software engineer elicits information
from which he or she formulates requirements.
This topic concentrates on techniques for getting
human stakeholders to articulate requirements-
relevant information. It is a very difficult task and
the software engineer needs to be sensitized to the
fact that (for example) users may have difficulty
describing their tasks, may leave important infor-
mation unstated, or may be unwilling or unable to
cooperate. It is particularly important to understand
that elicitation is not a passive activity and that,
even if cooperative and articulate stakeholders are
available, the software engineer has to work hard
to elicit the right information. Many business or
technical requirements are tacit or in feedback that

has yet to be obtained from end users. The impor-
tance of planning, verification, and validation in
requirements elicitation cannot be overstated. A
number of techniques exist for requirements elici-
tation; the principal ones are these:

• Interviews. Interviewing stakeholders is a
“traditional” means of eliciting requirements.
It is important to understand the advantages
and limitations of interviews and how they
should be conducted.

• Scenarios. Scenarios provide a valuable
means for providing context to the elicita-
tion of user requirements. They allow the
software engineer to provide a framework
for questions about user tasks by permitting
“what if” and “how is this done” questions
to be asked. The most common type of sce-
nario is the use case description. There is a
link here to topic 4.2 (Conceptual Modeling)
because scenario notations such as use case
diagrams are common in modeling software.

• Prototypes. This technique is a valuable tool
for clarifying ambiguous requirements. They
can act in a similar way to scenarios by pro-
viding users with a context within which they
can better understand what information they
need to provide. There is a wide range of
prototyping techniques—from paper mock-
ups of screen designs to beta-test versions of
software products—and a strong overlap of
their separate uses for requirements elicita-
tion and for requirements validation (see
section 6.2, Prototyping). Low fidelity proto-
types are often preferred to avoid stakeholder
“anchoring” on minor, incidental character-
istics of a higher quality prototype that can
limit design flexibility in unintended ways.

• Facilitated meetings. The purpose of these
meetings is to try to achieve a summative
effect, whereby a group of people can bring
more insight into their software require-
ments than by working individually. They
can brainstorm and refine ideas that may be
difficult to bring to the surface using inter-
views. Another advantage is that conflicting
requirements surface early on in a way that
lets the stakeholders recognize where these
occur. When it works well, this technique

Software Requirements 1-7

may result in a richer and more consistent
set of requirements than might otherwise
be achievable. However, meetings need to
be handled carefully (hence the need for a
facilitator) to prevent a situation in which
the critical abilities of the team are eroded
by group loyalty, or in which requirements
reflecting the concerns of a few outspoken
(and perhaps senior) people that are favored
to the detriment of others.

• Observation. The importance of software
context within the organizational environ-
ment has led to the adaptation of observa-
tional techniques such as ethnography for
requirements elicitation. Software engineers
learn about user tasks by immersing them-
selves in the environment and observing how
users perform their tasks by interacting with
each other and with software tools and other
resources. These techniques are relatively
expensive but also instructive because they
illustrate that many user tasks and business
processes are too subtle and complex for
their actors to describe easily.

• User stories. This technique is commonly
used in adaptive methods (see Agile Meth-
ods in the Software Engineering Models
and Methods KA) and refers to short, high-
level descriptions of required functionality
expressed in customer terms. A typical user
story has the form: “As  a  <role>,  I  want 
<goal/desire>  so  that  <benefit>.” A user
story is intended to contain just enough infor-
mation so that the developers can produce a
reasonable estimate of the effort to imple-
ment it. The aim is to avoid some of the waste
that often happens in projects where detailed
requirements are gathered early but become
invalid before the work begins. Before a user
story is implemented, an appropriate accep-
tance procedure must be written by the cus-
tomer to determine whether the goals of the
user story have been fulfilled.

• Other techniques. A range of other techniques
for supporting the elicitation of requirements
information exist and range from analyzing
competitors’ products to applying data min-
ing techniques to using sources of domain
knowledge or customer request databases.

4. Requirements Analysis
[1*, c4s1, c4s5, c10s4, c12s5]

[2*, c7, c11, c12, c17]

This topic is concerned with the process of ana-
lyzing requirements to

• detect and resolve conflicts between
requirements;

• discover the bounds of the software and how
it must interact with its organizational and
operational environment;

• elaborate system requirements to derive soft-
ware requirements.

The traditional view of requirements analysis
has been that it be reduced to conceptual model-
ing using one of a number of analysis methods,
such as the structured analysis method. While
conceptual modeling is important, we include the
classification of requirements to help inform trad-
eoffs between requirements (requirements clas-
sification) and the process of establishing these
tradeoffs (requirements negotiation).

Care must be taken to describe requirements
precisely enough to enable the requirements to
be validated, their implementation to be verified,
and their costs to be estimated.

4.1. Requirements Classification

Requirements can be classified on a number of
dimensions. Examples include the following:

• Whether the requirement is functional or
nonfunctional (see section 1.3, Functional
and Nonfunctional Requirements).

• Whether the requirement is derived from one
or more high-level requirements or an emer-
gent property (see section 1.4, Emergent
Properties), or is being imposed directly on
the software by a stakeholder or some other
source.

• Whether the requirement is on the product
or the process (see section 1.2, Product and
Process Requirements). Requirements on the
process can constrain the choice of contrac-
tor, the software engineering process to be
adopted, or the standards to be adhered to.

1-8 SWEBOK® Guide V3.0

• The requirement priority. The higher the pri-
ority, the more essential the requirement is
for meeting the overall goals of the software.
Often classified on a fixed-point scale such
as mandatory, highly desirable, desirable,
or optional, the priority often has to be bal-
anced against the cost of development and
implementation.

• The scope of the requirement. Scope refers
to the extent to which a requirement affects
the software and software components.
Some requirements, particularly certain
nonfunctional ones, have a global scope in
that their satisfaction cannot be allocated to
a discrete component. Hence, a requirement
with global scope may strongly affect the
software architecture and the design of many
components, whereas one with a narrow
scope may offer a number of design choices
and have little impact on the satisfaction of
other requirements.

• Volatility/stability. Some requirements will
change during the life cycle of the soft-
ware—and even during the development
process itself. It is useful if some estimate
of the likelihood that a requirement will
change can be made. For example, in a bank-
ing application, requirements for functions
to calculate and credit interest to customers’
accounts are likely to be more stable than a
requirement to support a particular kind of
tax-free account. The former reflects a fun-
damental feature of the banking domain (that
accounts can earn interest), while the latter
may be rendered obsolete by a change to
government legislation. Flagging potentially
volatile requirements can help the software
engineer establish a design that is more toler-
ant of change.

Other classifications may be appropriate,
depending upon the organization’s normal prac-
tice and the application itself.

There is a strong overlap between requirements
classification and requirements attributes (see
section 7.3, Requirements Attributes).

4.2. Conceptual Modeling 

The development of models of a real-world
problem is key to software requirements analy-
sis. Their purpose is to aid in understanding the
situation in which the problem occurs, as well as
depicting a solution. Hence, conceptual models
comprise models of entities from the problem
domain, configured to reflect their real-world
relationships and dependencies. This topic is
closely related to the Software Engineering Mod-
els and Methods KA.

Several kinds of models can be developed.
These include use case diagrams, data flow mod-
els, state models, goal-based models, user inter-
actions, object models, data models, and many
others. Many of these modeling notations are part
of the Unified Modeling Language  (UML). Use
case diagrams, for example, are routinely used
to depict scenarios where the boundary separates
the actors (users or systems in the external envi-
ronment) from the internal behavior where each
use case depicts a functionality of the system.

The factors that influence the choice of model-
ing notation include these:

• The nature of the problem. Some types of
software demand that certain aspects be ana-
lyzed particularly rigorously. For example,
state and parametric models, which are part
of SysML [4], are likely to be more impor-
tant for real-time software than for informa-
tion systems, while it would usually be the
opposite for object and activity models.

• The expertise of the software engineer. It is
often more productive to adopt a modeling
notation or method with which the software
engineer has experience.

• The process requirements of the customer
(see section 1.2, Product and Process
Requirements). Customers may impose their
favored notation or method or prohibit any
with which they are unfamiliar. This factor
can conflict with the previous factor.

Note that, in almost all cases, it is useful to start
by building a model of the software context. The
software context provides a connection between
the intended software and its external environment.

Software Requirements 1-9

This is crucial to understanding the software’s con-
text in its operational environment and to identify-
ing its interfaces with the environment.

This subtopic does not seek to “teach” a particu-
lar modeling style or notation but rather provides
guidance on the purpose and intent of modeling.

4.3. Architectural Design and Requirements 
Allocation

At some point, the solution architecture must
be derived. Architectural design is the point at
which the requirements process overlaps with
software or systems design and illustrates how
impossible it is to cleanly decouple the two tasks.
This topic is closely related to Software Structure
and Architecture in the Software Design KA. In
many cases, the software engineer acts as soft-
ware architect because the process of analyzing
and elaborating the requirements demands that
the architecture/design components that will be
responsible for satisfying the requirements be
identified. This is requirements allocation–the
assignment to architecture components respon-
sible for satisfying the requirements.

Allocation is important to permit detailed anal-
ysis of requirements. Hence, for example, once a
set of requirements has been allocated to a com-
ponent, the individual requirements can be further
analyzed to discover further requirements on how
the component needs to interact with other com-
ponents in order to satisfy the allocated require-
ments. In large projects, allocation stimulates a
new round of analysis for each subsystem. As an
example, requirements for a particular braking
performance for a car (braking distance, safety in
poor driving conditions, smoothness of applica-
tion, pedal pressure required, and so on) may be
allocated to the braking hardware (mechanical
and hydraulic assemblies) and an antilock braking
system (ABS). Only when a requirement for an
antilock braking system has been identified, and
the requirements allocated to it, can the capabili-
ties of the ABS, the braking hardware, and emer-
gent properties (such as car weight) be used to
identify the detailed ABS software requirements.

Architectural design is closely identified with
conceptual modeling (see section 4.2, Conceptual
Modeling).

4.4. Requirements Negotiation

Another term commonly used for this subtopic
is “conflict resolution.” This concerns resolv-
ing problems with requirements where conflicts
occur between two stakeholders requiring mutu-
ally incompatible features, between requirements
and resources, or between functional and non-
functional requirements, for example. In most
cases, it is unwise for the software engineer to
make a unilateral decision, so it becomes neces-
sary to consult with the stakeholder(s) to reach a
consensus on an appropriate tradeoff. It is often
important, for contractual reasons, that such deci-
sions be traceable back to the customer. We have
classified this as a software requirements analy-
sis topic because problems emerge as the result
of analysis. However, a strong case can also be
made for considering it a requirements validation
topic (see topic 6, Requirements Validation).

Requirements prioritization is necessary, not
only as a means to filter important requirements,
but also in order to resolve conflicts and plan for
staged deliveries, which means making complex
decisions that require detailed domain knowledge
and good estimation skills. However, it is often
difficult to get real information that can act as
a basis for such decisions. In addition, require-
ments often depend on each other, and priori-
ties are relative. In practice, software engineers
perform requirements prioritization frequently
without knowing about all the requirements.
Requirements prioritization may follow a cost-
value approach that involves an analysis from
the stakeholders defining in a scale the benefits
or the aggregated value that the implementa-
tion of the requirement brings them, versus the
penalties of not having implemented a particular
requirement. It also involves an analysis from
the software engineers estimating in a scale the
cost of implementing each requirement, relative
to other requirements. Another requirements pri-
oritization approach called the analytic hierarchy
process involves comparing all unique pairs of
requirements to determine which of the two is of
higher priority, and to what extent.

1-10 SWEBOK® Guide V3.0

4.5. Formal Analysis

Formal analysis concerns not only topic 4, but
also sections 5.3 and 6.3. This topic is also related
to Formal Methods in the Software Engineering
Models and Methods Knowledge Area.

Formal analysis has made an impact on some
application domains, particularly those of high-
integrity systems. The formal expression of
requirements requires a language with formally
defined semantics. The use of a formal analysis
for requirements expression has two benefits.
First, it enables requirements expressed in the
language to be specified precisely and unambigu-
ously, thus (in principle) avoiding the potential
for misinterpretation. Secondly, requirements can
be reasoned over, permitting desired properties
of the specified software to be proven. Formal
reasoning requires tool support to be practicable
for anything other than trivial systems, and tools
generally fall into two types: theorem provers or
model checkers. In neither case can proof be fully
automated, and the level of competence in formal
reasoning needed in order to use the tools restricts
the wider application of formal analysis.

Most formal analysis is focused on relatively
late stages of requirements analysis. It is gener-
ally counterproductive to apply formalization
until the business goals and user requirements
have come into sharp focus through means such
as those described elsewhere in section 4. How-
ever, once the requirements have stabilized and
have been elaborated to specify concrete proper-
ties of the software, it may be beneficial to for-
malize at least the critical requirements. This per-
mits static validation that the software specified
by the requirements does indeed have the proper-
ties (for example, absence of deadlock) that the
customer, users, and software engineer expect it
to have.

5. Requirements Specification
[1*, c4s2, c4s3, c12s2–5] [2*, c10]

For most engineering professions, the term “spec-
ification” refers to the assignment of numerical
values or limits to a product’s design goals. In
software engineering, “software requirements
specification” typically refers to the production of

a document that can be systematically reviewed,
evaluated, and approved. For complex systems,
particularly those involving substantial nonsoft-
ware components, as many as three different
types of documents are produced: system defini-
tion, system requirements, and software require-
ments. For simple software products, only the
third of these is required. All three documents are
described here, with the understanding that they
may be combined as appropriate. A description of
systems engineering can be found in the Related
Disciplines of Software Engineering chapter of
this Guide.

5.1. System Definition Document

This document (sometimes known as the user
requirements document or concept of operations
document) records the system requirements. It
defines the high-level system requirements from
the domain perspective. Its readership includes
representatives of the system users/customers
(marketing may play these roles for market-
driven software), so its content must be couched
in terms of the domain. The document lists the
system requirements along with background
information about the overall objectives for the
system, its target environment, and a statement of
the constraints, assumptions, and nonfunctional
requirements. It may include conceptual models
designed to illustrate the system context, usage
scenarios, and the principal domain entities, as
well as workflows.

5.2. System Requirements Specification

Developers of systems with substantial software
and nonsoftware components—a modern air-
liner, for example—often separate the descrip-
tion of system requirements from the description
of software requirements. In this view, system
requirements are specified, the software require-
ments are derived from the system requirements,
and then the requirements for the software com-
ponents are specified. Strictly speaking, system
requirements specification is a systems engineer-
ing activity and falls outside the scope of this
Guide.

Software Requirements 1-11

5.3. Software Requirements Specification

Software requirements specification establishes
the basis for agreement between customers and
contractors or suppliers (in market-driven proj-
ects, these roles may be played by the marketing
and development divisions) on what the software
product is to do as well as what it is not expected
to do.

Software requirements specification permits
a rigorous assessment of requirements before
design can begin and reduces later redesign. It
should also provide a realistic basis for estimat-
ing product costs, risks, and schedules.

Organizations can also use a software require-
ments specification document as the basis for
developing effective verification and validation
plans.

Software requirements specification provides
an informed basis for transferring a software prod-
uct to new users or software platforms. Finally, it
can provide a basis for software enhancement.

Software requirements are often written in
natural language, but, in software requirements
specification, this may be supplemented by for-
mal or semiformal descriptions. Selection of
appropriate notations permits particular require-
ments and aspects of the software architecture to
be described more precisely and concisely than
natural language. The general rule is that nota-
tions should be used that allow the requirements
to be described as precisely as possible. This is
particularly crucial for safety-critical, regulatory,
and certain other types of dependable software.
However, the choice of notation is often con-
strained by the training, skills, and preferences of
the document’s authors and readers.

A number of quality indicators have been
developed that can be used to relate the quality
of software requirements specification to other
project variables such as cost, acceptance, per-
formance, schedule, and reproducibility. Quality
indicators for individual software requirements
specification statements include imperatives,
directives, weak phrases, options, and continu-
ances. Indicators for the entire software require-
ments specification document include size, read-
ability, specification, depth, and text structure.

6. Requirements Validation
[1*, c4s6] [2*, c13, c15]

The requirements documents may be subject to val-
idation and verification procedures. The require-
ments may be validated to ensure that the software
engineer has understood the requirements; it is
also important to verify that a requirements docu-
ment conforms to company standards and that it
is understandable, consistent, and complete. In
cases where documented company standards or
terminology are inconsistent with widely accepted
standards, a mapping between the two should be
agreed on and appended to the document.

Formal notations offer the important advantage
of permitting the last two properties to be proven
(in a restricted sense, at least). Different stake-
holders, including representatives of the customer
and developer, should review the document(s).
Requirements documents are subject to the same
configuration management practices as the other
deliverables of the software life cycle processes.
When practical, the individual requirements are
also subject to configuration management, gener-
ally using a requirements management tool (see
topic 8, Software Requirements Tools).

It is normal to explicitly schedule one or more
points in the requirements process where the
requirements are validated. The aim is to pick up
any problems before resources are committed to
addressing the requirements. Requirements vali-
dation is concerned with the process of examin-
ing the requirements document to ensure that it
defines the right software (that is, the software
that the users expect).

6.1. Requirements Reviews

Perhaps the most common means of validation
is by inspection or reviews of the requirements
document(s). A group of reviewers is assigned
a brief to look for errors, mistaken assumptions,
lack of clarity, and deviation from standard prac-
tice. The composition of the group that conducts
the review is important (at least one represen-
tative of the customer should be included for a
customer-driven project, for example), and it may
help to provide guidance on what to look for in
the form of checklists.

1-12 SWEBOK® Guide V3.0

Reviews may be constituted on completion of
the system definition document, the system spec-
ification document, the software requirements
specification document, the baseline specifica-
tion for a new release, or at any other step in the
process.

6.2. Prototyping

Prototyping is commonly a means for validating
the software engineer’s interpretation of the soft-
ware requirements, as well as for eliciting new
requirements. As with elicitation, there is a range
of prototyping techniques and a number of points
in the process where prototype validation may
be appropriate. The advantage of prototypes is
that they can make it easier to interpret the soft-
ware engineer’s assumptions and, where needed,
give useful feedback on why they are wrong. For
example, the dynamic behavior of a user inter-
face can be better understood through an ani-
mated prototype than through textual description
or graphical models. The volatility of a require-
ment that is defined after prototyping has been
done is extremely low because there is agreement
between the stakeholder and the software engi-
neer—therefore, for safety-critical and crucial
features prototyping would really help. There are
also disadvantages, however. These include the
danger of users’ attention being distracted from
the core underlying functionality by cosmetic
issues or quality problems with the prototype. For
this reason, some advocate prototypes that avoid
software, such as flip-chart-based mockups. Pro-
totypes may be costly to develop. However, if
they avoid the wastage of resources caused by
trying to satisfy erroneous requirements, their
cost can be more easily justified. Early proto-
types may contain aspects of the final solution.
Prototypes may be evolutionary as opposed to
throwaway.

6.3. Model Validation

It is typically necessary to validate the quality of
the models developed during analysis. For exam-
ple, in object models, it is useful to perform a
static analysis to verify that communication paths
exist between objects that, in the stakeholders’

domain, exchange data. If formal analysis nota-
tions are used, it is possible to use formal reason-
ing to prove specification properties. This topic is
closely related to the Software Engineering Mod-
els and Methods KA.

6.4. Acceptance Tests

An essential property of a software requirement
is that it should be possible to validate that the
finished product satisfies it. Requirements that
cannot be validated are really just “wishes.” An
important task is therefore planning how to ver-
ify each requirement. In most cases, designing
acceptance tests does this for how end-users typi-
cally conduct business using the system.

Identifying and designing acceptance tests
may be difficult for nonfunctional requirements
(see section 1.3, Functional and Nonfunctional
Requirements). To be validated, they must first
be analyzed and decomposed to the point where
they can be expressed quantitatively.

Additional information can be found in Accep-
tance/Qualification/Conformance Testing in the
Software Testing KA.

7. Practical Considerations
[1*, c4s1, c4s4, c4s6, c4s7]

[2*, c3, c12, c14, c16, c18–21]

The first level of topic decomposition pre-
sented in this KA may seem to describe a linear
sequence of activities. This is a simplified view
of the process.

The requirements process spans the whole
software life cycle. Change management and the
maintenance of the requirements in a state that
accurately mirrors the software to be built, or that
has been built, are key to the success of the soft-
ware engineering process.

Not every organization has a culture of docu-
menting and managing requirements. It is com-
mon in dynamic start-up companies, driven by a
strong “product vision” and limited resources, to
view requirements documentation as unnecessary
overhead. Most often, however, as these compa-
nies expand, as their customer base grows, and
as their product starts to evolve, they discover
that they need to recover the requirements that

Software Requirements 1-13

motivated product features in order to assess the
impact of proposed changes. Hence, requirements
documentation and change management are key
to the success of any requirements process.

7.1. Iterative Nature of the Requirements 
Process

There is general pressure in the software indus-
try for ever shorter development cycles, and this
is particularly pronounced in highly competitive,
market-driven sectors. Moreover, most projects
are constrained in some way by their environment,
and many are upgrades to, or revisions of, exist-
ing software where the architecture is a given. In
practice, therefore, it is almost always impractical
to implement the requirements process as a linear,
deterministic process in which software require-
ments are elicited from the stakeholders, base-
lined, allocated, and handed over to the software
development team. It is certainly a myth that the
requirements for large software projects are ever
perfectly understood or perfectly specified.

Instead, requirements typically iterate towards
a level of quality and detail that is sufficient to
permit design and procurement decisions to be
made. In some projects, this may result in the
requirements being baselined before all their
properties are fully understood. This risks expen-
sive rework if problems emerge late in the soft-
ware engineering process. However, software
engineers are necessarily constrained by project
management plans and must therefore take steps
to ensure that the “quality” of the requirements is
as high as possible given the available resources.
They should, for example, make explicit any
assumptions that underpin the requirements as
well as any known problems.

For software products that are developed iter-
atively, a project team may baseline only those
requirements needed for the current iteration. The
requirements specialist can continue to develop
requirements for future iterations, while develop-
ers proceed with design and construction of the
current iteration. This approach provides custom-
ers with business value quickly, while minimiz-
ing the cost of rework.

In almost all cases, requirements understanding
continues to evolve as design and development

proceeds. This often leads to the revision of
requirements late in the life cycle. Perhaps the
most crucial point in understanding software
requirements is that a significant proportion of
the requirements will change. This is sometimes
due to errors in the analysis, but it is frequently an
inevitable consequence of change in the “environ-
ment”—for example, the customer’s operating
or business environment, regulatory processes
imposed by the authorities, or the market into
which software must sell. Whatever the cause, it is
important to recognize the inevitability of change
and take steps to mitigate its effects. Change has
to be managed by ensuring that proposed changes
go through a defined review and approval pro-
cess and by applying careful requirements trac-
ing, impact analysis, and software configuration
management (see the Software Configuration
Management KA). Hence, the requirements pro-
cess is not merely a front-end task in software
development, but spans the whole software life
cycle. In a typical project, the software require-
ments activities evolve over time from elicitation
to change management. A combination of top-
down analysis and design methods and bottom-
up implementation and refactoring methods that
meet in the middle could provide the best of both
worlds. However, this is difficult to achieve in
practice, as it depends heavily upon the maturity
and expertise of the software engineers.

7.2. Change Management

Change management is central to the management
of requirements. This topic describes the role of
change management, the procedures that need to
be in place, and the analysis that should be applied
to proposed changes. It has strong links to the Soft-
ware Configuration Management KA.

7.3. Requirements Attributes

Requirements should consist not only of a speci-
fication of what is required, but also of ancillary
information, which helps manage and interpret
the requirements. Requirements attributes must
be defined, recorded, and updated as the soft-
ware under development or maintenance evolves.
This should include the various classification

1-14 SWEBOK® Guide V3.0

dimensions of the requirement (see section 4.1,
Requirements Classification) and the verification
method or relevant acceptance test plan section.
It may also include additional information, such
as a summary rationale for each requirement, the
source of each requirement, and a change history.
The most important requirements attribute, how-
ever, is an identifier that allows the requirements
to be uniquely and unambiguously identified.

7.4. Requirements Tracing

Requirements tracing is concerned with recover-
ing the source of requirements and predicting the
effects of requirements. Tracing is fundamental
to performing impact analysis when requirements
change. A requirement should be traceable back-
ward to the requirements and stakeholders that
motivated it (from a software requirement back
to the system requirement(s) that it helps satisfy,
for example). Conversely, a requirement should
be traceable forward into the requirements and
design entities that satisfy it (for example, from
a system requirement into the software require-
ments that have been elaborated from it, and on
into the code modules that implement it, or the
test cases related to that code and even a given
section on the user manual which describes the
actual functionality) and into the test case that
verifies it.

The requirements tracing for a typical proj-
ect will form a complex directed acyclic graph
(DAG) (see Graphs in the Computing Founda-
tions KA) of requirements. Maintaining an up-to-
date graph or traceability matrix is an activity that
must be considered during the whole life cycle
of a product. If the traceability information is not
updated as changes in the requirements continue
to happen, the traceability information becomes
unreliable for impact analysis.

7.5. Measuring Requirements

As a practical matter, it is typically useful to have
some concept of the “volume” of the require-
ments for a particular software product. This
number is useful in evaluating the “size” of a
change in requirements, in estimating the cost of
a development or maintenance task, or simply for
use as the denominator in other measurements.
Functional size measurement (FSM) is a tech-
nique for evaluating the size of a body of func-
tional requirements.

Additional information on size measurement
and standards will be found in the Software Engi-
neering Process KA.

8. Software Requirements Tools

Tools for dealing with software requirements fall
broadly into two categories: tools for modeling
and tools for managing requirements.

Requirements management tools typically sup-
port a range of activities—including documenta-
tion, tracing, and change management—and have
had a significant impact on practice. Indeed, trac-
ing and change management are really only prac-
ticable if supported by a tool. Since requirements
management is fundamental to good require-
ments practice, many organizations have invested
in requirements management tools, although
many more manage their requirements in more
ad hoc and generally less satisfactory ways (e.g.,
using spreadsheets).

Software Requirements 1-15

MATRIX OF TOPICS VS. REFERENCE MATERIAL

So
m

m
er

vi
lle

 2
01

1
[1

*]

W
ie

ge
rs

 2
00

3
[2

*]

1. Software Requirements Fundamentals
1.1. Definition of a Software Requirement c4 c1
1.2. Product and Process Requirements c4s1 c1, c6
1.3. Functional and Nonfunctional Requirements c4s1 c12
1.4. Emergent Properties c10s1
1.5. Quantifiable Requirements c1
1.6. System Requirements and Software Requirements c10s4 c1

2. Requirements Process
2.1. Process Models c4s4 c3
2.2. Process Actors c1, c2, c4, c6
2.3. Process Support and Management c3
2.4. Process Quality and Improvement c22, c23

3. Requirements Elicitation
3.1. Requirements Sources c4s5 c5, c6,c9
3.2. Elicitation Techniques c4s5 c6

4. Requirements Analysis
4.1. Requirements Classification c4s1 c12
4.2. Conceptual Modeling c4s5 c11
4.3. Architectural Design and Requirements Allocation c10s4 c17
4.4. Requirements Negotiation c4s5 c7
4.5. Formal Analysis c12s5

5. Requirements Specification
5.1. System Definition Document c4s2 c10

5.2. System Requirements Specification
c4s2, c12s2,
c12s3, c12s4,

c12s5
c10

5.3. Software Requirements Specification c4s3 c10
6. Requirements Validation

6.1. Requirements Reviews c4s6 c15
6.2. Prototyping c4s6 c13
6.3. Model Validation c4s6 c15
6.4. Acceptance Tests c4s6 c15

1-16 SWEBOK® Guide V3.0

So
m

m
er

vi
lle

 2
01

1
[1

*]

W
ie

ge
rs

 2
00

3
[2

*]

7. Practical Considerations
7.1. Iterative Nature of the Requirements Process c4s4 c3, c16
7.2. Change Management c4s7 c18, c19
7.3. Requirements Attributes c4s1 c12, c14
7.4. Requirements Tracing c20
7.5. Measuring Requirements c4s6 c18

8. Software Requirements Tools c21

Software Requirements 1-17

FURTHER READINGS

I. Alexander and L. Beus-Dukic, Discovering 
Requirements [5].

An easily digestible and practically oriented
book on software requirements, this is perhaps
the best of current textbooks on how the various
elements of software requirements fit together. It
is full of practical advice on (for example) how
to identify the various system stakeholders and
how to evaluate alternative solutions. Its cover-
age is exemplary and serves as a useful reference
for key techniques such as use case modeling and
requirements prioritization.

C. Potts, K. Takahashi, and A. Antón, “Inquiry-
Based Requirements Analysis” [6].

This paper is an easily digested account of work
that has proven to be very influential in the devel-
opment of requirements handling. It describes
how and why the elaboration of requirements
cannot be a linear process by which the analyst
simply transcribes and reformulates requirements
elicited from the customer. The role of scenarios
is described in a way that helps to define their use
in discovering and describing requirements.

A. van Lamsweerde, Requirements 
Engineering: From System Goals to UML 
Models to Software Specifications [7].

Serves as a good introduction to requirements
engineering but its unique value is as a reference
book for the KAOS goal-oriented requirements
modelling language. Explains why goal model-
ling is useful and shows how it can integrate with
mainstream modelling techniques using UML.

O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem” [8].

This paper is a classic reference work on a key
element of requirements management. Based on
empirical studies, it sets out the reasons for and
the barriers to the effective tracing of require-
ments. It is essential reading for an understanding
of why requirements tracing is an essential ele-
ment of an effective software process.

N. Maiden and C. Ncube, “Acquiring COTS
Software Selection Requirements” [9].

This paper is significant because it recognises
explicitly that software products often integrate
third-party components. It offers insights into the
problems of selecting off-the-shelf software to
satisfy requirements: there is usually a mismatch.
This challenges some of the assumptions under-
pinning much of traditional requirements han-
dling, which tends to assume custom software.

1-18 SWEBOK® Guide V3.0

REFERENCES

[1*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[2*] K.E. Wiegers, Software Requirements, 2nd
ed., Microsoft Press, 2003.

[3] INCOSE, Systems Engineering Handbook: 
A Guide for System Life Cycle Processes 
and Activities, version 3.2.2, International
Council on Systems Engineering, 2012.

[4] S. Friedenthal, A. Moore, and R. Steiner, A 
Practical Guide to SysML: The Systems 
Modeling Language, 2nd ed., Morgan
Kaufmann, 2012.

[5] I. Alexander and L. Beus-Deukic,
Discovering Requirements: How to Specify 
Products and Services, Wiley, 2009.

[6] C. Potts, K. Takahashi, and A.I. Antón,
“Inquiry-Based Requirements Analysis,”
IEEE Software, vol. 11, no. 2, Mar. 1994,
pp. 21–32.

[7] A. van Lamsweerde, Requirements 
Engineering: From System Goals to UML 
Models to Software Specifications, Wiley,
2009.

[8] O. Gotel and C.W. Finkelstein, “An Analysis
of the Requirements Traceability Problem,”
Proc. 1st Int’l Conf. Requirements Eng.,
IEEE, 1994.

[9] N.A. Maiden and C. Ncube, “Acquiring
COTS Software Selection Requirements,”
IEEE Software, vol. 15, no. 2, Mar.–Apr.
1998, pp. 46–56.

2-1

CHAPTER 2

SOFTWARE DESIGN

ACRONYMS

ADL Architecture Description
Language

CBD Component-Based Design
CRC Class Responsibility Collaborator
DFD Data Flow Diagram
ERD Entity Relationship Diagram
IDL Interface Description Language
MVC Model View Controller
OO Object-Oriented
PDL Program Design Language

INTRODUCTION

Design is defined as both “the process of defin-
ing the architecture, components, interfaces, and
other characteristics of a system or component”
and “the result of [that] process” [1]. Viewed as a
process, software design is the software engineer-
ing life cycle activity in which software require-
ments are analyzed in order to produce a descrip-
tion of the software’s internal structure that will
serve as the basis for its construction. A software
design (the result) describes the software archi-
tecture—that is, how software is decomposed
and organized into components—and the inter-
faces between those components. It should also
describe the components at a level of detail that
enables their construction.

Software design plays an important role in
developing software: during software design,
software engineers produce various models
that form a kind of blueprint of the solution to
be implemented. We can analyze and evaluate
these models to determine whether or not they
will allow us to fulfill the various requirements.

We can also examine and evaluate alternative
solutions and tradeoffs. Finally, we can use the
resulting models to plan subsequent development
activities, such as system verification and valida-
tion, in addition to using them as inputs and as the
starting point of construction and testing.

In a standard list of software life cycle pro-
cesses, such as that in ISO/IEC/IEEE Std. 12207,
Software Life Cycle Processes [2], software design
consists of two activities that fit between software
requirements analysis and software construction:

• Software architectural design (sometimes
called high-level design): develops top-level
structure and organization of the software
and identifies the various components.

• Software detailed design: specifies each
component in sufficient detail to facilitate its
construction.

This Software Design knowledge area (KA)
does not discuss every topic that includes the
word “design.” In Tom DeMarco’s terminology
[3], the topics discussed in this KA deal mainly
with D-design (decomposition design), the goal
of which is to map software into component
pieces. However, because of its importance in
the field of software architecture, we will also
address FP-design (family pattern design), the
goal of which is to establish exploitable com-
monalities in a family of software products. This
KA does not address I-design (invention design),
which is usually performed during the software
requirements process with the goal of conceptu-
alizing and specifying software to satisfy discov-
ered needs and requirements, since this topic is
considered to be part of the requirements process
(see the Software Requirements KA).

This Software Design KA is related specifi-
cally to the Software Requirements, Software

2-2 SWEBOK® Guide V3.0

Construction, Software Engineering Manage-
ment, Software Engineering Models and Meth-
ods, Software Quality, and Computing Founda-
tions KAs.

BREAKDOWN OF TOPICS FOR
SOFTWARE DESIGN

The breakdown of topics for the Software Design
KA is shown in Figure 2.1.

1. Software Design Fundamentals

The concepts, notions, and terminology intro-
duced here form an underlying basis for under-
standing the role and scope of software design.

1.1. General Design Concepts
[4*, c1]

In the general sense, design can be viewed as a
form of problem solving. For example, the con-
cept of a wicked problem—a problem with no
definitive solution—is interesting in terms of

understanding the limits of design. A number of
other notions and concepts are also of interest in
understanding design in its general sense: goals,
constraints, alternatives, representations, and
solutions (see Problem Solving Techniques in the
Computing Foundations KA).

1.2. Context of Software Design
[4*, c3]

Software design is an important part of the soft-
ware development process. To understand the
role of software design, we must see how it fits
in the software development life cycle. Thus, it
is important to understand the major characteris-
tics of software requirements analysis, software
design, software construction, software testing,
and software maintenance.

1.3. Software Design Process
[4*, c2]

Software design is generally considered a two-
step process:

Figure 2.1. Breakdown of Topics for the Software Design KA

Software Design 2-3

• Architectural design (also referred to as high-
level design and top-level design) describes
how software is organized into components.

• Detailed design describes the desired behav-
ior of these components.

The output of these two processes is a set of
models and artifacts that record the major deci-
sions that have been taken, along with an explana-
tion of the rationale for each nontrivial decision.
By recording the rationale, long-term maintain-
ability of the software product is enhanced.

1.4. Software Design Principles
[4*] [5*, c6, c7, c21] [6*, c1, c8, c9]

A principle is “a comprehensive and fundamen-
tal law, doctrine, or assumption” [7]. Software
design principles are key notions that provide
the basis for many different software design
approaches and concepts. Software design princi-
ples include abstraction; coupling and cohesion;
decomposition and modularization; encapsula-
tion/information hiding; separation of interface
and implementation; sufficiency, completeness,
and primitiveness; and separation of concerns.

• Abstraction is “a view of an object that
focuses on the information relevant to a
particular purpose and ignores the remain-
der of the information” [1] (see Abstraction
in the Computing Foundations KA). In the
context of software design, two key abstrac-
tion mechanisms are parameterization and
specification. Abstraction by parameteriza-
tion abstracts from the details of data repre-
sentations by representing the data as named
parameters. Abstraction by specification
leads to three major kinds of abstraction:
procedural abstraction, data abstraction, and
control (iteration) abstraction.

• Coupling and Cohesion. Coupling is defined
as “a measure of the interdependence among
modules in a computer program,” whereas
cohesion is defined as “a measure of the
strength of association of the elements within
a module” [1].

• Decomposition and modularization. Decom-
posing and modularizing means that large

software is divided into a number of smaller
named components having well-defined
interfaces that describe component interac-
tions. Usually the goal is to place different
functionalities and responsibilities in differ-
ent components.

• Encapsulation and information hiding means
grouping and packaging the internal details
of an abstraction and making those details
inaccessible to external entities.

• Separation of interface and implementation. 
Separating interface and implementation
involves defining a component by specify-
ing a public interface (known to the clients)
that is separate from the details of how the
component is realized (see encapsulation and
information hiding above).

• Sufficiency, completeness, and primitiveness. 
Achieving sufficiency and completeness
means ensuring that a software component
captures all the important characteristics of
an abstraction and nothing more. Primitive-
ness means the design should be based on
patterns that are easy to implement.

• Separation  of  concerns.  A concern is an
“area of interest with respect to a software
design” [8]. A design concern is an area of
design that is relevant to one or more of its
stakeholders. Each architecture view frames
one or more concerns. Separating concerns
by views allows interested stakeholders to
focus on a few things at a time and offers a
means of managing complexity [9].

2. Key Issues in Software Design

A number of key issues must be dealt with when
designing software. Some are quality concerns
that all software must address—for example,
performance, security, reliability, usability, etc.
Another important issue is how to decompose,
organize, and package software components.
This is so fundamental that all design approaches
address it in one way or another (see section 1.4,
Software Design Principles, and topic 7, Soft-
ware Design Strategies and Methods). In contrast,
other issues “deal with some aspect of software’s
behavior that is not in the application domain,
but which addresses some of the supporting

2-4 SWEBOK® Guide V3.0

domains” [10]. Such issues, which often crosscut
the system’s functionality, have been referred to
as aspects, which “tend not to be units of soft-
ware’s functional decomposition, but rather to be
properties that affect the performance or seman-
tics of the components in systemic ways” [11].
A number of these key, crosscutting issues are
discussed in the following sections (presented in
alphabetical order).

2.1. Concurrency
[5*, c18]

Design for concurrency is concerned with decom-
posing software into processes, tasks, and threads
and dealing with related issues of efficiency,
atomicity, synchronization, and scheduling.

2.2. Control and Handling of Events
[5*, c21]

This design issue is concerned with how to
organize data and control flow as well as how
to handle reactive and temporal events through
various mechanisms such as implicit invocation
and call-backs.

2.3. Data Persistence 
[12*, c9]

This design issue is concerned with how to han-
dle long-lived data.

2.4. Distribution of Components
[5*, c18]

This design issue is concerned with how to dis-
tribute the software across the hardware (includ-
ing computer hardware and network hardware),
how the components communicate, and how
middleware can be used to deal with heteroge-
neous software.

2.5. Error and Exception Handling and Fault 
Tolerance

[5*, c18]

This design issue is concerned with how to pre-
vent, tolerate, and process errors and deal with
exceptional conditions.

2.6. Interaction and Presentation 
[5*, c16]

This design issue is concerned with how to struc-
ture and organize interactions with users as well
as the presentation of information (for example,
separation of presentation and business logic
using the Model-View-Controller approach).
Note that this topic does not specify user interface
details, which is the task of user interface design
(see topic 4, User Interface Design).

2.7. Security
[5*, c12, c18] [13*, c4]

Design for security is concerned with how to pre-
vent unauthorized disclosure, creation, change,
deletion, or denial of access to information and
other resources. It is also concerned with how to
tolerate security-related attacks or violations by
limiting damage, continuing service, speeding
repair and recovery, and failing and recovering
securely. Access control is a fundamental con-
cept of security, and one should also ensure the
proper use of cryptology.

3. Software Structure and Architecture

In its strict sense, a software architecture is
“the set of structures needed to reason about
the system, which comprise software elements,
relations among them, and properties of both”
[14*]. During the mid-1990s, however, soft-
ware architecture started to emerge as a broader
discipline that involved the study of software
structures and architectures in a more generic
way. This gave rise to a number of interesting
concepts about software design at different lev-
els of abstraction. Some of these concepts can
be useful during the architectural design (for
example, architectural styles) as well as during
the detailed design (for example, design pat-
terns). These design concepts can also be used
to design families of programs (also known as
product lines). Interestingly, most of these con-
cepts can be seen as attempts to describe, and
thus reuse, design knowledge.

Software Design 2-5

3.1. Architectural Structures and Viewpoints
[14*, c1]

Different high-level facets of a software design
can be described and documented. These facets
are often called views: “A view represents a partial
aspect of a software architecture that shows spe-
cific properties of a software system” [14*]. Views
pertain to distinct issues associated with software
design—for example, the logical view (satisfying
the functional requirements) vs. the process view
(concurrency issues) vs. the physical view (distri-
bution issues) vs. the development view (how the
design is broken down into implementation units
with explicit representation of the dependencies
among the units). Various authors use different
terminologies—like behavioral vs. functional vs.
structural vs. data modeling views. In summary, a
software design is a multifaceted artifact produced
by the design process and generally composed of
relatively independent and orthogonal views.

3.2. Architectural Styles
[14*, c1, c2, c3, c4, c5]

An architectural style is “a specialization of ele-
ment and relation types, together with a set of
constraints on how they can be used” [14*]. An
architectural style can thus be seen as providing
the software’s high-level organization. Various
authors have identified a number of major archi-
tectural styles:

• General structures (for example, layers, pipes
and filters, blackboard)

• Distributed systems (for example, client-
server, three-tiers, broker)

• Interactive systems (for example, Model-View-
Controller, Presentation-Abstraction-Control)

• Adaptable systems (for example, microker-
nel, reflection)

• Others (for example, batch, interpreters, pro-
cess control, rule-based).

3.3. Design Patterns
[15*, c3, c4, c5]

Succinctly described, a pattern is “a common
solution to a common problem in a given context”
[16]. While architectural styles can be viewed as

patterns describing the high-level organization
of software, other design patterns can be used
to describe details at a lower level. These lower
level design patterns include the following:

• Creational patterns (for example, builder,
factory, prototype, singleton)

• Structural patterns (for example, adapter,
bridge, composite, decorator, façade, fly-
weight, proxy)

• Behavioral patterns (for example, command,
interpreter, iterator, mediator, memento,
observer, state, strategy, template, visitor).

3.4. Architecture Design Decisions
[5*, c6]

Architectural design is a creative process. Dur-
ing the design process, software designers have
to make a number of fundamental decisions that
profoundly affect the software and the develop-
ment process. It is useful to think of the archi-
tectural design process from a decision-making
perspective rather than from an activity perspec-
tive. Often, the impact on quality attributes and
tradeoffs among competing quality attributes are
the basis for design decisions.

3.5. Families of Programs and Frameworks 
[5*, c6, c7, c16]

One approach to providing for reuse of software
designs and components is to design families of
programs, also known as software product lines.
This can be done by identifying the commonalities
among members of such families and by designing
reusable and customizable components to account
for the variability among family members.

In object-oriented (OO) programming, a key
related notion is that of a framework: a partially
completed software system that can be extended
by appropriately instantiating specific extensions
(such as plug-ins).

4. User Interface Design

User interface design is an essential part of the
software design process. User interface design
should ensure that interaction between the human
and the machine provides for effective operation

2-6 SWEBOK® Guide V3.0

and control of the machine. For software to
achieve its full potential, the user interface should
be designed to match the skills, experience, and
expectations of its anticipated users.

4.1. General User Interface Design Principles
[5*, c29-web] [17*, c2]1

• Learnability. The software should be easy to
learn so that the user can rapidly start work-
ing with the software.

• User  familiarity. The interface should use
terms and concepts drawn from the experi-
ences of the people who will use the software.

• Consistency. The interface should be consis-
tent so that comparable operations are acti-
vated in the same way.

• Minimal surprise. The behavior of software
should not surprise users.

• Recoverability. The interface should provide
mechanisms allowing users to recover from
errors.

• User  guidance.  The interface should give
meaningful feedback when errors occur and
provide context-related help to users.

• User  diversity. The interface should pro-
vide appropriate interaction mechanisms
for diverse types of users and for users with
different capabilities (blind, poor eyesight,
deaf, colorblind, etc.).

4.2. User Interface Design Issues
[5*, c29-web] [17*, c2]

User interface design should solve two key issues:

• How should the user interact with the
software?

• How should information from the software
be presented to the user?

User interface design must integrate user
interaction and information presentation. User
interface design should consider a compromise
between the most appropriate styles of interaction

1 Chapter 29 is a web-based chapter available
at http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/
WebChapters/.

and presentation for the software, the background
and experience of the software users, and the
available devices.

4.3. The Design of User Interaction Modalities
[5*, c29-web] [17*, c2]

User interaction involves issuing commands and
providing associated data to the software. User
interaction styles can be classified into the fol-
lowing primary styles:

• Question-answer.  The interaction is essen-
tially restricted to a single question-answer
exchange between the user and the software.
The user issues a question to the software,
and the software returns the answer to the
question.

• Direct  manipulation. Users interact with
objects on the computer screen. Direct
manipulation often includes a pointing
device (such as a mouse, trackball, or a fin-
ger on touch screens) that manipulates an
object and invokes actions that specify what
is to be done with that object.

• Menu selection. The user selects a command
from a menu list of commands.

• Form fill-in. The user fills in the fields of a
form. Sometimes fields include menus, in
which case the form has action buttons for
the user to initiate action.

• Command language. The user issues a com-
mand and provides related parameters to
direct the software what to do.

• Natural  language. The user issues a com-
mand in natural language. That is, the natural
language is a front end to a command lan-
guage and is parsed and translated into soft-
ware commands.

4.4. The Design of Information Presentation
[5*, c29-web] [17*, c2]

Information presentation may be textual or graphi-
cal in nature. A good design keeps the information
presentation separate from the information itself.
The MVC (Model-View-Controller) approach is
an effective way to keep information presentation
separating from the information being presented.

http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/
http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/

Software Design 2-7

Software engineers also consider software
response time and feedback in the design of infor-
mation presentation. Response time is generally
measured from the point at which a user executes
a certain control action until the software responds
with a response. An indication of progress is desir-
able while the software is preparing the response.
Feedback can be provided by restating the user’s
input while processing is being completed.

Abstract visualizations can be used when large
amounts of information are to be presented.

According to the style of information presenta-
tion, designers can also use color to enhance the
interface. There are several important guidelines:

• Limit the number of colors used.
• Use color change to show the change of soft-

ware status.
• Use color-coding to support the user’s task.
• Use color-coding in a thoughtful and consis-

tent way.
• Use colors to facilitate access for people

with color blindness or color deficiency
(e.g., use the change of color saturation and
color brightness, try to avoid blue and red
combinations).

• Don’t depend on color alone to convey
important information to users with different
capabilities (blindness, poor eyesight, color-
blindness, etc.).

4.5. User Interface Design Process
[5*, c29-web] [17*, c2]

User interface design is an iterative process;
interface prototypes are often used to determine
the features, organization, and look of the soft-
ware user interface. This process includes three
core activities:

• User analysis. In this phase, the designer ana-
lyzes the users’ tasks, the working environ-
ment, other software, and how users interact
with other people.

• Software prototyping. Developing prototype
software help users to guide the evolution of
the interface.

• Interface  evaluation. Designers can observe
users’ experiences with the evolving interface.

4.6. Localization and Internationalization
[17*, c8, c9]

User interface design often needs to consider inter-
nationalization and localization, which are means
of adapting software to the different languages,
regional differences, and the technical require-
ments of a target market. Internationalization is the
process of designing a software application so that
it can be adapted to various languages and regions
without major engineering changes. Localization
is the process of adapting internationalized soft-
ware for a specific region or language by adding
locale-specific components and translating the
text. Localization and internationalization should
consider factors such as symbols, numbers, cur-
rency, time, and measurement units.

4.7. Metaphors and Conceptual Models
[17*, c5]

User interface designers can use metaphors and
conceptual models to set up mappings between the
software and some reference system known to the
users in the real world, which can help the users to
more readily learn and use the interface. For exam-
ple, the operation “delete file” can be made into a
metaphor using the icon of a trash can.

When designing a user interface, software engi-
neers should be careful to not use more than one
metaphor for each concept. Metaphors also pres-
ent potential problems with respect to internation-
alization, since not all metaphors are meaningful
or are applied in the same way within all cultures.

5. Software Design Quality Analysis and
Evaluation

This section includes a number of quality anal-
ysis and evaluation topics that are specifically
related to software design. (See also the Software
Quality KA.)

5.1. Quality Attributes
[4*, c4]

Various attributes contribute to the quality of
a software design, including various “-ilities”
(maintainability, portability, testability, usability)

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Locale

2-8 SWEBOK® Guide V3.0

and “-nesses” (correctness, robustness). There is
an interesting distinction between quality attri-
butes discernible at runtime (for example, per-
formance, security, availability, functionality,
usability), those not discernible at runtime (for
example, modifiability, portability, reusability,
testability), and those related to the architecture’s
intrinsic qualities (for example, conceptual integ-
rity, correctness, completeness). (See also the
Software Quality KA.)

5.2. Quality Analysis and Evaluation Techniques
[4*, c4] [5*, c24]

Various tools and techniques can help in analyz-
ing and evaluating software design quality.

• Software design reviews: informal and for-
malized techniques to determine the quality
of design artifacts (for example, architecture
reviews, design reviews, and inspections;
scenario-based techniques; requirements
tracing). Software design reviews can also
evaluate security. Aids for installation, oper-
ation, and usage (for example, manuals and
help files) can be reviewed.

• Static analysis: formal or semiformal static
(nonexecutable) analysis that can be used
to evaluate a design (for example, fault-
tree analysis or automated cross-checking).
Design vulnerability analysis (for example,
static analysis for security weaknesses) can
be performed if security is a concern. Formal
design analysis uses mathematical models
that allow designers to predicate the behavior
and validate the performance of the software
instead of having to rely entirely on testing.
Formal design analysis can be used to detect
residual specification and design errors (per-
haps caused by imprecision, ambiguity, and
sometimes other kinds of mistakes). (See
also the Software Engineering Models and
Methods KA.)

• Simulation and prototyping: dynamic tech-
niques to evaluate a design (for example,
performance simulation or feasibility
prototypes).

5.3. Measures
[4*, c4] [5*, c24]

Measures can be used to assess or to quanti-
tatively estimate various aspects of a software
design; for example, size, structure, or quality.
Most measures that have been proposed depend
on the approach used for producing the design.
These measures are classified in two broad
categories:

• Function-based (structured) design mea-
sures: measures obtained by analyzing func-
tional decomposition; generally represented
using a structure chart (sometimes called a
hierarchical diagram) on which various mea-
sures can be computed.

• Object-oriented design measures: the design
structure is typically represented as a class
diagram, on which various measures can be
computed. Measures on the properties of the
internal content of each class can also be
computed.

6. Software Design Notations

Many notations exist to represent software design
artifacts. Some are used to describe the structural
organization of a design, others to represent soft-
ware behavior. Certain notations are used mostly
during architectural design and others mainly
during detailed design, although some nota-
tions can be used for both purposes. In addition,
some notations are used mostly in the context of
specific design methods (see topic 7, Software
Design Strategies and Methods). Please note that
software design is often accomplished using mul-
tiple notations. Here, they are categorized into
notations for describing the structural (static)
view vs. the behavioral (dynamic) view.

6.1. Structural Descriptions (Static View)
[4*, c7] [5*, c6, c7] [6*, c4, c5, c6, c7]

[12*, c7] [14*, c7]

The following notations, mostly but not always
graphical, describe and represent the structural
aspects of a software design—that is, they are

Software Design 2-9

used to describe the major components and how
they are interconnected (static view):

• Architecture description languages (ADLs):
textual, often formal, languages used to
describe software architecture in terms of
components and connectors.

• Class and object diagrams: used to repre-
sent a set of classes (and objects) and their
interrelationships.

• Component diagrams: used to represent a
set of components (“physical and replace-
able part[s] of a system that [conform] to
and [provide] the realization of a set of inter-
faces” [18]) and their interrelationships.

• Class responsibility collaborator cards
(CRCs): used to denote the names of compo-
nents (class), their responsibilities, and their
collaborating components’ names.

• Deployment diagrams: used to represent a
set of (physical) nodes and their interrela-
tionships, and, thus, to model the physical
aspects of software.

• Entity-relationship diagrams (ERDs): used
to represent conceptual models of data stored
in information repositories.

• Interface description languages (IDLs):
programming-like languages used to define
the interfaces (names and types of exported
operations) of software components.

• Structure charts: used to describe the calling
structure of programs (which modules call,
and are called by, which other modules).

6.2. Behavioral Descriptions (Dynamic View) 
[4*, c7, c13] [5*, c6, c7] [6*, c4, c5, c6, c7]

[14*, c8]

The following notations and languages, some
graphical and some textual, are used to describe
the dynamic behavior of software systems and
components. Many of these notations are use-
ful mostly, but not exclusively, during detailed
design. Moreover, behavioral descriptions can
include a rationale for design decision such as
how a design will meet security requirements.

• Activity diagrams: used to show control flow
from activity to activity. Can be used to rep-
resent concurrent activities.

• Communication diagrams: used to show
the interactions that occur among a group
of objects; emphasis is on the objects, their
links, and the messages they exchange on
those links.

• Data flow diagrams (DFDs): used to show
data flow among elements. A data flow dia-
gram provides “a description based on model-
ing the flow of information around a network
of operational elements, with each element
making use of or modifying the information
flowing into that element” [4*]. Data flows
(and therefore data flow diagrams) can be
used for security analysis, as they offer iden-
tification of possible paths for attack and dis-
closure of confidential information.

• Decision tables and diagrams: used to rep-
resent complex combinations of conditions
and actions.

• Flowcharts: used to represent the flow of
control and the associated actions to be
performed.

• Sequence diagrams: used to show the inter-
actions among a group of objects, with
emphasis on the time ordering of messages
passed between objects.

• State transition and state chart diagrams:
used to show the control flow from state to
state and how the behavior of a component
changes based on its current state in a state
machine.

• Formal specification languages: textual lan-
guages that use basic notions from math-
ematics (for example, logic, set, sequence)
to rigorously and abstractly define software
component interfaces and behavior, often in
terms of pre- and postconditions. (See also
the Software Engineering Models and Meth-
ods KA.)

• Pseudo code and program design languages
(PDLs): structured programming-like lan-
guages used to describe, generally at the
detailed design stage, the behavior of a pro-
cedure or method.

2-10 SWEBOK® Guide V3.0

7. Software Design Strategies and Methods

There exist various general strategies to help
guide the design process. In contrast with general
strategies, methods are more specific in that they
generally provide a set of notations to be used
with the method, a description of the process to
be used when following the method, and a set of
guidelines for using the method. Such methods
are useful as a common framework for teams of
software engineers. (See also the Software Engi-
neering Models and Methods KA).

7.1. General Strategies 
[4*, c8, c9, c10] [12*, c7]

Some often-cited examples of general strategies
useful in the design process include the divide-
and-conquer and stepwise refinement strategies,
top-down vs. bottom-up strategies, and strategies
making use of heuristics, use of patterns and pat-
tern languages, and use of an iterative and incre-
mental approach.

7.2. Function-Oriented (Structured) Design
[4*, c13]

This is one of the classical methods of software
design, where decomposition centers on identify-
ing the major software functions and then elab-
orating and refining them in a hierarchical top-
down manner. Structured design is generally used
after structured analysis, thus producing (among
other things) data flow diagrams and associated
process descriptions. Researchers have proposed
various strategies (for example, transformation
analysis, transaction analysis) and heuristics (for
example, fan-in/fan-out, scope of effect vs. scope
of control) to transform a DFD into a software
architecture generally represented as a structure
chart.

7.3. Object-Oriented Design
[4*, c16]

Numerous software design methods based
on objects have been proposed. The field has
evolved from the early object-oriented (OO)

design of the mid-1980s (noun = object; verb
= method; adjective = attribute), where inheri-
tance and polymorphism play a key role, to the
field of component-based design, where metain-
formation can be defined and accessed (through
reflection, for example). Although OO design’s
roots stem from the concept of data abstraction,
responsibility-driven design has been proposed
as an alternative approach to OO design.

7.4. Data Structure-Centered Design
[4*, c14, c15]

Data structure-centered design starts from the data
structures a program manipulates rather than from
the function it performs. The software engineer
first describes the input and output data structures
and then develops the program’s control structure
based on these data structure diagrams. Various
heuristics have been proposed to deal with special
cases—for example, when there is a mismatch
between the input and output structures.

7.5. Component-Based Design (CBD)
[4*, c17]

A software component is an independent unit,
having well-defined interfaces and dependen-
cies that can be composed and deployed inde-
pendently. Component-based design addresses
issues related to providing, developing, and
integrating such components in order to improve
reuse. Reused and off-the-shelf software com-
ponents should meet the same security require-
ments as new software. Trust management is
a design concern; components treated as hav-
ing a certain degree of trustworthiness should
not depend on less trustworthy components or
services.

7.6. Other Methods
[5*, c19, c21]

Other interesting approaches also exist (see the
Software Engineering Models and Methods
KA). Iterative and adaptive methods imple-
ment software increments and reduce emphasis
on rigorous software requirement and design.

Software Design 2-11

Aspect-oriented design is a method by which
software is constructed using aspects to imple-
ment the crosscutting concerns and extensions
that are identified during the software require-
ments process. Service-oriented architecture is
a way to build distributed software using web
services executed on distributed computers. Soft-
ware systems are often constructed by using ser-
vices from different providers because standard
protocols (such as HTTP, HTTPS, SOAP) have
been designed to support service communication
and service information exchange.

8. Software Design Tools
[14*, c10, Appendix A]

Software design tools can be used to support the
creation of the software design artifacts during
the software development process. They can sup-
port part or whole of the following activities:

• to translate the requirements model into a
design representation;

• to provide support for representing func-
tional components and their interface(s);

• to implement heuristics refinement and
partitioning;

• to provide guidelines for quality assessment.

2-12 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

B
ud

ge
n

20
03

[4

*]

So
m

m
er

vi
lle

 2
01

1
[5

*]

Pa
ge

-J
on

es
 1

99
9

[6
*]

B
ro

ok
sh

ea
r

20
08

[1

2*
]

A
lle

n
20

08

[1
3*

]

C
le

m
en

ts
 e

t a
l.

20
10

[1

4*
]

G
am

m
a

 e
t a

l.
19

94

[1
5*

]

N
ie

ls
en

 1
99

3
[1

7*
]

1. Software Design
Fundamentals

1.1. General Design
Concepts c1

1.2. The Context of
Software Design c3

1.3. The Software
Design Process c2

1.4. Software Design
Principles c1 c6, c7,

c21
c1, c8,

c9
2. Key Issues in
Software Design

2.1. Concurrency c18
2.2. Control and
Handling of Events c21

2.3. Data Persistence c9
2.4. Distribution of
Components c18

2.5. Error and
Exception Handling
and Fault Tolerance

c18

2.6. Interaction and
Presentation c16

2.7. Security c12,
c18 c4

3. Software Structure
and Architecture

3.1. Architectural
Structures and
Viewpoints

c1

3.2. Architectural
Styles

c1, c2,
c3, c4,

c5

3.3. Design Patterns c3, c4,
c5

Software Design 2-13

B
ud

ge
n

20
03

[4

*]

So
m

m
er

vi
lle

 2
01

1
[5

*]

Pa
ge

-J
on

es
 1

99
9

[6
*]

B
ro

ok
sh

ea
r

20
08

[1

2*
]

A
lle

n
20

08

[1
3*

]

C
le

m
en

ts
 e

t a
l.

20
10

[1

4*
]

G
am

m
a

 e
t a

l.
19

94

[1
5*

]

N
ie

ls
en

 1
99

3
[1

7*
]

3.4. Architecture
Design Decisions c6

3.5. Families of
Programs and
Frameworks

c6, c7,
c16

4. User Interface
Design

4.1. General User
Interface Design
Principle

c29-
web c2

4.2. User Interface
Design Issues

c29-
web

4.3. The Design of
User Interaction
Modalities

c29-
web

4.4. The Design
of Information
Presentation

c29-
web

4.5. User Interface
Design Process

c29-
web

4.6. Localization and
Internationalization c8, c9

4.7. Metaphors and
Conceptual Models c5

5. Software Design
Quality Analysis and
Evaluation

5.1. Quality
Attributes c4

5.2. Quality
Analysis and
Evaluation
Techniques

c4 c24

5.3. Measures c4 c24

2-14 SWEBOK® Guide V3.0

B
ud

ge
n

20
03

[4

*]

So
m

m
er

vi
lle

 2
01

1
[5

*]

Pa
ge

-J
on

es
 1

99
9

[6
*]

B
ro

ok
sh

ea
r

20
08

[1

2*
]

A
lle

n
20

08

[1
3*

]

C
le

m
en

ts
 e

t a
l.

20
10

[1

4*
]

G
am

m
a

 e
t a

l.
19

94

[1
5*

]

N
ie

ls
en

 1
99

3
[1

7*
]

6. Software Design
Notations

6.1. Structural
Descriptions (Static
View)

c7 c6, c7 c4, c5,
c6, c7 c7 c7

6.2. Behavioral
Descriptions
(Dynamic View)

c7, c13,
c18 c6, c7 c4, c5,

c6, c7 c8

7. Software Design
Strategies and
Methods

7.1. General
Strategies

c8, c9,
c10 c7

7.2. Function-
Oriented
(Structured) Design

c13

7.3. Object-Oriented
Design c16

7.4. Data Structure-
Centered Design

c14,
c15

7.5. Component-
Based Design (CBD) c17

7.6. Other Methods c19,
c21

8. Software Design
Tools

c10,
App. A

Software Design 2-15

FURTHER READINGS

Roger Pressman, Software Engineering: A 
Practitioner’s Approach (Seventh Edition) 
[19].

For roughly three decades, Roger Pressman’s
Software Engineering: A Practitioner’s Approach
has been one of the world’s leading textbooks in
software engineering. Notably, this complemen-
tary textbook to [5*] comprehensively presents
software design—including design concepts,
architectural design, component-level design,
user interface design, pattern-based design, and
web application design.

“The 4+1 View Model of Architecture” [20].

The seminal paper “The 4+1 View Model” orga-
nizes a description of a software architecture
using five concurrent views. The four views of
the model are the logical view, the development
view, the process view, and the physical view.
In addition, selected use cases or scenarios are
utilized to illustrate the architecture. Hence, the
model contains 4+1 views. The views are used to
describe the software as envisioned by different
stakeholders—such as end-users, developers, and
project managers.

Len Bass, Paul Clements, and Rick Kazman,
Software Architecture in Practice [21].

This book introduces the concepts and best prac-
tices of software architecture, meaning how soft-
ware is structured and how the software’s compo-
nents interact. Drawing on their own experience,
the authors cover the essential technical topics
for designing, specifying, and validating software
architectures. They also emphasize the impor-
tance of the business context in which large soft-
ware is designed. Their aim is to present software
architecture in a real-world setting, reflecting
both the opportunities and constraints that orga-
nizations encounter. This is one of the best books
currently available on software architecture.

REFERENCES

[1] ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[2] IEEE Std. 12207-2008 (a.k.a. ISO/IEC 
12207:2008) Standard for Systems and 
Software Engineering—Software Life Cycle 
Processes, IEEE, 2008.

[3] T. DeMarco, “The Paradox of Software
Architecture and Design,” Stevens Prize
Lecture, 1999.

[4*] D. Budgen, Software Design, 2nd ed.,
Addison-Wesley, 2003.

[5*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[6*] M. Page-Jones, Fundamentals of Object-
Oriented Design in UML, 1st ed., Addison-
Wesley, 1999.

[7] Merriam-Webster’s Collegiate Dictionary,
11th ed., 2003.

[8] IEEE Std. 1069-2009 Standard for 
Information Technology—Systems 
Design—Software Design Descriptions,
IEEE, 2009.

[9] ISO/IEC 42010:2011 Systems and Software 
Engineering—Recommended Practice for 
Architectural Description of Software-
Intensive Systems, ISO/IEC, 2011.

[10] J. Bosch, Design and Use of Software 
Architectures: Adopting and Evolving a 
Product-Line Approach, ACM Press, 2000.

[11] G. Kiczales et al., “Aspect-Oriented
Programming,” Proc. 11th European Conf. 
Object-Oriented Programming (ECOOP
97), Springer, 1997.

http://en.wikipedia.org/wiki/Use_case

2-16 SWEBOK® Guide V3.0

[12*] J.G. Brookshear, Computer Science: An 
Overview, 10th ed., Addison-Wesley, 2008.

[13*] J.H. Allen et al., Software Security 
Engineering: A Guide for Project 
Managers, Addison-Wesley, 2008.

[14*] P. Clements et al., Documenting Software 
Architectures: Views and Beyond, 2nd ed.,
Pearson Education, 2010.

[15*] E. Gamma et al., Design Patterns: 
Elements of Reusable Object-Oriented 
Software, 1st ed., Addison-Wesley
Professional, 1994.

[16] I. Jacobson, G. Booch, and J. Rumbaugh,
The Unified Software Development 
Process, Addison-Wesley Professional,
1999.

[17*] J. Nielsen, Usability Engineering, Morgan
Kaufmann, 1993.

[18] G. Booch, J. Rumbaugh, and I. Jacobson,
The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

[19] R.S. Pressman, Software Engineering: A 
Practitioner’s Approach, 7th ed., McGraw-
Hill, 2010.

[20] P.B. Kruchten, “The 4+1 View Model of
Architecture,” IEEE Software, vol. 12, no.
6, 1995, pp. 42–55.

[21] L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice, 3rd ed.,
Addison-Wesley Professional, 2013.

3-1

CHAPTER 3

SOFTWARE CONSTRUCTION

ACRONYMS

API Application Programming
Interface

COTS Commercial Off-the-Shelf
GUI Graphical User Interface

IDE Integrated Development
Environment

OMG Object Management Group

POSIX Portable Operating System
Interface

TDD Test-Driven Development
UML Unified Modeling Language

INTRODUCTION

The term software construction refers to the
detailed creation of working software through a
combination of coding, verification, unit testing,
integration testing, and debugging.

The Software Construction knowledge area
(KA) is linked to all the other KAs, but it is most
strongly linked to Software Design and Software
Testing because the software construction process
involves significant software design and testing.
The process uses the design output and provides an
input to testing (“design” and “testing” in this case
referring to the activities, not the KAs). Boundar-
ies between design, construction, and testing (if
any) will vary depending on the software life cycle
processes that are used in a project.

Although some detailed design may be per-
formed prior to construction, much design work
is performed during the construction activity.
Thus, the Software Construction KA is closely
linked to the Software Design KA.

Throughout construction, software engineers
both unit test and integration test their work.

Thus, the Software Construction KA is closely
linked to the Software Testing KA as well.

Software construction typically produces the
highest number of configuration items that need
to be managed in a software project (source files,
documentation, test cases, and so on). Thus, the
Software Construction KA is also closely linked
to the Software Configuration Management KA.

While software quality is important in all the
KAs, code is the ultimate deliverable of a soft-
ware project, and thus the Software Quality KA is
closely linked to the Software Construction KA.

Since software construction requires knowledge
of algorithms and of coding practices, it is closely
related to the Computing Foundations KA, which
is concerned with the computer science founda-
tions that support the design and construction of
software products. It is also related to project man-
agement, insofar as the management of construc-
tion can present considerable challenges.

BREAKDOWN OF TOPICS FOR
SOFTWARE CONSTRUCTION

Figure 3.1 gives a graphical representation of the
top-level decomposition of the breakdown for the
Software Construction KA.

1. Software Construction Fundamentals

Software construction fundamentals include

• minimizing complexity
• anticipating change
• constructing for verification
• reuse
• standards in construction.

The first four concepts apply to design as well
as to construction. The following sections define

3-2 SWEBOK® Guide V3.0

Figure 3.1. Breakdown of Topics for the Software Construction KA

Software Construction 3-3

these concepts and describe how they apply to
construction.

1.1. Minimizing Complexity
[1*]

Most people are limited in their ability to hold
complex structures and information in their
working memories, especially over long peri-
ods of time. This proves to be a major factor
influencing how people convey intent to com-
puters and leads to one of the strongest drives
in software construction: minimizing complex-
ity. The need to reduce complexity applies to
essentially every aspect of software construction
and is particularly critical to testing of software
constructions.

In software construction, reduced complexity
is achieved through emphasizing code creation
that is simple and readable rather than clever. It
is accomplished through making use of standards
(see section 1.5, Standards in Construction),
modular design (see section 3.1, Construction
Design), and numerous other specific techniques
(see section 3.3, Coding). It is also supported by
construction-focused quality techniques (see sec-
tion 3.7, Construction Quality).

1.2. Anticipating Change 
[1*]

Most software will change over time, and the
anticipation of change drives many aspects of
software construction; changes in the environ-
ments in which software operates also affect soft-
ware in diverse ways.

Anticipating change helps software engineers
build extensible software, which means they can
enhance a software product without disrupting
the underlying structure.

Anticipating change is supported by many spe-
cific techniques (see section 3.3, Coding).

1.3. Constructing for Verification
[1*]

Constructing for verification means building
software in such a way that faults can be read-
ily found by the software engineers writing the
software as well as by the testers and users during

independent testing and operational activities.
Specific techniques that support constructing for
verification include following coding standards to
support code reviews and unit testing, organizing
code to support automated testing, and restrict-
ing the use of complex or hard-to-understand lan-
guage structures, among others.

1.4. Reuse
[2*]

Reuse refers to using existing assets in solving
different problems. In software construction, typ-
ical assets that are reused include libraries, mod-
ules, components, source code, and commercial
off-the-shelf (COTS) assets. Reuse is best prac-
ticed systematically, according to a well-defined,
repeatable process. Systematic reuse can enable
significant software productivity, quality, and
cost improvements.

Reuse has two closely related facets: “construc-
tion for reuse” and “construction with reuse.” The
former means to create reusable software assets,
while the latter means to reuse software assets in
the construction of a new solution. Reuse often
transcends the boundary of projects, which means
reused assets can be constructed in other projects
or organizations.

1.5. Standards in Construction 
[1*]

Applying external or internal development stan-
dards during construction helps achieve a proj-
ect’s objectives for efficiency, quality, and cost.
Specifically, the choices of allowable program-
ming language subsets and usage standards are
important aids in achieving higher security.

Standards that directly affect construction
issues include

• communication methods (for example, stan-
dards for document formats and contents)

• programming languages (for example, lan-
guage standards for languages like Java and
C++)

• coding standards (for example, standards for
naming conventions, layout, and indentation)

• platforms (for example, interface standards
for operating system calls)

3-4 SWEBOK® Guide V3.0

• tools (for example, diagrammatic standards
for notations like UML (Unified Modeling
Language)).

Use  of  external  standards. Construction
depends on the use of external standards for con-
struction languages, construction tools, technical
interfaces, and interactions between the Software
Construction KA and other KAs. Standards come
from numerous sources, including hardware and
software interface specifications (such as the
Object Management Group (OMG)) and interna-
tional organizations (such as the IEEE or ISO).
Use of internal standards. Standards may also

be created on an organizational basis at the cor-
porate level or for use on specific projects. These
standards support coordination of group activi-
ties, minimizing complexity, anticipating change,
and constructing for verification.

2. Managing Construction

2.1. Construction in Life Cycle Models
[1*]

Numerous models have been created to develop
software; some emphasize construction more
than others.

Some models are more linear from the con-
struction point of view—such as the waterfall and
staged-delivery life cycle models. These models
treat construction as an activity that occurs only
after significant prerequisite work has been com-
pleted—including detailed requirements work,
extensive design work, and detailed planning.
The more linear approaches tend to emphasize
the activities that precede construction (require-
ments and design) and to create more distinct sep-
arations between activities. In these models, the
main emphasis of construction may be coding.

Other models are more iterative—such as
evolutionary prototyping and agile develop-
ment. These approaches tend to treat construc-
tion as an activity that occurs concurrently with
other software development activities (including
requirements, design, and planning) or that over-
laps them. These approaches tend to mix design,
coding, and testing activities, and they often treat
the combination of activities as construction (see

the Software Management and Software Process
KAs).

Consequently, what is considered to be “con-
struction” depends to some degree on the life
cycle model used. In general, software con-
struction is mostly coding and debugging, but
it also involves construction planning, detailed
design, unit testing, integration testing, and other
activities.

2.2. Construction Planning
[1*]

The choice of construction method is a key aspect
of the construction-planning activity. The choice
of construction method affects the extent to
which construction prerequisites are performed,
the order in which they are performed, and the
degree to which they should be completed before
construction work begins.

The approach to construction affects the proj-
ect team’s ability to reduce complexity, anticipate
change, and construct for verification. Each of
these objectives may also be addressed at the pro-
cess, requirements, and design levels—but they
will be influenced by the choice of construction
method.

Construction planning also defines the order
in which components are created and integrated,
the integration strategy (for example, phased or
incremental integration), the software quality
management processes, the allocation of task
assignments to specific software engineers, and
other tasks, according to the chosen method.

2.3. Construction Measurement 
[1*]

Numerous construction activities and artifacts can
be measured—including code developed, code
modified, code reused, code destroyed, code com-
plexity, code inspection statistics, fault-fix and
fault-find rates, effort, and scheduling. These mea-
surements can be useful for purposes of managing
construction, ensuring quality during construction,
and improving the construction process, among
other uses (see the Software Engineering Process
KA for more on measurement).

Software Construction 3-5

3. Practical Considerations

Construction is an activity in which the software
engineer has to deal with sometimes chaotic and
changing real-world constraints, and he or she
must do so precisely. Due to the influence of real-
world constraints, construction is more driven by
practical considerations than some other KAs,
and software engineering is perhaps most craft-
like in the construction activities.

3.1. Construction Design
[1*]

Some projects allocate considerable design activ-
ity to construction, while others allocate design
to a phase explicitly focused on design. Regard-
less of the exact allocation, some detailed design
work will occur at the construction level, and that
design work tends to be dictated by constraints
imposed by the real-world problem that is being
addressed by the software.

Just as construction workers building a physi-
cal structure must make small-scale modifica-
tions to account for unanticipated gaps in the
builder’s plans, software construction workers
must make modifications on a smaller or larger
scale to flesh out details of the software design
during construction.

The details of the design activity at the construc-
tion level are essentially the same as described in
the Software Design KA, but they are applied on
a smaller scale of algorithms, data structures, and
interfaces.

3.2. Construction Languages
[1*]

Construction languages include all forms of
communication by which a human can specify an
executable problem solution to a problem. Con-
struction languages and their implementations
(for example, compilers) can affect software
quality attributes of performance, reliability, por-
tability, and so forth. They can be serious con-
tributors to security vulnerabilities.

The simplest type of construction language
is a configuration  language, in which software
engineers choose from a limited set of pre-
defined options to create new or custom software

installations. The text-based configuration files
used in both the Windows and Unix operating
systems are examples of this, and the menu-style
selection lists of some program generators consti-
tute another example of a configuration language.
Toolkit  languages are used to build applica-

tions out of elements in toolkits (integrated sets
of application-specific reusable parts); they are
more complex than configuration languages.
Toolkit languages may be explicitly defined as
application programming languages, or the appli-
cations may simply be implied by a toolkit’s set
of interfaces.
Scripting languages are commonly used kinds

of application programming languages. In some
scripting languages, scripts are called batch files
or macros.
Programming  languages are the most flexible

type of construction languages. They also contain
the least amount of information about specific
application areas and development processes—
therefore, they require the most training and skill
to use effectively. The choice of programming lan-
guage can have a large effect on the likelihood of
vulnerabilities being introduced during coding—
for example, uncritical usage of C and C++ are
questionable choices from a security viewpoint.

There are three general kinds of notation used
for programming languages, namely

• linguistic (e.g., C/C++, Java)
• formal (e.g., Event-B)
• visual (e.g., MatLab).

Linguistic  notations  are distinguished in par-
ticular by the use of textual strings to represent
complex software constructions. The combina-
tion of textual strings into patterns may have a
sentence-like syntax. Properly used, each such
string should have a strong semantic connotation
providing an immediate intuitive understanding
of what will happen when the software construc-
tion is executed.
Formal notations rely less on intuitive, every-

day meanings of words and text strings and more
on definitions backed up by precise, unambigu-
ous, and formal (or mathematical) definitions.
Formal construction notations and formal meth-
ods are at the semantic base of most forms of

3-6 SWEBOK® Guide V3.0

system programming notations, where accuracy,
time behavior, and testability are more important
than ease of mapping into natural language. For-
mal constructions also use precisely defined ways
of combining symbols that avoid the ambiguity
of many natural language constructions.
Visual notations rely much less on the textual

notations of linguistic and formal construction
and instead rely on direct visual interpretation
and placement of visual entities that represent the
underlying software. Visual construction tends to
be somewhat limited by the difficulty of making
“complex” statements using only the arrange-
ment of icons on a display. However, these icons
can be powerful tools in cases where the primary
programming task is simply to build and “adjust”
a visual interface to a program, the detailed
behavior of which has an underlying definition.

3.3. Coding
[1*]

The following considerations apply to the soft-
ware construction coding activity:

• Techniques for creating understandable
source code, including naming conventions
and source code layout;

• Use of classes, enumerated types, variables,
named constants, and other similar entities;

• Use of control structures;
• Handling of error conditions—both antici-

pated and exceptional (input of bad data, for
example);

• Prevention of code-level security breaches
(buffer overflows or array index bounds, for
example);

• Resource usage via use of exclusion mecha-
nisms and discipline in accessing serially
reusable resources (including threads and
database locks);

• Source code organization (into state-
ments, routines, classes, packages, or other
structures);

• Code documentation;
• Code tuning,

3.4. Construction Testing
[1*]

Construction involves two forms of testing,
which are often performed by the software engi-
neer who wrote the code:

• Unit testing
• Integration testing.

The purpose of construction testing is to reduce
the gap between the time when faults are inserted
into the code and the time when those faults are
detected, thereby reducing the cost incurred to
fix them. In some instances, test cases are writ-
ten after code has been written. In other instances,
test cases may be created before code is written.

Construction testing typically involves a
subset of the various types of testing, which
are described in the Software Testing KA. For
instance, construction testing does not typically
include system testing, alpha testing, beta testing,
stress testing, configuration testing, usability test-
ing, or other more specialized kinds of testing.

Two standards have been published on the topic
of construction testing: IEEE Standard 829-1998, 
IEEE Standard for Software Test Documentation,
and IEEE Standard 1008-1987, IEEE  Standard 
for Software Unit Testing.

(See sections 2.1.1., Unit Testing, and 2.1.2.,
Integration Testing, in the Software Testing KA
for more specialized reference material.)

3.5. Construction for Reuse
[2*]

Construction for reuse creates software that has
the potential to be reused in the future for the
present project or other projects taking a broad-
based, multisystem perspective. Construction for
reuse is usually based on variability analysis and
design. To avoid the problem of code clones, it
is desired to encapsulate reusable code fragments
into well-structured libraries or components.

The tasks related to software construction for
reuse during coding and testing are as follows:

Software Construction 3-7

• Variability implementation with mecha-
nisms such as parameterization, conditional
compilation, design patterns, and so forth.

• Variability encapsulation to make the soft-
ware assets easy to configure and customize.

• Testing the variability provided by the reus-
able software assets.

• Description and publication of reusable soft-
ware assets.

3.6. Construction with Reuse
[2*]

Construction with reuse means to create new
software with the reuse of existing software
assets. The most popular method of reuse is to
reuse code from the libraries provided by the lan-
guage, platform, tools being used, or an organiza-
tional repository. Asides from these, the applica-
tions developed today widely make use of many
open-source libraries. Reused and off-the-shelf
software often have the same—or better—quality
requirements as newly developed software (for
example, security level).

The tasks related to software construction with
reuse during coding and testing are as follows:

• The selection of the reusable units, data-
bases, test procedures, or test data.

• The evaluation of code or test reusability.
• The integration of reusable software assets

into the current software.
• The reporting of reuse information on new

code, test procedures, or test data.

3.7. Construction Quality
[1*]

In addition to faults resulting from requirements
and design, faults introduced during construction
can result in serious quality problems—for exam-
ple, security vulnerabilities. This includes not
only faults in security functionality but also faults
elsewhere that allow bypassing of this functional-
ity and other security weaknesses or violations.

Numerous techniques exist to ensure the qual-
ity of code as it is constructed. The primary tech-
niques used for construction quality include

• unit testing and integration testing (see sec-
tion 3.4, Construction Testing)

• test-first development (see section 2.2 in the
Software Testing KA)

• use of assertions and defensive programming
• debugging
• inspections
• technical reviews, including security-ori-

ented reviews (see section 2.3.2 in the Soft-
ware Quality KA)

• static analysis (see section 2.3 of the Soft-
ware Quality KA)

The specific technique or techniques selected
depend on the nature of the software being con-
structed as well as on the skillset of the software
engineers performing the construction activi-
ties. Programmers should know good practices
and common vulnerabilities—for example, from
widely recognized lists about common vulner-
abilities. Automated static analysis of code for
security weaknesses is available for several com-
mon programming languages and can be used in
security-critical projects.

Construction quality activities are differenti-
ated from other quality activities by their focus.
Construction quality activities focus on code and
artifacts that are closely related to code—such
as detailed design—as opposed to other artifacts
that are less directly connected to the code, such
as requirements, high-level designs, and plans.

3.8. Integration
[1*]

A key activity during construction is the integra-
tion of individually constructed routines, classes,
components, and subsystems into a single sys-
tem. In addition, a particular software system
may need to be integrated with other software or
hardware systems.

Concerns related to construction integration
include planning the sequence in which compo-
nents will be integrated, identifying what hard-
ware is needed, creating scaffolding to support
interim versions of the software, determining
the degree of testing and quality work performed
on components before they are integrated, and

3-8 SWEBOK® Guide V3.0

determining points in the project at which interim
versions of the software are tested.

Programs can be integrated by means of either
the phased or the incremental approach. Phased
integration, also called “big bang” integration,
entails delaying the integration of component
software parts until all parts intended for release
in a version are complete. Incremental integration
is thought to offer many advantages over the tra-
ditional phased integration—for example, easier
error location, improved progress monitoring,
earlier product delivery, and improved customer
relations. In incremental integration, the develop-
ers write and test a program in small pieces and
then combine the pieces one at a time. Additional
test infrastructure, such as stubs, drivers, and
mock objects, are usually needed to enable incre-
mental integration. By building and integrating
one unit at a time (for example, a class or compo-
nent), the construction process can provide early
feedback to developers and customers. Other
advantages of incremental integration include
easier error location, improved progress monitor-
ing, more fully tested units, and so forth.

4. Construction Technologies

4.1. API Design and Use
[3*]

An application programming interface (API) is the
set of signatures that are exported and available to
the users of a library or a framework to write their
applications. Besides signatures, an API should
always include statements about the program’s
effects and/or behaviors (i.e., its semantics).

API design should try to make the API easy
to learn and memorize, lead to readable code, be
hard to misuse, be easy to extend, be complete,
and maintain backward compatibility. As the
APIs usually outlast their implementations for
a widely used library or framework, it is desired
that the API be straightforward and kept stable to
facilitate the development and maintenance of the
client applications.

API use involves the processes of select-
ing, learning, testing, integrating, and possibly
extending APIs provided by a library or frame-
work (see section 3.6, Construction with Reuse).

4.2. Object-Oriented Runtime Issues 
[1*]

Object-oriented languages support a series of
runtime mechanisms including polymorphism
and reflection. These runtime mechanisms
increase the flexibility and adaptability of object-
oriented programs. Polymorphism is the ability
of a language to support general operations with-
out knowing until runtime what kind of concrete
objects the software will include. Because the
program does not know the exact types of the
objects in advance, the exact behaviour is deter-
mined at runtime (called dynamic binding).

Reflection is the ability of a program to observe
and modify its own structure and behavior at run-
time. Reflection allows inspection of classes,
interfaces, fields, and methods at runtime with-
out knowing their names at compile time. It also
allows instantiation at runtime of new objects and
invocation of methods using parameterized class
and method names.

4.3. Parameterization and Generics
[4*]

Parameterized types, also known as generics
(Ada, Eiffel) and templates (C++), enable the
definition of a type or class without specifying all
the other types it uses. The unspecified types are
supplied as parameters at the point of use. Param-
eterized types provide a third way (in addition to
class inheritance and object composition) to com-
pose behaviors in object-oriented software.

4.4. Assertions, Design by Contract, and Defensive 
Programming

[1*]

An assertion is an executable predicate that’s
placed in a program—usually a routine or macro—
that allows runtime checks of the program. Asser-
tions are especially useful in high-reliability pro-
grams. They enable programmers to more quickly
flush out mismatched interface assumptions, errors
that creep in when code is modified, and so on.
Assertions are normally compiled into the code at
development time and are later compiled out of the
code so that they don’t degrade the performance.

Software Construction 3-9

Design by contract is a development approach
in which preconditions and postconditions are
included for each routine. When preconditions
and postconditions are used, each routine or
class is said to form a contract with the rest of
the program. Furthermore, a contract provides a
precise specification of the semantics of a routine,
and thus helps the understanding of its behavior.
Design by contract is thought to improve the
quality of software construction.
Defensive  programming means to protect a

routine from being broken by invalid inputs.
Common ways to handle invalid inputs include
checking the values of all the input parameters
and deciding how to handle bad inputs. Asser-
tions are often used in defensive programming to
check input values.

4.5. Error Handling, Exception Handling, and 
Fault Tolerance

[1*]

The way that errors are handled affects software’s
ability to meet requirements related to correct-
ness, robustness, and other nonfunctional attri-
butes. Assertions are sometimes used to check
for errors. Other error handling techniques—such
as returning a neutral value, substituting the next
piece of valid data, logging a warning message,
returning an error code, or shutting down the soft-
ware—are also used.

Exceptions are used to detect and process
errors or exceptional events. The basic structure
of an exception is that a routine uses throw to
throw a detected exception and an exception han-
dling block will catch the exception in a try-catch
block. The try-catch block may process the erro-
neous condition in the routine or it may return
control to the calling routine. Exception handling
policies should be carefully designed follow-
ing common principles such as including in the
exception message all information that led to the
exception, avoiding empty catch blocks, knowing
the exceptions the library code throws, perhaps
building a centralized exception reporter, and
standardizing the program’s use of exceptions.

Fault tolerance is a collection of techniques
that increase software reliability by detecting
errors and then recovering from them if possible

or containing their effects if recovery is not pos-
sible. The most common fault tolerance strategies
include backing up and retrying, using auxiliary
code, using voting algorithms, and replacing an
erroneous value with a phony value that will have
a benign effect.

4.6. Executable Models 
[5*]

Executable models abstract away the details of
specific programming languages and decisions
about the organization of the software. Different
from traditional software models, a specification
built in an executable modeling language like
xUML (executable UML) can be deployed in
various software environments without change.
An executable-model compiler (transformer) can
turn an executable model into an implementation
using a set of decisions about the target hardware
and software environment. Thus, constructing
executable models can be regarded as a way of
constructing executable software.

Executable models are one foundation support-
ing the Model-Driven Architecture (MDA) initia-
tive of the Object Management Group (OMG). An
executable model is a way to completely specify
a Platform Independent Model (PIM); a PIM is
a model of a solution to a problem that does not
rely on any implementation technologies. Then
a Platform Specific Model (PSM), which is a
model that contains the details of the implemen-
tation, can be produced by weaving together the
PIM and the platform on which it relies.

4.7. State-Based and Table-Driven Construction 
Techniques

[1*]

State-based programming, or automata-based
programming, is a programming technology
using finite state machines to describe program
behaviours. The transition graphs of a state
machine are used in all stages of software devel-
opment (specification, implementation, debug-
ging, and documentation). The main idea is to
construct computer programs the same way the
automation of technological processes is done.
State-based programming is usually combined

3-10 SWEBOK® Guide V3.0

with object-oriented programming, forming a
new composite approach called state-based, 
object-oriented programming.

A table-driven method is a schema that uses
tables to look up information rather than using
logic statements (such as if  and case). Used in
appropriate circumstances, table-driven code
is simpler than complicated logic and easier to
modify. When using table-driven methods, the
programmer addresses two issues: what informa-
tion to store in the table or tables, and how to effi-
ciently access information in the table.

4.8. Runtime Configuration and 
Internationalization

[1*]

To achieve more flexibility, a program is often
constructed to support late binding time of its vari-
ables. Runtime configuration is a technique that
binds variable values and program settings when
the program is running, usually by updating and
reading configuration files in a just-in-time mode.

Internationalization is the technical activ-
ity of preparing a program, usually interactive
software, to support multiple locales. The corre-
sponding activity, localization, is the activity of
modifying a program to support a specific local
language. Interactive software may contain doz-
ens or hundreds of prompts, status displays, help
messages, error messages, and so on. The design
and construction processes should accommodate
string and character-set issues including which
character set is to be used, what kinds of strings
are used, how to maintain the strings without
changing the code, and translating the strings into
different languages with minimal impact on the
processing code and the user interface.

4.9. Grammar-Based Input Processing 
[1*] [6*]

Grammar-based input processing involves syntax
analysis, or parsing, of the input token stream. It
involves the creation of a data structure (called a
parse tree or syntax tree) representing the input
data. The inorder traversal of the parse tree usu-
ally gives the expression just parsed. The parser
checks the symbol table for the presence of

programmer-defined variables that populate the
tree. After building the parse tree, the program
uses it as input to the computational processes.

4.10. Concurrency Primitives
[7*]

A synchronization primitive is a programming
abstraction provided by a programming language
or the operating system that facilitates concur-
rency and synchronization. Well-known concur-
rency primitives include semaphores, monitors,
and mutexes.

A semaphore is a protected variable or abstract
data type that provides a simple but useful abstrac-
tion for controlling access to a common resource
by multiple processes or threads in a concurrent
programming environment.

A monitor is an abstract data type that presents
a set of programmer-defined operations that are
executed with mutual exclusion. A monitor con-
tains the declaration of shared variables and pro-
cedures or functions that operate on those vari-
ables. The monitor construct ensures that only
one process at a time is active within the monitor.

A mutex (mutual exclusion) is a synchroniza-
tion primitive that grants exclusive access to a
shared resource by only one process or thread at
a time.

4.11. Middleware
[3*] [6*]

Middleware is a broad classification for soft-
ware that provides services above the operating
system layer yet below the application program
layer. Middleware can provide runtime contain-
ers for software components to provide message
passing, persistence, and a transparent location
across a network. Middleware can be viewed as
a connector between the components that use the
middleware. Modern message-oriented middle-
ware usually provides an Enterprise Service Bus
(ESB), which supports service-oriented interac-
tion and communication between multiple soft-
ware applications.

Software Construction 3-11

4.12. Construction Methods for Distributed 
Software

[7*]

A distributed system is a collection of physically
separate, possibly heterogeneous computer sys-
tems that are networked to provide the users with
access to the various resources that the system
maintains. Construction of distributed software is
distinguished from traditional software construc-
tion by issues such as parallelism, communica-
tion, and fault tolerance.

Distributed programming typically falls into one
of several basic architectural categories: client-
server, 3-tier architecture, n-tier architecture, dis-
tributed objects, loose coupling, or tight coupling
(see section 14.3 of the Computing Foundations
KA and section 3.2 of the Software Design KA).

4.13. Constructing Heterogeneous Systems
[6*]

Heterogeneous systems consist of a variety of
specialized computational units of different types,
such as Digital Signal Processors (DSPs), micro-
controllers, and peripheral processors. These
computational units are independently controlled
and communicate with one another. Embedded
systems are typically heterogeneous systems.

The design of heterogeneous systems may
require the combination of several specification
languages in order to design different parts of
the system—in other words, hardware/software
codesign. The key issues include multilanguage
validation, cosimulation, and interfacing.

During the hardware/software codesign, soft-
ware development and virtual hardware devel-
opment proceed concurrently through stepwise
decomposition. The hardware part is usually
simulated in field programmable gate arrays
(FPGAs) or application-specific integrated cir-
cuits (ASICs). The software part is translated into
a low-level programming language.

4.14. Performance Analysis and Tuning
[1*]

Code efficiency—determined by architecture,
detailed design decisions, and data-structure and

algorithm selection—influences an execution
speed and size. Performance analysis is the inves-
tigation of a program’s behavior using informa-
tion gathered as the program executes, with the
goal of identifying possible hot spots in the pro-
gram to be improved.

Code tuning, which improves performance at
the code level, is the practice of modifying correct
code in ways that make it run more efficiently.
Code tuning usually involves only small-scale
changes that affect a single class, a single routine,
or, more commonly, a few lines of code. A rich
set of code tuning techniques is available, includ-
ing those for tuning logic expressions, loops, data
transformations, expressions, and routines. Using
a low-level language is another common tech-
nique for improving some hot spots in a program.

4.15. Platform Standards
 [6*] [7*]

Platform standards enable programmers to
develop portable applications that can be exe-
cuted in compatible environments without
changes. Platform standards usually involve a
set of standard services and APIs that compat-
ible platform implementations must implement.
Typical examples of platform standards are Java
2 Platform Enterprise Edition (J2EE) and the
POSIX standard for operating systems (Portable
Operating System Interface), which represents
a set of standards implemented primarily for
UNIX-based operating systems.

4.16. Test-First Programming
[1*]

Test-first programming (also known as Test-
Driven Development—TDD) is a popular devel-
opment style in which test cases are written prior
to writing any code. Test-first programming can
usually detect defects earlier and correct them
more easily than traditional programming styles.
Furthermore, writing test cases first forces pro-
grammers to think about requirements and design
before coding, thus exposing requirements and
design problems sooner.

3-12 SWEBOK® Guide V3.0

5. Software Construction Tools

5.1. Development Environments
[1*]

A development environment, or integrated devel-
opment environment (IDE), provides compre-
hensive facilities to programmers for software
construction by integrating a set of development
tools. The choices of development environments
can affect the efficiency and quality of software
construction.

In additional to basic code editing functions,
modern IDEs often offer other features like com-
pilation and error detection from within the edi-
tor, integration with source code control, build/
test/debugging tools, compressed or outline
views of programs, automated code transforms,
and support for refactoring.

5.2. GUI Builders
[1*]

A GUI (Graphical User Interface) builder is a
software development tool that enables the devel-
oper to create and maintain GUIs in a WYSI-
WYG (what you see is what you get) mode. A
GUI builder usually includes a visual editor
for the developer to design forms and windows
and manage the layout of the widgets by drag-
ging, dropping, and parameter setting. Some GUI
builders can automatically generate the source
code corresponding to the visual GUI design.

Because current GUI applications usually fol-
low the event-driven style (in which the flow of
the program is determined by events and event
handling), GUI builder tools usually provide
code generation assistants, which automate the
most repetitive tasks required for event handling.
The supporting code connects widgets with the
outgoing and incoming events that trigger the
functions providing the application logic.

Some modern IDEs provide integrated GUI
builders or GUI builder plug-ins. There are also
many standalone GUI builders.

5.3. Unit Testing Tools
[1*] [2*]

Unit testing verifies the functioning of software
modules in isolation from other software elements
that are separately testable (for example, classes,
routines, components). Unit testing is often auto-
mated. Developers can use unit testing tools
and frameworks to extend and create automated
testing environment. With unit testing tools and
frameworks, the developer can code criteria into
the test to verify the unit’s correctness under vari-
ous data sets. Each individual test is implemented
as an object, and a test runner runs all of the tests.
During the test execution, those failed test cases
will be automatically flagged and reported.

5.4. Profiling, Performance Analysis, and 
Slicing Tools

[1*]

Performance analysis tools are usually used to
support code tuning. The most common per-
formance analysis tools are profiling tools. An
execution profiling tool monitors the code while
it runs and records how many times each state-
ment is executed or how much time the program
spends on each statement or execution path. Pro-
filing the code while it is running gives insight
into how the program works, where the hot spots
are, and where the developers should focus the
code tuning efforts.

Program slicing involves computation of the
set of program statements (i.e., the program slice)
that may affect the values of specified variables
at some point of interest, which is referred to as
a slicing criterion. Program slicing can be used
for locating the source of errors, program under-
standing, and optimization analysis. Program
slicing tools compute program slices for various
programming languages using static or dynamic
analysis methods.

Software Construction 3-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

M
cC

on
ne

ll
20

04

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

C
le

m
en

ts
 e

t a
l.

20
10

[3

*]

G
am

m
a

et
 a

l.
19

94

[4
*]

M
el

lo
r

an
d

B
al

ce
r

20
02

[5

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[6
*]

Si
lb

er
sc

ha
tz

 e
t a

l.
20

08

[7
*]

1. Software
Construction
Fundamentals

1.1. Minimizing
Complexity

c2, c3,
c7-c9,

c24, c27,
c28, c31,
c32, c34

1.2. Anticipating
Change

c3–c5,
c24, c31,
c32, c34

1.3. Constructing for
Verification

c8,
c20–

c23, c31,
c34

1.4. Reuse c16
1.5. Standards in
Construction c4

2. Managing
Construction

2.1. Construction in
Life Cycle Models

c2, c3,
c27, c29

2.2. Construction
Planning

c3, c4,
c21,

c27–c29
2.3. Construction
Measurement c25, c28

3. Practical
Considerations

3.1. Construction
Design

c3, c5,
c24

3.2. Construction
Languages c4

3.3. Coding c5–c19,
c25–c26

3-14 SWEBOK® Guide V3.0

M
cC

on
ne

ll
20

04

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

C
le

m
en

ts
 e

t a
l.

20
10

[3

*]

G
am

m
a

et
 a

l.
19

94

[4
*]

M
el

lo
r

an
d

B
al

ce
r

20
02

[5

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[6
*]

Si
lb

er
sc

ha
tz

 e
t a

l.
20

08

[7
*]

3.4. Construction
Testing c22, c23

3.5. Construction for
Reuse c16

3.6. Construction
with Reuse c16

3.7. Construction
Quality

c8,
c20–c25

3.8. Integration c29
4. Construction
Technologies

4.1. API Design and
Use c7

4.2. Object-Oriented
Runtime Issues c6, c7

4.3.
Parameterization
and Generics

c1

4.4. Assertions,
Design by Contract,
and Defensive
Programming

c8, c9

4.5. Error Handling,
Exception Handling,
and Fault Tolerance

c3, c8

4.6. Executable
Models c1

4.7. State-Based
and Table-Driven
Construction
Techniques

c18

4.8. Runtime
Configuration and
Internationalization

c3, c10

4.9. Grammar-Based
Input Processing c5 c8

Software Construction 3-15

M
cC

on
ne

ll
20

04

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

C
le

m
en

ts
 e

t a
l.

20
10

[3

*]

G
am

m
a

et
 a

l.
19

94

[4
*]

M
el

lo
r

an
d

B
al

ce
r

20
02

[5

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[6
*]

Si
lb

er
sc

ha
tz

 e
t a

l.
20

08

[7
*]

4.10. Concurrency
Primitives c6

4.11. Middleware c1 c8
4.12. Construction
Methods for
Distributed Software

c2

4.13. Constructing
Heterogeneous
Systems

c9

4.14. Performance
Analysis and Tuning c25, c26

4.15. Platform
Standards c10 c1

4.16. Test-First
Programming c22

5. Construction Tools
5.1. Development
Environments c30

5.2. GUI Builders c30
5.3. Unit Testing
Tools c22 c8

5.4. Profiling,
Performance
Analysis, and
Slicing Tools

c25, c26

3-16 SWEBOK® Guide V3.0

FURTHER READINGS

IEEE Std. 1517-2010 Standard for Information 
Technology—System and Software Life 
Cycle Processes—Reuse Processes, IEEE,
2010 [8].

This standard specifies the processes, activities,
and tasks to be applied during each phase of the
software life cycle to enable a software product
to be constructed from reusable assets. It covers
the concept of reuse-based development and the
processes of construction for reuse and construc-
tion with reuse.

IEEE Std. 12207-2008 (a.k.a. ISO/IEC 
12207:2008) Standard for Systems and 
Software Engineering—Software Life Cycle 
Processes, IEEE, 2008 [9].

This standard defines a series of software devel-
opment processes, including software construc-
tion process, software integration process, and
software reuse process.

REFERENCES

[1*] S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

[2*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[3*] P. Clements et al., Documenting Software 
Architectures: Views and Beyond, 2nd ed.,
Pearson Education, 2010.

[4*] E. Gamma et al., Design Patterns: Elements 
of Reusable Object-Oriented Software, 1st
ed., Addison-Wesley Professional, 1994.

[5*] S.J. Mellor and M.J. Balcer, Executable 
UML: A Foundation for Model-Driven 
Architecture, 1st ed., Addison-Wesley,
2002.

[6*] L. Null and J. Lobur, The Essentials of 
Computer Organization and Architecture,
2nd ed., Jones and Bartlett Publishers,
2006.

[7*] A. Silberschatz, P.B. Galvin, and G. Gagne,
Operating System Concepts, 8th ed., Wiley,
2008.

[8] IEEE Std. 1517-2010 Standard for 
Information Technology—System and 
Software Life Cycle Processes—Reuse 
Processes, IEEE, 2010.

[9] IEEE Std. 12207-2008 (a.k.a. ISO/IEC 
12207:2008) Standard for Systems and 
Software Engineering—Software Life Cycle 
Processes, IEEE, 2008.

4-1

CHAPTER 4

SOFTWARE TESTING

ACRONYMS

API Application Program Interface
TDD Test-Driven Development

TTCN3 Testing and Test Control Notation
Version 3

XP Extreme Programming

INTRODUCTION

Software testing consists of the dynamic verifica-
tion that a program provides expected behaviors
on a finite set of test cases, suitably selected from
the usually infinite execution domain.

In the above definition, italicized words cor-
respond to key issues in describing the Software
Testing knowledge area (KA):

• Dynamic: This term means that testing
always implies executing the program on
selected inputs. To be precise, the input
value alone is not always sufficient to spec-
ify a test, since a complex, nondeterministic
system might react to the same input with
different behaviors, depending on the system
state. In this KA, however, the term “input”
will be maintained, with the implied conven-
tion that its meaning also includes a speci-
fied input state in those cases for which it
is important. Static techniques are different
from and complementary to dynamic testing.
Static techniques are covered in the Software
Quality KA. It is worth noting that terminol-
ogy is not uniform among different commu-
nities and some use the term “testing” also in
reference to static techniques.

• Finite: Even in simple programs, so many test
cases are theoretically possible that exhaus-
tive testing could require months or years to

execute. This is why, in practice, a complete
set of tests can generally be considered infi-
nite, and testing is conducted on a subset of
all possible tests, which is determined by risk
and prioritization criteria. Testing always
implies a tradeoff between limited resources
and schedules on the one hand and inherently
unlimited test requirements on the other.

• Selected: The many proposed test tech-
niques differ essentially in how the test set
is selected, and software engineers must be
aware that different selection criteria may
yield vastly different degrees of effective-
ness. How to identify the most suitable
selection criterion under given conditions is
a complex problem; in practice, risk analysis
techniques and software engineering exper-
tise are applied.

• Expected: It must be possible, although not
always easy, to decide whether the observed
outcomes of program testing are acceptable
or not; otherwise, the testing effort is use-
less. The observed behavior may be checked
against user needs (commonly referred to
as testing for validation), against a speci-
fication (testing for verification), or, per-
haps, against the anticipated behavior from
implicit requirements or expectations (see
Acceptance Tests in the Software Require-
ments KA).

In recent years, the view of software testing
has matured into a constructive one. Testing is
no longer seen as an activity that starts only after
the coding phase is complete with the limited
purpose of detecting failures. Software testing
is, or should be, pervasive throughout the entire
development and maintenance life cycle. Indeed,
planning for software testing should start with the
early stages of the software requirements process,

4-2 SWEBOK® Guide V3.0

and test plans and procedures should be system-
atically and continuously developed—and possi-
bly refined—as software development proceeds.
These test planning and test designing activities
provide useful input for software designers and
help to highlight potential weaknesses, such as
design oversights/contradictions, or omissions/
ambiguities in the documentation.

For many organizations, the approach to soft-
ware quality is one of prevention: it is obviously
much better to prevent problems than to correct
them. Testing can be seen, then, as a means for
providing information about the functionality

and quality attributes of the software and also
for identifying faults in those cases where error
prevention has not been effective. It is perhaps
obvious but worth recognizing that software can
still contain faults, even after completion of an
extensive testing activity. Software failures expe-
rienced after delivery are addressed by corrective
maintenance. Software maintenance topics are
covered in the Software Maintenance KA.

In the Software Quality KA (see Software Qual-
ity Management Techniques), software quality
management techniques are notably categorized
into static techniques (no code execution) and

Figure 4.1. Breakdown of Topics for the Software Testing KA

Software Testing 4-3

dynamic techniques (code execution). Both cat-
egories are useful. This KA focuses on dynamic
techniques.

Software testing is also related to software
construction (see Construction Testing in the
Software Construction KA). In particular, unit
and integration testing are intimately related to
software construction, if not part of it.

BREAKDOWN OF TOPICS FOR
SOFTWARE TESTING

The breakdown of topics for the Software Test-
ing KA is shown in Figure 4.1. A more detailed
breakdown is provided in the Matrix of Topics
vs. Reference Material at the end of this KA.

The first topic describes Software Testing Fun-
damentals. It covers the basic definitions in the
field of software testing, the basic terminology
and key issues, and software testing’s relation-
ship with other activities.

The second topic, Test Levels, consists of two
(orthogonal) subtopics: the first subtopic lists the
levels in which the testing of large software is
traditionally subdivided, and the second subtopic
considers testing for specific conditions or prop-
erties and is referred to as Objectives of Testing.
Not all types of testing apply to every software
product, nor has every possible type been listed.

The test target and test objective together
determine how the test set is identified, both with
regard to its consistency—how  much  testing  is 
enough  for  achieving  the  stated  objective—and
to its composition—which  test  cases  should 
be  selected  for  achieving  the  stated  objective
(although usually “for achieving the stated objec-
tive” remains implicit and only the first part of the
two italicized questions above is posed). Criteria
for addressing the first question are referred to as
test adequacy criteria, while those addressing the
second question are the test selection criteria.

Several Test Techniques have been developed
in the past few decades, and new ones are still
being proposed. Generally accepted techniques
are covered in the third topic.

Test-Related Measures are dealt with in the
fourth topic, while the issues relative to Test Pro-
cess are covered in the fifth. Finally, Software
Testing Tools are presented in topic six.

1. Software Testing Fundamentals

1.1. Testing-Related Terminology

1.1.1. Definitions of Testing and Related 
Terminology 

[1*, c1, c2] [2*, c8]

Definitions of testing and testing-related termi-
nology are provided in the cited references and
summarized as follows.

1.1.2. Faults vs. Failures 
[1*, c1s5] [2*, c11]

Many terms are used in the software engineering
literature to describe a malfunction: notably fault,
failure, and error, among others. This terminol-
ogy is precisely defined in [3, c2]. It is essential
to clearly distinguish between the cause of a mal-
function (for which the term fault will be used
here) and an undesired effect observed in the sys-
tem’s delivered service (which will be called a
failure). Indeed there may well be faults in the
software that never manifest themselves as fail-
ures (see Theoretical and Practical Limitations
of Testing in section 1.2, Key Issues). Thus test-
ing can reveal failures, but it is the faults that can
and must be removed [3]. The more generic term
defect can be used to refer to either a fault or a
failure, when the distinction is not important [3].

However, it should be recognized that the cause
of a failure cannot always be unequivocally iden-
tified. No theoretical criteria exist to definitively
determine, in general, the fault that caused an
observed failure. It might be said that it was the
fault that had to be modified to remove the failure,
but other modifications might have worked just
as well. To avoid ambiguity, one could refer to
failure-causing  inputs instead of faults—that is,
those sets of inputs that cause a failure to appear.

1.2. Key Issues

1.2.1. Test Selection Criteria / Test Adequacy 
Criteria (Stopping Rules) 

[1*, c1s14, c6s6, c12s7]

A test selection criterion is a means of selecting
test cases or determining that a set of test cases

4-4 SWEBOK® Guide V3.0

is sufficient for a specified purpose. Test ade-
quacy criteria can be used to decide when suf-
ficient testing will be, or has been accomplished
[4] (see Termination in section 5.1, Practical
Considerations).

1.2.2. Testing Effectiveness / Objectives for 
Testing 

[1*, c11s4, c13s11]

Testing effectiveness is determined by analyzing
a set of program executions. Selection of tests to
be executed can be guided by different objectives:
it is only in light of the objective pursued that the
effectiveness of the test set can be evaluated.

1.2.3. Testing for Defect Discovery 
[1*, c1s14]

In testing for defect discovery, a successful test
is one that causes the system to fail. This is quite
different from testing to demonstrate that the
software meets its specifications or other desired
properties, in which case testing is successful if
no failures are observed under realistic test cases
and test environments.

1.2.4. The Oracle Problem 
[1*, c1s9, c9s7]

An oracle is any human or mechanical agent that
decides whether a program behaved correctly
in a given test and accordingly results in a ver-
dict of “pass” or “fail.” There exist many differ-
ent kinds of oracles; for example, unambiguous
requirements specifications, behavioral models,
and code annotations. Automation of mechanized
oracles can be difficult and expensive.

1.2.5. Theoretical and Practical Limitations of 
Testing 

[1*, c2s7]

Testing theory warns against ascribing an unjusti-
fied level of confidence to a series of successful
tests. Unfortunately, most established results of
testing theory are negative ones, in that they state
what testing can never achieve as opposed to what
is actually achieved. The most famous quotation

in this regard is the Dijkstra aphorism that “pro-
gram testing can be used to show the presence of
bugs, but never to show their absence” [5]. The
obvious reason for this is that complete testing is
not feasible in realistic software. Because of this,
testing must be driven based on risk [6, part 1]
and can be seen as a risk management strategy.

1.2.6. The Problem of Infeasible Paths 
[1*, c4s7]

Infeasible paths are control flow paths that cannot
be exercised by any input data. They are a signifi-
cant problem in path-based testing, particularly
in automated derivation of test inputs to exercise
control flow paths.

1.2.7. Testability 
[1*, c17s2]

The term “software testability” has two related
but different meanings: on the one hand, it refers
to the ease with which a given test coverage
criterion can be satisfied; on the other hand, it
is defined as the likelihood, possibly measured
statistically, that a set of test cases will expose
a failure if the software is faulty. Both meanings
are important.

1.3. Relationship of Testing to Other Activities

Software testing is related to, but different from,
static software quality management techniques,
proofs of correctness, debugging, and program
construction. However, it is informative to con-
sider testing from the point of view of software
quality analysts and of certifiers.

• Testing vs. Static Software Quality Man-
agement Techniques (see Software Quality
Management Techniques in the Software
Quality KA [1*, c12]).

• Testing vs. Correctness Proofs and Formal
Verification (see the Software Engineering
Models and Methods KA [1*, c17s2]).

• Testing vs. Debugging (see Construction
Testing in the Software Construction KA
and Debugging Tools and Techniques in the
Computing Foundations KA [1*, c3s6]).

Software Testing 4-5

• Testing vs. Program Construction (see Con-
struction Testing in the Software Construc-
tion KA [1*, c3s2]).

2. Test Levels

Software testing is usually performed at differ-
ent levels throughout the development and main-
tenance processes. Levels can be distinguished
based on the object of testing, which is called
the target, or on the purpose, which is called the
objective (of the test level).

2.1. The Target of the Test 
[1*, c1s13] [2*, c8s1]

The target of the test can vary: a single module, a
group of such modules (related by purpose, use,
behavior, or structure), or an entire system. Three
test stages can be distinguished: unit, integra-
tion, and system. These three test stages do not
imply any process model, nor is any one of them
assumed to be more important than the other two.

2.1.1. Unit Testing 
[1*, c3] [2*, c8]

Unit testing verifies the functioning in isolation
of software elements that are separately testable.
Depending on the context, these could be the
individual subprograms or a larger component
made of highly cohesive units. Typically, unit
testing occurs with access to the code being tested
and with the support of debugging tools. The pro-
grammers who wrote the code typically, but not
always, conduct unit testing.

2.1.2. Integration Testing 
[1*, c7] [2*, c8]

Integration testing is the process of verifying the
interactions among software components. Clas-
sical integration testing strategies, such as top-
down and bottom-up, are often used with hierar-
chically structured software.

Modern, systematic integration strategies are
typically architecture-driven, which involves
incrementally integrating the software com-
ponents or subsystems based on identified

functional threads. Integration testing is often an
ongoing activity at each stage of development
during which software engineers abstract away
lower-level perspectives and concentrate on the
perspectives of the level at which they are inte-
grating. For other than small, simple software,
incremental integration testing strategies are usu-
ally preferred to putting all of the components
together at once—which is often called “big
bang” testing.

2.1.3. System Testing 
[1*, c8] [2*, c8]

System testing is concerned with testing the
behavior of an entire system. Effective unit and
integration testing will have identified many of
the software defects. System testing is usually
considered appropriate for assessing the non-
functional system requirements—such as secu-
rity, speed, accuracy, and reliability (see Func-
tional and Non-Functional Requirements in the
Software Requirements KA and Software Qual-
ity Requirements in the Software Quality KA).
External interfaces to other applications, utilities,
hardware devices, or the operating environments
are also usually evaluated at this level.

2.2. Objectives of Testing 
[1*, c1s7]

Testing is conducted in view of specific objec-
tives, which are stated more or less explicitly
and with varying degrees of precision. Stating
the objectives of testing in precise, quantitative
terms supports measurement and control of the
test process.

Testing can be aimed at verifying different prop-
erties. Test cases can be designed to check that
the functional specifications are correctly imple-
mented, which is variously referred to in the lit-
erature as conformance testing, correctness test-
ing, or functional testing. However, several other
nonfunctional properties may be tested as well—
including performance, reliability, and usabil-
ity, among many others (see Models and Quality
Characteristics in the Software Quality KA).

Other important objectives for testing include
but are not limited to reliability measurement,

4-6 SWEBOK® Guide V3.0

identification of security vulnerabilities, usability
evaluation, and software acceptance, for which
different approaches would be taken. Note that,
in general, the test objectives vary with the test
target; different purposes are addressed at differ-
ent levels of testing.

The subtopics listed below are those most
often cited in the literature. Note that some kinds
of testing are more appropriate for custom-made
software packages—installation testing, for
example—and others for consumer products, like
beta testing.

2.2.1. Acceptance / Qualification Testing 
[1*, c1s7] [2*, c8s4]

Acceptance / qualification testing determines
whether a system satisfies its acceptance criteria,
usually by checking desired system behaviors
against the customer’s requirements. The cus-
tomer or a customer’s representative thus speci-
fies or directly undertakes activities to check
that their requirements have been met, or in the
case of a consumer product, that the organization
has satisfied the stated requirements for the tar-
get market. This testing activity may or may not
involve the developers of the system.

2.2.2. Installation Testing 
[1*, c12s2]

Often, after completion of system and acceptance
testing, the software is verified upon installation
in the target environment. Installation testing can
be viewed as system testing conducted in the
operational environment of hardware configura-
tions and other operational constraints. Installa-
tion procedures may also be verified.

2.2.3. Alpha and Beta Testing 
[1*, c13s7, c16s6] [2*, c8s4]

Before software is released, it is sometimes given
to a small, selected group of potential users for
trial use (alpha  testing) and/or to a larger set of
representative users (beta  testing). These users
report problems with the product. Alpha and beta
testing are often uncontrolled and are not always
referred to in a test plan.

2.2.4. Reliability Achievement and Evaluation 
[1*, c15] [2*, c15s2]

Testing improves reliability by identifying and
correcting faults. In addition, statistical measures
of reliability can be derived by randomly generat-
ing test cases according to the operational profile of
the software (see Operational Profile in section 3.5,
Usage-Based Techniques). The latter approach is
called operational testing. Using reliability growth
models, both objectives can be pursued together
[3] (see Life Test, Reliability Evaluation in section
4.1, Evaluation of the Program under Test).

2.2.5. Regression Testing 
[1*, c8s11, c13s3]

According to [7], regression testing is the “selec-
tive retesting of a system or component to verify
that modifications have not caused unintended
effects and that the system or component still
complies with its specified requirements.” In
practice, the approach is to show that software
still passes previously passed tests in a test suite
(in fact, it is also sometimes referred to as nonre-
gression testing). For incremental development,
the purpose of regression testing is to show that
software behavior is unchanged by incremen-
tal changes to the software, except insofar as it
should. In some cases, a tradeoff must be made
between the assurance given by regression testing
every time a change is made and the resources
required to perform the regression tests, which
can be quite time consuming due to the large
number of tests that may be executed. Regression
testing involves selecting, minimizing, and/or
prioritizing a subset of the test cases in an exist-
ing test suite [8]. Regression testing can be con-
ducted at each of the test levels described in sec-
tion 2.1, The Target of the Test, and may apply to
functional and nonfunctional testing.

2.2.6. Performance Testing 
[1*, c8s6]

Performance testing verifies that the software
meets the specified performance requirements
and assesses performance characteristics—for
instance, capacity and response time.

Software Testing 4-7

2.2.7. Security Testing 
[1*, c8s3] [2*, c11s4]

Security testing is focused on the verification that
the software is protected from external attacks. In
particular, security testing verifies the confiden-
tiality, integrity, and availability of the systems
and its data. Usually, security testing includes
verification against misuse and abuse of the soft-
ware or system (negative testing).

2.2.8. Stress Testing 
[1*, c8s8]

Stress testing exercises software at the maximum
design load, as well as beyond it, with the goal
of determining the behavioral limits, and to test
defense mechanisms in critical systems.

2.2.9. Back-to-Back Testing 
[7]

IEEE/ISO/IEC Standard 24765 defines back-to-
back testing as “testing in which two or more
variants of a program are executed with the same
inputs, the outputs are compared, and errors are
analyzed in case of discrepancies.”

2.2.10. Recovery Testing 
[1*, c14s2]

Recovery testing is aimed at verifying software
restart capabilities after a system crash or other
“disaster.”

2.2.11. Interface Testing 
[2*, c8s1.3] [9*, c4s4.5]

Interface defects are common in complex sys-
tems. Interface testing aims at verifying whether
the components interface correctly to provide the
correct exchange of data and control informa-
tion. Usually the test cases are generated from
the interface specification. A specific objective of
interface testing is to simulate the use of APIs by
end-user applications. This involves the genera-
tion of parameters of the API calls, the setting of
external environment conditions, and the defini-
tion of internal data that affect the API.

2.2.12. Configuration Testing 
[1*, c8s5]

In cases where software is built to serve different
users, configuration testing verifies the software
under different specified configurations.

2.2.13. Usability and Human Computer Inter-
action Testing 

[10*, c6]

The main task of usability and human computer
interaction testing is to evaluate how easy it is
for end users to learn and to use the software. In
general, it may involve testing the software func-
tions that supports user tasks, documentation that
aids users, and the ability of the system to recover
from user errors (see User Interface Design in the
Software Design KA).

3. Test Techniques

One of the aims of testing is to detect as many
failures as possible. Many techniques have been
developed to do this [6, part 4]. These techniques
attempt to “break” a program by being as sys-
tematic as possible in identifying inputs that will
produce representative program behaviors; for
instance, by considering subclasses of the input
domain, scenarios, states, and data flows.

The classification of testing techniques pre-
sented here is based on how tests are generated:
from the software engineer’s intuition and expe-
rience, the specifications, the code structure, the
real or imagined faults to be discovered, predicted
usage, models, or the nature of the application.
One category deals with the combined use of two
or more techniques.

Sometimes these techniques are classified as
white-box (also called glass-box), if the tests are
based on information about how the software has
been designed or coded, or as black-box if the test
cases rely only on the input/output behavior of
the software. The following list includes those
testing techniques that are commonly used, but
some practitioners rely on some of the techniques
more than others.

4-8 SWEBOK® Guide V3.0

3.1. Based on the Software Engineer’s Intuition 
and Experience 

3.1.1. Ad Hoc

Perhaps the most widely practiced technique is
ad hoc testing: tests are derived relying on the
software engineer’s skill, intuition, and experi-
ence with similar programs. Ad hoc testing can
be useful for identifying tests cases that not easily
generated by more formalized techniques.

3.1.2. Exploratory Testing

Exploratory testing is defined as simultaneous
learning, test design, and test execution [6, part
1]; that is, the tests are not defined in advance
in an established test plan, but are dynamically
designed, executed, and modified. The effective-
ness of exploratory testing relies on the software
engineer’s knowledge, which can be derived
from various sources: observed product behavior
during testing, familiarity with the application,
the platform, the failure process, the type of pos-
sible faults and failures, the risk associated with a
particular product, and so on.

3.2. Input Domain-Based Techniques

3.2.1. Equivalence Partitioning 
[1*, c9s4]

Equivalence partitioning involves partitioning the
input domain into a collection of subsets (or equiv-
alent classes) based on a specified criterion or rela-
tion. This criterion or relation may be different
computational results, a relation based on control
flow or data flow, or a distinction made between
valid inputs that are accepted and processed by the
system and invalid inputs, such as out of range val-
ues, that are not accepted and should generate an
error message or initiate error processing. A repre-
sentative set of tests (sometimes only one) is usu-
ally taken from each equivalency class.

3.2.2. Pairwise Testing 
[1*, c9s3]

Test cases are derived by combining interesting
values for every pair of a set of input variables

instead of considering all possible combinations.
Pairwise testing belongs to combinatorial testing,
which in general also includes higher-level com-
binations than pairs: these techniques are referred
to as t-wise, whereby every possible combination
of t input variables is considered.

3.2.3. Boundary-Value Analysis 
[1*, c9s5]

Test cases are chosen on or near the boundaries of
the input domain of variables, with the underly-
ing rationale that many faults tend to concentrate
near the extreme values of inputs. An extension of
this technique is robustness testing, wherein test
cases are also chosen outside the input domain of
variables to test program robustness in processing
unexpected or erroneous inputs.

3.2.4. Random Testing 
[1*, c9s7]

Tests are generated purely at random (not to be
confused with statistical testing from the opera-
tional profile, as described in Operational Profile
in section 3.5). This form of testing falls under the
heading of input domain testing since the input
domain must be known in order to be able to pick
random points within it. Random testing provides
a relatively simple approach for test automation;
recently, enhanced forms of random testing have
been proposed in which the random input sam-
pling is directed by other input selection criteria
[11]. Fuzz testing or fuzzing is a special form of
random testing aimed at breaking the software; it
is most often used for security testing.

3.3. Code-Based Techniques

3.3.1. Control Flow-Based Criteria 
[1*, c4]

Control flow-based coverage criteria are aimed
at covering all the statements, blocks of state-
ments, or specified combinations of statements
in a program. The strongest of the control flow-
based criteria is path testing, which aims to
execute all entry-to-exit control flow paths in a
program’s control flow graph. Since exhaustive
path testing is generally not feasible because of

Software Testing 4-9

loops, other less stringent criteria focus on cov-
erage of paths that limit loop iterations such as
statement coverage, branch coverage, and con-
dition/decision testing. The adequacy of such
tests is measured in percentages; for example,
when all branches have been executed at least
once by the tests, 100% branch coverage has
been achieved.

3.3.2. Data Flow-Based Criteria 
[1*, c5]

In data flow-based testing, the control flow graph
is annotated with information about how the
program variables are defined, used, and killed
(undefined). The strongest criterion, all defini-
tion-use paths, requires that, for each variable,
every control flow path segment from a defini-
tion of that variable to a use of that definition is
executed. In order to reduce the number of paths
required, weaker strategies such as all-definitions
and all-uses are employed.

3.3.3. Reference Models for Code-Based 
Testing

[1*, c4]

Although not a technique in itself, the control
structure of a program can be graphically rep-
resented using a flow graph to visualize code-
based testing techniques. A flow graph is a
directed graph, the nodes and arcs of which cor-
respond to program elements (see Graphs and
Trees in the Mathematical Foundations KA).
For instance, nodes may represent statements or
uninterrupted sequences of statements, and arcs
may represent the transfer of control between
nodes.

3.4. Fault-Based Techniques 
[1*, c1s14]

With different degrees of formalization, fault-
based testing techniques devise test cases spe-
cifically aimed at revealing categories of likely
or predefined faults. To better focus the test case
generation or selection, a fault  model can be
introduced that classifies the different types of
faults.

3.4.1. Error Guessing 
[1*, c9s8]

In error guessing, test cases are specifically
designed by software engineers who try to antici-
pate the most plausible faults in a given program.
A good source of information is the history of
faults discovered in earlier projects, as well as the
software engineer’s expertise.

3.4.2. Mutation Testing 
[1*, c3s5]

A mutant is a slightly modified version of the
program under test, differing from it by a small
syntactic change. Every test case exercises both
the original program and all generated mutants:
if a test case is successful in identifying the dif-
ference between the program and a mutant, the
latter is said to be “killed.” Originally conceived
as a technique to evaluate test sets (see section
4.2. Evaluation of the Tests Performed), muta-
tion testing is also a testing criterion in itself:
either tests are randomly generated until enough
mutants have been killed, or tests are specifically
designed to kill surviving mutants. In the latter
case, mutation testing can also be categorized as
a code-based technique. The underlying assump-
tion of mutation testing, the coupling effect,
is that by looking for simple syntactic faults,
more complex but real faults will be found. For
the technique to be effective, a large number of
mutants must be automatically generated and
executed in a systematic way [12].

3.5. Usage-Based Techniques

3.5.1. Operational Profile 
[1*, c15s5]

In testing for reliability evaluation (also called
operational testing), the test environment repro-
duces the operational environment of the soft-
ware, or the operational  profile, as closely as
possible. The goal is to infer from the observed
test results the future reliability of the software
when in actual use. To do this, inputs are assigned
probabilities, or profiles, according to their fre-
quency of occurrence in actual operation. Opera-
tional profiles can be used during system testing

4-10 SWEBOK® Guide V3.0

to guide derivation of test cases that will assess
the achievement of reliability objectives and
exercise relative usage and criticality of different
functions similar to what will be encountered in
the operational environment [3].

3.5.2. User Observation Heuristics 
[10*, c5, c7]

Usability principles can provide guidelines for dis-
covering problems in the design of the user inter-
face [10*, c1s4] (see User Interface Design in the
Software Design KA). Specialized heuristics, also
called usability inspection methods, are applied
for the systematic observation of system usage
under controlled conditions in order to deter-
mine how well people can use the system and its
interfaces. Usability heuristics include cognitive
walkthroughs, claims analysis, field observations,
thinking aloud, and even indirect approaches such
as user questionnaires and interviews.

3.6. Model-Based Testing Techniques

A model in this context is an abstract (formal)
representation of the software under test or of
its software requirements (see Modeling in the
Software Engineering Models and Methods KA).
Model-based testing is used to validate require-
ments, check their consistency, and generate test
cases focused on the behavioral aspects of the
software. The key components of model-based
testing are [13]: the notation used to represent the
model of the software or its requirements; work-
flow models or similar models; the test strategy
or algorithm used for test case generation; the
supporting infrastructure for the test execution;
and the evaluation of test results compared to
expected results. Due to the complexity of the
techniques, model-based testing approaches
are often used in conjunction with test automa-
tion harnesses. Model-based testing techniques
include the following.

3.6.1. Decision Tables 
[1*, c9s6]

Decision tables represent logical relationships
between conditions (roughly, inputs) and actions

(roughly, outputs). Test cases are systematically
derived by considering every possible combina-
tion of conditions and their corresponding resul-
tant actions. A related technique is cause-effect 
graphing [1*, c13s6].

3.6.2. Finite-State Machines 
[1*, c10]

By modeling a program as a finite state machine,
tests can be selected in order to cover the states
and transitions.

3.6.3. Formal Specifications 
[1*, c10s11] [2*, c15]

Stating the specifications in a formal language
(see Formal Methods in the Software Engineer-
ing Models and Methods KA) permits automatic
derivation of functional test cases, and, at the
same time, provides an oracle for checking test
results.

TTCN3 (Testing and Test Control Notation
version 3) is a language developed for writing test
cases. The notation was conceived for the specific
needs of testing telecommunication systems, so it
is particularly suitable for testing complex com-
munication protocols.

3.6.4. Workflow Models 
[2*, c8s3.2, c19s3.1]

Workflow models specify a sequence of activi-
ties performed by humans and/or software appli-
cations, usually represented through graphical
notations. Each sequence of actions constitutes
one workflow (also called a scenario). Both typi-
cal and alternate workflows should be tested [6,
part 4]. A special focus on the roles in a work-
flow specification is targeted in business process
testing.

3.7. Techniques Based on the Nature of the 
Application

The above techniques apply to all kinds of soft-
ware. Additional techniques for test derivation
and execution are based on the nature of the soft-
ware being tested; for example,

Software Testing 4-11

• object-oriented software
• component-based software
• web-based software
• concurrent programs
• protocol-based software
• real-time systems
• safety-critical systems
• service-oriented software
• open-source software
• embedded software

3.8. Selecting and Combining Techniques 

3.8.1. Combining Functional and Structural 
[1*, c9]

Model-based and code-based test techniques
are often contrasted as functional vs. structural
testing. These two approaches to test selection
are not to be seen as alternatives but rather as
complements; in fact, they use different sources
of information and have been shown to high-
light different kinds of problems. They could be
used in combination, depending on budgetary
considerations.

3.8.2. Deterministic vs. Random 
[1*, c9s6]

Test cases can be selected in a deterministic way,
according to one of many techniques, or ran-
domly drawn from some distribution of inputs,
such as is usually done in reliability testing. Sev-
eral analytical and empirical comparisons have
been conducted to analyze the conditions that
make one approach more effective than the other.

4. Test-Related Measures

Sometimes testing techniques are confused with
testing objectives. Testing techniques can be
viewed as aids that help to ensure the achieve-
ment of test objectives [6, part 4]. For instance,
branch coverage is a popular testing technique.
Achieving a specified branch coverage measure
(e.g., 95% branch coverage) should not be the
objective of testing per se: it is a way of improv-
ing the chances of finding failures by attempting
to systematically exercise every program branch

at every decision point. To avoid such misun-
derstandings, a clear distinction should be made
between test-related measures that provide an
evaluation of the program under test, based on
the observed test outputs, and the measures that
evaluate the thoroughness of the test set. (See
Software Engineering Measurement in the Soft-
ware Engineering Management KA for informa-
tion on measurement programs. See Software
Process and Product Measurement in the Soft-
ware Engineering Process KA for information on
measures.)

Measurement is usually considered fundamen-
tal to quality analysis. Measurement may also be
used to optimize the planning and execution of
the tests. Test management can use several differ-
ent process measures to monitor progress. (See
section 5.1, Practical Considerations, for a dis-
cussion of measures of the testing process useful
for management purposes.)

4.1. Evaluation of the Program Under Test 

4.1.1. Program Measurements That Aid in 
Planning and Designing Tests 

[9*, c11]

Measures based on software size (for example,
source lines of code or functional size; see Mea-
suring Requirements in the Software Require-
ments KA) or on program structure can be used
to guide testing. Structural measures also include
measurements that determine the frequency with
which modules call one another.

4.1.2. Fault Types, Classification, and 
Statistics 

[9*, c4]

The testing literature is rich in classifications and
taxonomies of faults. To make testing more effec-
tive, it is important to know which types of faults
may be found in the software under test and the
relative frequency with which these faults have
occurred in the past. This information can be use-
ful in making quality predictions as well as in
process improvement (see Defect Characteriza-
tion in the Software Quality KA).

4-12 SWEBOK® Guide V3.0

4.1.3. Fault Density
[1*, c13s4] [9*, c4]

A program under test can be evaluated by counting
discovered faults as the ratio between the number
of faults found and the size of the program.

4.1.4. Life Test, Reliability Evaluation 
[1*, c15] [9*, c3]

A statistical estimate of software reliability,
which can be obtained by observing reliabil-
ity achieved, can be used to evaluate a software
product and decide whether or not testing can be
stopped (see section 2.2, Reliability Achievement
and Evaluation).

4.1.5. Reliability Growth Models 
[1*, c15] [9*, c8]

Reliability growth models provide a prediction of
reliability based on failures. They assume, in gen-
eral, that when the faults that caused the observed
failures have been fixed (although some models
also accept imperfect fixes), the estimated prod-
uct’s reliability exhibits, on average, an increasing
trend. There are many published reliability growth
models. Notably, these models are divided into
failure-count and time-between-failure models.

4.2. Evaluation of the Tests Performed

4.2.1. Coverage / Thoroughness Measures 
[9*, c11]

Several test adequacy criteria require that the test
cases systematically exercise a set of elements
identified in the program or in the specifications
(see topic 3, Test Techniques). To evaluate the
thoroughness of the executed tests, software engi-
neers can monitor the elements covered so that
they can dynamically measure the ratio between
covered elements and the total number. For exam-
ple, it is possible to measure the percentage of
branches covered in the program flow graph or the
percentage of functional requirements exercised
among those listed in the specifications document.
Code-based adequacy criteria require appropriate
instrumentation of the program under test.

4.2.2. Fault Seeding 
[1*, c2s5] [9*, c6]

In fault seeding, some faults are artificially intro-
duced into a program before testing. When the
tests are executed, some of these seeded faults will
be revealed as well as, possibly, some faults that
were already there. In theory, depending on which
and how many of the artificial faults are discov-
ered, testing effectiveness can be evaluated and the
remaining number of genuine faults can be esti-
mated. In practice, statisticians question the dis-
tribution and representativeness of seeded faults
relative to genuine faults and the small sample size
on which any extrapolations are based. Some also
argue that this technique should be used with great
care since inserting faults into software involves
the obvious risk of leaving them there.

4.2.3. Mutation Score 
[1*, c3s5]

In mutation testing (see Mutation Testing in sec-
tion 3.4, Fault-Based Techniques), the ratio of
killed mutants to the total number of generated
mutants can be a measure of the effectiveness of
the executed test set.

4.2.4. Comparison and Relative Effectiveness 
of Different Techniques

Several studies have been conducted to com-
pare the relative effectiveness of different testing
techniques. It is important to be precise as to the
property against which the techniques are being
assessed; what, for instance, is the exact meaning
given to the term “effectiveness”? Possible inter-
pretations include the number of tests needed to
find the first failure, the ratio of the number of
faults found through testing to all the faults found
during and after testing, and how much reliabil-
ity was improved. Analytical and empirical com-
parisons between different techniques have been
conducted according to each of the notions of
effectiveness specified above.

5. Test Process

Testing concepts, strategies, techniques, and mea-
sures need to be integrated into a defined and

Software Testing 4-13

controlled process. The test process supports test-
ing activities and provides guidance to testers and
testing teams, from test planning to test output
evaluation, in such a way as to provide assurance
that the test objectives will be met in a cost-effec-
tive way.

5.1. Practical Considerations

5.1.1. Attitudes / Egoless Programming 
[1*c16] [9*, c15]

An important element of successful testing is a
collaborative attitude towards testing and quality
assurance activities. Managers have a key role in
fostering a generally favorable reception towards
failure discovery and correction during software
development and maintenance; for instance, by
overcoming the mindset of individual code own-
ership among programmers and by promoting a
collaborative environment with team responsibil-
ity for anomalies in the code.

5.1.2. Test Guides 
[1*, c12s1] [9*, c15s1]

The testing phases can be guided by various
aims—for example, risk-based testing uses the
product risks to prioritize and focus the test strat-
egy, and scenario-based testing defines test cases
based on specified software scenarios.

5.1.3. Test Process Management 
[1*, c12] [9*, c15]

Test activities conducted at different levels (see
topic 2, Test Levels) must be organized—together
with people, tools, policies, and measures—into a
well-defined process that is an integral part of the
life cycle.

5.1.4. Test Documentation and Work Products 
[1*, c8s12] [9*, c4s5]

Documentation is an integral part of the formaliza-
tion of the test process [6, part 3]. Test documents
may include, among others, the test plan, test
design specification, test procedure specification,
test case specification, test log, and test incident
report. The software under test is documented as

the test item. Test documentation should be pro-
duced and continually updated to the same level
of quality as other types of documentation in
software engineering. Test documentation should
also be under the control of software configura-
tion management (see the Software Configuration
Management KA). Moreover, test documentation
includes work products that can provide material
for user manuals and user training.

5.1.5. Test-Driven Development 
[1*, c1s16]

Test-driven development (TDD) originated as one
of the core XP (extreme programming) practices
and consists of writing unit tests prior to writing
the code to be tested (see Agile Methods in the
Software Engineering Models and Method KA).
In this way, TDD develops the test cases as a sur-
rogate for a software requirements specification
document rather than as an independent check
that the software has correctly implemented the
requirements. Rather than a testing strategy, TDD
is a practice that requires software developers to
define and maintain unit tests; it thus can also
have a positive impact on elaborating user needs
and software requirements specifications.

5.1.6. Internal vs. Independent Test Team 
[1*, c16]

Formalizing the testing process may also involve
formalizing the organization of the testing team.
The testing team can be composed of internal
members (that is, on the project team, involved or
not in software construction), of external members
(in the hope of bringing an unbiased, independent
perspective), or of both internal and external mem-
bers. Considerations of cost, schedule, maturity
levels of the involved organizations, and criticality
of the application can guide the decision.

5.1.7. Cost/Effort Estimation and Test Process 
Measures 

[1*, c18s3] [9*, c5s7]

Several measures related to the resources spent
on testing, as well as to the relative fault-finding
effectiveness of the various test phases, are used
by managers to control and improve the testing

4-14 SWEBOK® Guide V3.0

process. These test measures may cover such
aspects as number of test cases specified, num-
ber of test cases executed, number of test cases
passed, and number of test cases failed, among
others.

Evaluation of test phase reports can be com-
bined with root-cause analysis to evaluate test-
process effectiveness in finding faults as early as
possible. Such an evaluation can be associated
with the analysis of risks. Moreover, the resources
that are worth spending on testing should be com-
mensurate with the use/criticality of the applica-
tion: different techniques have different costs and
yield different levels of confidence in product
reliability.

5.1.8. Termination 
[9*, c10s4]

A decision must be made as to how much test-
ing is enough and when a test stage can be termi-
nated. Thoroughness measures, such as achieved
code coverage or functional coverage, as well as
estimates of fault density or of operational reli-
ability, provide useful support but are not suffi-
cient in themselves. The decision also involves
considerations about the costs and risks incurred
by possible remaining failures, as opposed to
the costs incurred by continuing to test (see Test
Selection Criteria / Test Adequacy Criteria in
section 1.2, Key Issues).

5.1.9. Test Reuse and Test Patterns 
[9*, c2s5]

To carry out testing or maintenance in an orga-
nized and cost-effective way, the means used to
test each part of the software should be reused
systematically. A repository of test materials
should be under the control of software con-
figuration management so that changes to soft-
ware requirements or design can be reflected in
changes to the tests conducted.

The test solutions adopted for testing some
application types under certain circumstances,
with the motivations behind the decisions taken,
form a test pattern that can itself be documented
for later reuse in similar projects.

5.2. Test Activities

As shown in the following description, successful
management of test activities strongly depends
on the software configuration management pro-
cess (see the Software Configuration Manage-
ment KA).

5.2.1. Planning 
[1*, c12s1, c12s8]

Like all other aspects of project management,
testing activities must be planned. Key aspects
of test planning include coordination of person-
nel, availability of test facilities and equipment,
creation and maintenance of all test-related docu-
mentation, and planning for possible undesir-
able outcomes. If more than one baseline of the
software is being maintained, then a major plan-
ning consideration is the time and effort needed
to ensure that the test environment is set to the
proper configuration.

5.2.2. Test-Case Generation 
[1*, c12s1, c12s3]

Generation of test cases is based on the level of
testing to be performed and the particular testing
techniques. Test cases should be under the con-
trol of software configuration management and
include the expected results for each test.

5.2.3. Test Environment Development 
[1*, c12s6]

The environment used for testing should be com-
patible with the other adopted software engi-
neering tools. It should facilitate development
and control of test cases, as well as logging and
recovery of expected results, scripts, and other
testing materials.

5.2.4. Execution 
[1*, c12s7]

Execution of tests should embody a basic prin-
ciple of scientific experimentation: everything
done during testing should be performed and
documented clearly enough that another person

Software Testing 4-15

could replicate the results. Hence, testing should
be performed in accordance with documented
procedures using a clearly defined version of the
software under test.

5.2.5. Test Results Evaluation 
[9*, c15]

The results of testing should be evaluated to
determine whether or not the testing has been
successful. In most cases, “successful” means
that the software performed as expected and did
not have any major unexpected outcomes. Not
all unexpected outcomes are necessarily faults
but are sometime determined to be simply noise.
Before a fault can be removed, an analysis and
debugging effort is needed to isolate, identify,
and describe it. When test results are particularly
important, a formal review board may be con-
vened to evaluate them.

5.2.6. Problem Reporting / Test Log 
[1*, c13s9]

Testing activities can be entered into a testing
log to identify when a test was conducted, who
performed the test, what software configuration
was used, and other relevant identification infor-
mation. Unexpected or incorrect test results can
be recorded in a problem reporting system, the
data for which forms the basis for later debug-
ging and fixing the problems that were observed
as failures during testing. Also, anomalies not
classified as faults could be documented in case
they later turn out to be more serious than first
thought. Test reports are also inputs to the change
management request process (see Software Con-
figuration Control in the Software Configuration
Management KA).

5.2.7. Defect Tracking 
[9*, c9]

Defects can be tracked and analyzed to determine
when they were introduced into the software,
why they were created (for example, poorly
defined requirements, incorrect variable declara-
tion, memory leak, programming syntax error),
and when they could have been first observed in

the software. Defect tracking information is used
to determine what aspects of software testing
and other processes need improvement and how
effective previous approaches have been.

6. Software Testing Tools

6.1. Testing Tool Support 
[1*, c12s11] [9*, c5]

Testing requires many labor-intensive tasks, run-
ning numerous program executions, and handling
a great amount of information. Appropriate tools
can alleviate the burden of clerical, tedious opera-
tions and make them less error-prone. Sophisti-
cated tools can support test design and test case
generation, making it more effective.

6.1.1. Selecting Tools 
[1*, c12s11]

Guidance to managers and testers on how to select
testing tools that will be most useful to their orga-
nization and processes is a very important topic,
as tool selection greatly affects testing efficiency
and effectiveness. Tool selection depends on
diverse evidence, such as development choices,
evaluation objectives, execution facilities, and so
on. In general, there may not be a unique tool that
will satisfy particular needs, so a suite of tools
could be an appropriate choice.

6.2. Categories of Tools 

We categorize the available tools according to
their functionality:

• Test  harnesses (drivers, stubs) [1*, c3s9]
provide a controlled environment in which
tests can be launched and the test outputs can
be logged. In order to execute parts of a pro-
gram, drivers and stubs are provided to simu-
late calling and called modules, respectively.

• Test  generators [1*, c12s11] provide assis-
tance in the generation test cases. The gen-
eration can be random, path-based, model-
based, or a mix thereof.

• Capture/replay  tools [1*, c12s11] auto-
matically reexecute, or replay, previously

4-16 SWEBOK® Guide V3.0

executed tests which have recorded inputs
and outputs (e.g., screens).

• Oracle/file  comparators/assertion  checking 
tools [1*, c9s7] assist in deciding whether a
test outcome is successful or not.

• Coverage  analyzers  and  instrumenters [1*,
c4] work together. Coverage analyzers assess
which and how many entities of the program
flow graph have been exercised amongst all
those required by the selected test coverage
criterion. The analysis can be done thanks to
program instrumenters that insert recording
probes into the code.

• Tracers [1*, c1s7] record the history of a
program’s execution paths.

• Regression testing tools [1*, c12s16] support
the reexecution of a test suite after a section
of software has been modified. They can also
help to select a test subset according to the
change made.

• Reliability evaluation tools [9*, c8] support
test results analysis and graphical visualiza-
tion in order to assess reliability-related mea-
sures according to selected models.

Software Testing 4-17

MATRIX OF TOPICS VS. REFERENCE MATERIAL

N
ai

k
an

d
Tr

ip
at

hy
 2

00
8

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

K
an

 2
00

3
[9

*]

N
ie

ls
en

 1
99

3
[1

0*
]

1. Software Testing Fundamentals
1.1. Testing-Related Terminology

1.1.1. Definitions of Testing and
Related Terminology c1,c2 c8

1.1.2. Faults vs. Failures c1s5 c11
1.2. Key Issues

1.2.1. Test Selection Criteria /
Test Adequacy Criteria
(Stopping Rules)

c1s14, c6s6,
c12s7

1.2.2. Testing Effectiveness /
Objectives for Testing c13s11, c11s4

1.2.3. Testing for Defect
Identification c1s14

1.2.4. The Oracle Problem c1s9,
c9s7

1.2.5. Theoretical and Practical
Limitations of Testing c2s7

1.2.6. The Problem of Infeasible
Paths c4s7

1.2.7. Testability c17s2
1.3. Relationship of Testing to
Other Activities

1.3.1. Testing vs. Static
Software Quality Management
Techniques

c12

1.3.2. Testing vs. Correctness
Proofs and Formal Verification c17s2

1.3.3. Testing vs. Debugging c3s6
1.3.4. Testing vs. Programming c3s2

2. Test Levels
2.1. The Target of the Test c1s13 c8s1

2.1.1. Unit Testing c3 c8
2.1.2. Integration Testing c7 c8
2.1.3. System Testing c8 c8

4-18 SWEBOK® Guide V3.0

N
ai

k
an

d
Tr

ip
at

hy
 2

00
8

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

K
an

 2
00

3
[9

*]

N
ie

ls
en

 1
99

3
[1

0*
]

2.2. Objectives of Testing c1s7
2.2.1. Acceptance / Qualification c1s7 c8s4
2.2.2. Installation Testing c12s2

2.2.3. Alpha and Beta Testing c13s7,
c16s6 c8s4

2.2.4. Reliability Achievement
and Evaluation c15 c15s2

2.2.5. Regression Testing c8s11,
c13s3

2.2.6. Performance Testing c8s6
2.2.7. Security Testing c8s3 c11s4
2.2.8. Stress Testing c8s8
2.2.9. Back-to-Back Testing
2.2.10. Recovery Testing c14s2
2.2.11. Interface Testing c8s1.3 c4s4.5
2.2.12. Configuration Testing c8s5
2.2.13. Usability and Human
Computer Interaction Testing c6

3. Test Techniques
3.1. Based on the Software
Engineer’s Intuition and
Experience

3.1.1. Ad Hoc
3.1.2. Exploratory Testing

3.2. Input Domain-Based
Techniques

3.2.1. Equivalence Partitioning c9s4
3.2.2. Pairwise Testing c9s3
3.2.3. Boundary-Value Analysis c9s5
3.2.4. Random Testing c9s7

3.3. Code-Based Techniques
3.3.1. Control Flow-Based
Criteria c4

Software Testing 4-19

N
ai

k
an

d
Tr

ip
at

hy
 2

00
8

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

K
an

 2
00

3
[9

*]

N
ie

ls
en

 1
99

3
[1

0*
]

3.3.2. Data Flow-Based Criteria c5
3.3.3. Reference Models for
Code-Based Testing c4

3.4. Fault-Based Techniques c1s14
3.4.1. Error Guessing c9s8
3.4.2. Mutation Testing c3s5

3.5. Usage-Based Techniques
3.5.1. Operational Profile c15s5
3.5.2. User Observation
Heuristics c5, c7

3.6. Model-Based Testing
Techniques

3.6.1. Decision Table c9s6
3.6.2. Finite-State Machines c10
3.6.3. Testing from Formal
Specifications c10s11 c15

3.7. Techniques Based on the
Nature of the Application
3.8. Selecting and Combining
Techniques

3.8.1. Functional and Structural c9
3.8.2. Deterministic vs. Random c9s6

4. Test-Related Measures
4.1. Evaluation of the Program
Under Test

4.1.1. Program Measurements
That Aid in Planning and
Designing Testing

c11

4.1.2. Fault Types, Classification,
and Statistics c4

4.1.3. Fault Density c13s4 c4
4.1.4. Life Test, Reliability
Evaluation c15 c3

4.1.5. Reliability Growth Models c15 c8

4-20 SWEBOK® Guide V3.0

N
ai

k
an

d
Tr

ip
at

hy
 2

00
8

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

K
an

 2
00

3
[9

*]

N
ie

ls
en

 1
99

3
[1

0*
]

4.2. Evaluation of the Tests
Performed

4.2.1. Coverage / Thoroughness
Measures c11

4.2.2. Fault Seeding c2s5 c6
4.2.3. Mutation Score c3s5
4.2.4. Comparison and Relative
Effectiveness of Different
Techniques

5. Test Process
5.1. Practical Considerations

5.1.1. Attitudes / Egoless
Programming c16 c15

5.1.2. Test Guides c12s1 c15s1
5.1.3. Test Process Management c12 c15
5.1.4. Test Documentation and
Work Products c8s12 c4s5

5.1.5. Test-Driven Development c1s16
5.1.6. Internal vs. Independent
Test Team c16

5.1.7. Cost/Effort Estimation and
Other Process Measures c18s3 c5s7

5.1.8. Termination c10s4
5.1.9. Test Reuse and Patterns c2s5

5.2. Test Activities

5.2.1. Planning c12s1
c12s8

5.2.2. Test-Case Generation c12s1
c12s3

5.2.3. Test Environment
Development c12s6

5.2.4. Execution c12s7
5.2.5. Test Results Evaluation c15

Software Testing 4-21

N
ai

k
an

d
Tr

ip
at

hy
 2

00
8

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

K
an

 2
00

3
[9

*]

N
ie

ls
en

 1
99

3
[1

0*
]

5.2.6. Problem Reporting / Test
Log c13s9

5.2.7. Defect Tracking c9
6. Software Testing Tools

6.1. Testing Tool Support c12s11 c5
6.1.1. Selecting Tools c12s11

6.2. Categories of Tools

c1s7, c3s9,
c4, c9s7,
c12s11,
c12s16

c8

4-22 SWEBOK® Guide V3.0

REFERENCES

[1*] S. Naik and P. Tripathy, Software Testing 
and Quality Assurance: Theory and 
Practice, Wiley-Spektrum, 2008.

[2*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[3] M.R. Lyu, ed., Handbook of Software 
Reliability Engineering, McGraw-Hill and
IEEE Computer Society Press, 1996.

[4] H. Zhu, P.A.V. Hall, and J.H.R. May,
“Software Unit Test Coverage and
Adequacy,” ACM Computing Surveys, vol.
29, no. 4, Dec. 1997, pp. 366–427.

[5] E.W. Dijkstra, “Notes on Structured
Programming,” T.H.-Report 70-WSE-03,
Technological University, Eindhoven, 1970;
http://www.cs.utexas.edu/users/EWD/
ewd02xx/EWD249.PDF.

[6] ISO/IEC/IEEE P29119-1/DIS Draft Standard 
for Software and Systems Engineering—
Software Testing—Part 1: Concepts and 
Definitions, ISO/IEC/IEEE, 2012.

[7] ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[8] S. Yoo and M. Harman, “Regression Testing
Minimization, Selection and Prioritization:
A Survey,” Software Testing Verification 
and Reliability, vol. 22, no. 2, Mar. 2012,
pp. 67–120.

[9*] S.H. Kan, Metrics and Models in Software 
Quality Engineering, 2nd ed., Addison-
Wesley, 2002.

[10*] J. Nielsen, Usability Engineering, Morgan
Kaufmann, 1993.

[11] T.Y. Chen et al., “Adaptive Random Testing:
The ART of Test Case Diversity,” Journal 
of Systems and Software, vol. 83, no. 1, Jan.
2010, pp. 60–66.

[12] Y. Jia and M. Harman, “An Analysis
and Survey of the Development of
Mutation Testing,” IEEE Trans. Software 
Engineering, vol. 37, no. 5, Sep.–Oct. 2011,
pp. 649–678.

[13] M. Utting and B. Legeard, Practical 
Model-Based Testing: A Tools Approach,
Morgan Kaufmann, 2007.

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

5-1

CHAPTER 5

SOFTWARE MAINTENANCE

ACRONYMS

MR Modification Request

PR Problem Report

SCM Software Configuration
Management

SLA Service-Level Agreement
SQA Software Quality Assurance
V&V Verification and Validation

INTRODUCTION

Software development efforts result in the deliv-
ery of a software product that satisfies user
requirements. Accordingly, the software product
must change or evolve. Once in operation, defects
are uncovered, operating environments change,
and new user requirements surface. The mainte-
nance phase of the life cycle begins following a
warranty period or postimplementation support
delivery, but maintenance activities occur much
earlier.

Software maintenance is an integral part of a
software life cycle. However, it has not received
the same degree of attention that the other phases
have. Historically, software development has had
a much higher profile than software maintenance
in most organizations. This is now changing, as
organizations strive to squeeze the most out of
their software development investment by keep-
ing software operating as long as possible. The
open source paradigm has brought further atten-
tion to the issue of maintaining software artifacts
developed by others.

In this Guide, software maintenance is defined
as the totality of activities required to provide
cost-effective support to software. Activities are
performed during the predelivery stage as well as

during the postdelivery stage. Predelivery activi-
ties include planning for postdelivery operations,
maintainability, and logistics determination for
transition activities [1*, c6s9]. Postdelivery
activities include software modification, training,
and operating or interfacing to a help desk.

The Software Maintenance knowledge area
(KA) is related to all other aspects of software
engineering. Therefore, this KA description is
linked to all other software engineering KAs of
the Guide.

BREAKDOWN OF TOPICS FOR
SOFTWARE MAINTENANCE

The breakdown of topics for the Software Main-
tenance KA is shown in Figure 5.1.

1. Software Maintenance Fundamentals

This first section introduces the concepts and
terminology that form an underlying basis to
understanding the role and scope of software
maintenance. The topics provide definitions and
emphasize why there is a need for maintenance.
Categories of software maintenance are critical to
understanding its underlying meaning.

1.1. Definitions and Terminology
[1*, c3] [2*, c1s2, c2s2]

The purpose of software maintenance is defined
in the international standard for software mainte-
nance: ISO/IEC/IEEE 14764 [1*].1 In the context
of software engineering, software maintenance is
essentially one of the many technical processes.

1 For the purpose of conciseness and ease of read-
ing, this standard is referred to simply as IEEE 14764
in the subsequent text of this KA.

5-2 SWEBOK® Guide V3.0

The objective of software maintenance is to
modify existing software while preserving its
integrity. The international standard also states
the importance of having some maintenance
activities prior to the final delivery of software
(predelivery activities). Notably, IEEE 14764
emphasizes the importance of the predelivery
aspects of maintenance—planning, for example.

1.2. Nature of Maintenance
[2*, c1s3]

Software maintenance sustains the software prod-
uct throughout its life cycle (from development
to operations). Modification requests are logged
and tracked, the impact of proposed changes is
determined, code and other software artifacts are

modified, testing is conducted, and a new version
of the software product is released. Also, train-
ing and daily support are provided to users. The
term maintainer is defined as an organization that
performs maintenance activities. In this KA, the
term will sometimes refer to individuals who per-
form those activities, contrasting them with the
developers.

IEEE 14764 identifies the primary activities of
software maintenance as process implementation,
problem and modification analysis, modification
implementation, maintenance review/acceptance,
migration, and retirement. These activities are
discussed in section 3.2, Maintenance Activities.

Maintainers can learn from the develop-
ers’ knowledge of the software. Contact with
the developers and early involvement by the

Figure 5.1. Breakdown of Topics for the Software Maintenance KA

Software Maintenance 5-3

maintainer helps reduce the overall maintenance
effort. In some instances, the initial developer
cannot be reached or has moved on to other tasks,
which creates an additional challenge for main-
tainers. Maintenance must take software artifacts
from development (for example, code or docu-
mentation) and support them immediately, then
progressively evolve/maintain them over a soft-
ware life cycle.

1.3. Need for Maintenance 
[2*, c1s5]

Maintenance is needed to ensure that the software
continues to satisfy user requirements. Mainte-
nance is applicable to software that is developed
using any software life cycle model (for example,
spiral or linear). Software products change due
to corrective and noncorrective software actions.
Maintenance must be performed in order to

• correct faults;
• improve the design;
• implement enhancements;
• interface with other software;
• adapt programs so that different hardware,

software, system features, and telecommuni-
cations facilities can be used;

• migrate legacy software; and
• retire software.

Five key characteristics comprise the maintain-
er’s activities:

• maintaining control over the software’s day-
to-day functions;

• maintaining control over software
modification;

• perfecting existing functions;
• identifying security threats and fixing secu-

rity vulnerabilities; and
• preventing software performance from

degrading to unacceptable levels.

1.4. Majority of Maintenance Costs 
[2*, c4s3, c5s5.2]

Maintenance consumes a major share of the finan-
cial resources in a software life cycle. A common

perception of software maintenance is that it
merely fixes faults. However, studies and sur-
veys over the years have indicated that the major-
ity, over 80 percent, of software maintenance is
used for noncorrective actions [2*, figure 4.1].
Grouping enhancements and corrections together
in management reports contributes to some mis-
conceptions regarding the high cost of correc-
tions. Understanding the categories of software
maintenance helps to understand the structure of
software maintenance costs. Also, understanding
the factors that influence the maintainability of
software can help to contain costs. Some environ-
mental factors and their relationship to software
maintenance costs include the following:

• Operating environment refers to hardware
and software.

• Organizational environment refers to poli-
cies, competition, process, product, and
personnel.

1.5. Evolution of Software 
[2*, c3s5]

Software maintenance in terms of evolution was
first addressed in the late 1960s. Over a period of
twenty years, research led to the formulation of
eight “Laws of Evolution.” Key findings include a
proposal that maintenance is evolutionary devel-
opment and that maintenance decisions are aided
by understanding what happens to software over
time. Some state that maintenance is continued
development, except that there is an extra input
(or constraint)–in other words, existing large soft-
ware is never complete and continues to evolve;
as it evolves, it grows more complex unless some
action is taken to reduce this complexity.

1.6. Categories of Maintenance 
[1*, c3, c6s2] [2*, c3s3.1]

Three categories (types) of maintenance have
been defined: corrective, adaptive, and perfec-
tive [2*, c4s3]. IEEE 14764 includes a fourth
category–preventative.

• Corrective maintenance: reactive modifi-
cation (or repairs) of a software product

5-4 SWEBOK® Guide V3.0

performed after delivery to correct discov-
ered problems. Included in this category
is emergency maintenance, which is an
unscheduled modification performed to tem-
porarily keep a software product operational
pending corrective maintenance.

• Adaptive maintenance: modification of a
software product performed after delivery to
keep a software product usable in a changed
or changing environment. For example,
the operating system might be upgraded
and some changes to the software may be
necessary.

• Perfective maintenance: modification of a
software product after delivery to provide
enhancements for users, improvement of
program documentation, and recoding to
improve software performance, maintain-
ability, or other software attributes.

• Preventive maintenance: modification of a
software product after delivery to detect and
correct latent faults in the software product
before they become operational faults.

IEEE 14764 classifies adaptive and perfective
maintenance as maintenance enhancements. It
also groups together the corrective and preven-
tive maintenance categories into a correction cat-
egory, as shown in Table 5.1.

Table 5.1. Software Maintenance Categories

Correction Enhancement

Proactive Preventive Perfective
Reactive Corrective Adaptive

2. Key Issues in Software Maintenance

A number of key issues must be dealt with to
ensure the effective maintenance of software.
Software maintenance provides unique techni-
cal and management challenges for software
engineers—for example, trying to find a fault in
software containing a large number of lines of
code that another software engineer developed.
Similarly, competing with software developers
for resources is a constant battle. Planning for a
future release, which often includes coding the

next release while sending out emergency patches
for the current release, also creates a challenge.
The following section presents some of the tech-
nical and management issues related to software
maintenance. They have been grouped under the
following topic headings:

• technical issues,
• management issues,
• cost estimation, and
• measurement.

2.1. Technical Issues

2.1.1. Limited Understanding 
[2*, c6]

Limited understanding refers to how quickly a
software engineer can understand where to make
a change or correction in software that he or she
did not develop. Research indicates that about half
of the total maintenance effort is devoted to under-
standing the software to be modified. Thus, the
topic of software comprehension is of great inter-
est to software engineers. Comprehension is more
difficult in text-oriented representation—in source
code, for example—where it is often difficult to
trace the evolution of software through its releases/
versions if changes are not documented and if the
developers are not available to explain it, which is
often the case. Thus, software engineers may ini-
tially have a limited understanding of the software;
much has to be done to remedy this.

2.1.2. Testing
[1*, c6s2.2.2] [2*, c9]

The cost of repeating full testing on a major
piece of software is significant in terms of time
and money. In order to ensure that the requested
problem reports are valid, the maintainer should
replicate or verify problems by running the
appropriate tests. Regression testing (the selec-
tive retesting of software or a component to ver-
ify that the modifications have not caused unin-
tended effects) is an important testing concept in
maintenance. Additionally, finding time to test is
often difficult. Coordinating tests when different
members of the maintenance team are working

Software Maintenance 5-5

on different problems at the same time remains a
challenge. When software performs critical func-
tions, it may be difficult to bring it offline to test.
Tests cannot be executed in the most meaning-
ful place–the production system. The Software
Testing KA provides additional information and
references on this matter in its subtopic on regres-
sion testing.

2.1.3. Impact Analysis
[1*, c5s2.5] [2*, c13s3]

Impact analysis describes how to conduct, cost-
effectively, a complete analysis of the impact of
a change in existing software. Maintainers must
possess an intimate knowledge of the software’s
structure and content. They use that knowledge
to perform impact analysis, which identifies all
systems and software products affected by a soft-
ware change request and develops an estimate of
the resources needed to accomplish the change.
Additionally, the risk of making the change is
determined. The change request, sometimes called
a modification request (MR) and often called a
problem report (PR), must first be analyzed and
translated into software terms. Impact analysis is
performed after a change request enters the soft-
ware configuration management process. IEEE
14764 states the impact analysis tasks:

• analyze MRs/PRs;
• replicate or verify the problem;
• develop options for implementing the

modification;
• document the MR/PR, the results, and the

execution options;
• obtain approval for the selected modification

option.

The severity of a problem is often used to
decide how and when it will be fixed. The soft-
ware engineer then identifies the affected com-
ponents. Several potential solutions are provided,
followed by a recommendation as to the best
course of action.

Software designed with maintainability in mind
greatly facilitates impact analysis. More informa-
tion can be found in the Software Configuration
Management KA.

2.1.4. Maintainability
[1*, c6s8] [2*, c12s5.5]

IEEE 14764 [1*, c3s4] defines maintainability
as the capability of the software product to be
modified. Modifications may include corrections,
improvements, or adaptation of the software to
changes in environment as well as changes in
requirements and functional specifications.

As a primary software quality characteristic,
maintainability should be specified, reviewed, and
controlled during software development activi-
ties in order to reduce maintenance costs. When
done successfully, the software’s maintainability
will improve. Maintainability is often difficult to
achieve because the subcharacteristics are often
not an important focus during the process of soft-
ware development. The developers are, typically,
more preoccupied with many other activities and
frequently prone to disregard the maintainer’s
requirements. This in turn can, and often does,
result in a lack of software documentation and test
environments, which is a leading cause of difficul-
ties in program comprehension and subsequent
impact analysis. The presence of systematic and
mature processes, techniques, and tools helps to
enhance the maintainability of software.

2.2. Management Issues

2.2.1. Alignment with Organizational 
Objectives 

[2*, c4]

Organizational objectives describe how to demon-
strate the return on investment of software main-
tenance activities. Initial software development is
usually project-based, with a defined time scale and
budget. The main emphasis is to deliver a product
that meets user needs on time and within budget.
In contrast, software maintenance often has the
objective of extending the life of software for as
long as possible. In addition, it may be driven by
the need to meet user demand for software updates
and enhancements. In both cases, the return on
investment is much less clear, so that the view at
the senior management level is often that of a major
activity consuming significant resources with no
clear quantifiable benefit for the organization.

5-6 SWEBOK® Guide V3.0

2.2.2. Staffing
[2*, c4s5, c10s4]

Staffing refers to how to attract and keep soft-
ware maintenance staff. Maintenance is not often
viewed as glamorous work. As a result, software
maintenance personnel are frequently viewed
as “second-class citizens,” and morale therefore
suffers.

2.2.3. Process
[1*, c5] [2*, c5]

The software life cycle process is a set of activities,
methods, practices, and transformations that peo-
ple use to develop and maintain software and its
associated products. At the process level, software
maintenance activities share much in common
with software development (for example, software
configuration management is a crucial activity in
both). Maintenance also requires several activities
that are not found in software development (see
section 3.2 on unique activities for details). These
activities present challenges to management.

2.2.4. Organizational Aspects of Maintenance 
[1*, c7s2.3] [2*, c10]

Organizational aspects describe how to iden-
tify which organization and/or function will be
responsible for the maintenance of software. The
team that develops the software is not necessar-
ily assigned to maintain the software once it is
operational.

In deciding where the software maintenance
function will be located, software engineering
organizations may, for example, stay with the
original developer or go to a permanent main-
tenance-specific team (or maintainer). Having a
permanent maintenance team has many benefits:

• allows for specialization;
• creates communication channels;
• promotes an egoless, collegiate atmosphere;
• reduces dependency on individuals;
• allows for periodic audit checks.

Since there are many pros and cons to each
option, the decision should be made on a case-by-
case basis. What is important is the delegation or

assignment of the maintenance responsibility to a
single group or person, regardless of the organi-
zation’s structure.

2.2.5. Outsourcing
[3*]

Outsourcing and offshoring software mainte-
nance has become a major industry. Organiza-
tions are outsourcing entire portfolios of soft-
ware, including software maintenance. More
often, the outsourcing option is selected for less
mission-critical software, as organizations are
unwilling to lose control of the software used in
their core business. One of the major challenges
for outsourcers is to determine the scope of the
maintenance services required, the terms of a ser-
vice-level agreement, and the contractual details.
Outsourcers will need to invest in a maintenance
infrastructure, and the help desk at the remote site
should be staffed with native-language speakers.
Outsourcing requires a significant initial invest-
ment and the setup of a maintenance process that
will require automation.

2.3. Maintenance Cost Estimation

Software engineers must understand the different
categories of software maintenance, discussed
above, in order to address the question of estimat-
ing the cost of software maintenance. For plan-
ning purposes, cost estimation is an important
aspect of planning for software maintenance.

2.3.1. Cost Estimation
[2*, c7s2.4]

Section 2.1.3 describes how impact analysis iden-
tifies all systems and software products affected
by a software change request and develops an
estimate of the resources needed to accomplish
that change.

Maintenance cost estimates are affected
by many technical and nontechnical factors.
IEEE 14764 states that “the two most popular
approaches to estimating resources for software
maintenance are the use of parametric models
and the use of experience” [1*, c7s4.1]. A combi-
nation of these two can also be used.

Software Maintenance 5-7

2.3.2. Parametric Models
[2*, c12s5.6]

Parametric cost modeling (mathematical models)
has been applied to software maintenance. Of sig-
nificance is that historical data from past main-
tenance are needed in order to use and calibrate
the mathematical models. Cost driver attributes
affect the estimates.

2.3.3. Experience
[2*, c12s5.5]

Experience, in the form of expert judgment,
is often used to estimate maintenance effort.
Clearly, the best approach to maintenance esti-
mation is to combine historical data and experi-
ence. The cost to conduct a modification (in terms
of number of people and amount of time) is then
derived. Maintenance estimation historical data
should be provided as a result of a measurement
program.

2.4. Software Maintenance Measurement
[1*, c6s5] [2*, c12]

Entities related to software maintenance, whose
attributes can be subjected to measurement,
include process, resource, and product [2*,
c12s3.1].

There are several software measures that can
be derived from the attributes of the software,
the maintenance process, and personnel, includ-
ing size, complexity, quality, understandability,
maintainability, and effort. Complexity measures
of software can also be obtained using available
commercial tools. These measures constitute a
good starting point for the maintainer’s measure-
ment program. Discussion of software process
and product measurement is also presented in the
Software Engineering Process KA. The topic of
a software measurement program is described in
the Software Engineering Management KA.

2.4.1. Specific Measures
 [2*, c12]

The maintainer must determine which measures
are appropriate for a specific organization based
on that organization’s own context. The software

quality model suggests measures that are specific
for software maintenance. Measures for subchar-
acteristics of maintainability include the follow-
ing [4*, p. 60]:

• Analyzability: measures of the maintainer’s
effort or resources expended in trying either
to diagnose deficiencies or causes of failure
or to identify parts to be modified.

• Changeability: measures of the maintainer’s
effort associated with implementing a speci-
fied modification.

• Stability: measures of the unexpected behav-
ior of software, including that encountered
during testing.

• Testability: measures of the maintainer’s and
users’ effort in trying to test the modified
software.

• Other measures that maintainers use include
• size of the software,
• complexity of the software ,
• understandability, and
• maintainability.

Providing software maintenance effort, by
categories, for different applications provides
business information to users and their organiza-
tions. It can also enable the comparison of soft-
ware maintenance profiles internally within an
organization.

3. Maintenance Process

In addition to standard software engineering pro-
cesses and activities described in IEEE 14764,
there are a number of activities that are unique to
maintainers.

3.1. Maintenance Processes
[1*, c5] [2*, c5] [5, s5.5]

Maintenance processes provide needed activities
and detailed inputs/outputs to those activities as
described in IEEE 14764. The maintenance pro-
cess activities of IEEE 14764 are shown in Figure
5.2. Software maintenance activities include

• process implementation,
• problem and modification analysis,
• modification implementation,

5-8 SWEBOK® Guide V3.0

• maintenance review/acceptance,
• migration, and
• software retirement.

Figure 5.2. Software Maintenance Process

Other maintenance process models include:

• quick fix,
• spiral,
• Osborne’s,
• iterative enhancement, and
• reuse-oriented.

Recently, agile methodologies, which promote
light processes, have been also adapted to main-
tenance. This requirement emerges from the ever-
increasing demand for fast turnaround of main-
tenance services. Improvement to the software
maintenance process is supported by specialized
software maintenance capability maturity models
(see [6] and [7], which are briefly annotated in the
Further Readings section).

3.2. Maintenance Activities
[1*, c5, c6s8.2, c7s3.3]

The maintenance process contains the activities
and tasks necessary to modify an existing soft-
ware product while preserving its integrity. These

activities and tasks are the responsibility of the
maintainer. As already noted, many maintenance
activities are similar to those of software develop-
ment. Maintainers perform analysis, design, cod-
ing, testing, and documentation. They must track
requirements in their activities—just as is done
in development—and update documentation as
baselines change. IEEE 14764 recommends that
when a maintainer uses a development process,
it must be tailored to meet specific needs [1*,
c5s3.2.2]. However, for software maintenance,
some activities involve processes unique to soft-
ware maintenance.

3.2.1. Unique Activities
[1*, c3s10, c6s9, c7s2, c7s3] [2*, c6, c7]

There are a number of processes, activities, and
practices that are unique to software maintenance:

• Program understanding: activities needed to
obtain a general knowledge of what a software
product does and how the parts work together.

• Transition: a controlled and coordinated
sequence of activities during which software
is transferred progressively from the devel-
oper to the maintainer.

• Modification request acceptance/rejection:
modifications requesting work beyond a cer-
tain size/effort/complexity may be rejected
by maintainers and rerouted to a developer.

• Maintenance help desk: an end-user and
maintenance coordinated support function
that triggers the assessment, prioritization,
and costing of modification requests.

• Impact analysis: a technique to identify areas
impacted by a potential change;

• Maintenance Service-Level Agreements
(SLAs) and maintenance licenses and con-
tracts: contractual agreements that describe
the services and quality objectives.

3.2.2. Supporting Activities
[1*, c4s1, c5, c6s7] [2*, c9]

Maintainers may also perform support activities,
such as documentation, software configuration
management, verification and validation, problem
resolution, software quality assurance, reviews,

Software Maintenance 5-9

and audits. Another important support activity
consists of training the maintainers and users.

3.2.3. Maintenance Planning Activities
[1*, c7s3]

An important activity for software maintenance is
planning, and maintainers must address the issues
associated with a number of planning perspec-
tives, including

• business planning (organizational level),
• maintenance planning (transition level),
• release/version planning (software level), and
• individual software change request planning

(request level).

At the individual request level, planning is
carried out during the impact analysis (see sec-
tion 2.1.3, Impact Analysis). The release/version
planning activity requires that the maintainer:

• collect the dates of availability of individual
requests,

• agree with users on the content of subsequent
releases/versions,

• identify potential conflicts and develop
alternatives,

• assess the risk of a given release and develop
a back-out plan in case problems should
arise, and

• inform all the stakeholders.

Whereas software development projects can
typically last from some months to a few years,
the maintenance phase usually lasts for many
years. Making estimates of resources is a key ele-
ment of maintenance planning. Software main-
tenance planning should begin with the decision
to develop a new software product and should
consider quality objectives. A concept document
should be developed, followed by a maintenance
plan. The maintenance concept for each software
product needs to be documented in the plan [1*,
c7s2] and should address the

• scope of the software maintenance,
• adaptation of the software maintenance

process,

• identification of the software maintenance
organization, and

• estimate of software maintenance costs.

The next step is to develop a corresponding
software maintenance plan. This plan should be
prepared during software development and should
specify how users will request software modifica-
tions or report problems. Software maintenance
planning is addressed in IEEE 14764. It provides
guidelines for a maintenance plan. Finally, at
the highest level, the maintenance organization
will have to conduct business planning activities
(budgetary, financial, and human resources) just
like all the other divisions of the organization.
Management is discussed in the chapter Related
Disciplines of Software Engineering.

3.2.4. Software Configuration Management
[1*, c5s1.2.3] [2*, c11]

IEEE 14764 describes software configuration
management as a critical element of the mainte-
nance process. Software configuration manage-
ment procedures should provide for the verifica-
tion, validation, and audit of each step required
to identify, authorize, implement, and release the
software product.

It is not sufficient to simply track modifica-
tion requests or problem reports. The software
product and any changes made to it must be con-
trolled. This control is established by implement-
ing and enforcing an approved software configu-
ration management (SCM) process. The Software
Configuration Management KA provides details
of SCM and discusses the process by which soft-
ware change requests are submitted, evaluated,
and approved. SCM for software maintenance is
different from SCM for software development in
the number of small changes that must be con-
trolled on operational software. The SCM pro-
cess is implemented by developing and following
a software configuration management plan and
operating procedures. Maintainers participate in
Configuration Control Boards to determine the
content of the next release/version.

5-10 SWEBOK® Guide V3.0

3.2.5. Software Quality
[1*, c6s5, c6s7, c6s8] [2*, c12s5.3]

It is not sufficient to simply hope that increased
quality will result from the maintenance of soft-
ware. Maintainers should have a software qual-
ity program. It must be planned and processes
must be implemented to support the maintenance
process. The activities and techniques for Soft-
ware Quality Assurance (SQA), V&V, reviews,
and audits must be selected in concert with all
the other processes to achieve the desired level
of quality. It is also recommended that the main-
tainer adapt the software development processes,
techniques and deliverables (for instance, testing
documentation), and test results. More details can
be found in the Software Quality KA.

4. Techniques for Maintenance

This topic introduces some of the generally
accepted techniques used in software maintenance.

4.1. Program Comprehension
[2*, c6, c14s5]

Programmers spend considerable time reading and
understanding programs in order to implement
changes. Code browsers are key tools for program
comprehension and are used to organize and pres-
ent source code. Clear and concise documentation
can also aid in program comprehension.

4.2. Reengineering
[2*, c7]

Reengineering is defined as the examination and
alteration of software to reconstitute it in a new
form, and includes the subsequent implementa-
tion of the new form. It is often not undertaken to
improve maintainability but to replace aging leg-
acy software. Refactoring is a reengineering tech-
nique that aims at reorganizing a program without
changing its behavior. It seeks to improve a pro-
gram structure and its maintainability. Refactor-
ing techniques can be used during minor changes.

4.3. Reverse Engineering
[1*, c6s2] [2*, c7, c14s5]

Reverse engineering is the process of analyzing
software to identify the software’s components
and their inter-relationships and to create repre-
sentations of the software in another form or at
higher levels of abstraction. Reverse engineer-
ing is passive; it does not change the software
or result in new software. Reverse engineer-
ing efforts produce call graphs and control flow
graphs from source code. One type of reverse
engineering is redocumentation. Another type is
design recovery. Finally, data reverse engineer-
ing, where logical schemas are recovered from
physical databases, has grown in importance over
the last few years. Tools are key for reverse engi-
neering and related tasks such as redocumenta-
tion and design recovery.

4.4. Migration
[1*, c5s5]

During software’s life, it may have to be modi-
fied to run in different environments. In order to
migrate it to a new environment, the maintainer
needs to determine the actions needed to accom-
plish the migration, and then develop and docu-
ment the steps required to effect the migration in
a migration plan that covers migration require-
ments, migration tools, conversion of product
and data, execution, verification, and support.
Migrating software can also entail a number of
additional activities such as

• notification of intent: a statement of why
the old environment is no longer to be sup-
ported, followed by a description of the new
environment and its date of availability;

• parallel operations: make available the
old and new environments so that the user
experiences a smooth transition to the new
environment;

• notification of completion: when the sched-
uled migration is completed, a notification is
sent to all concerned;

Software Maintenance 5-11

• postoperation review: an assessment of par-
allel operation and the impact of changing to
the new environment;

• data archival: storing the old software data.

4.5. Retirement 
[1*, c5s6]

Once software has reached the end of its use-
ful life, it must be retired. An analysis should
be performed to assist in making the retirement
decision. This analysis should be included in the
retirement plan, which covers retirement require-
ments, impact, replacement, schedule, and effort.
Accessibility of archive copies of data may also
be included. Retiring software entails a number
of activities similar to migration.

5. Software Maintenance Tools
[1*, c6s4] [2*, c14]

This topic encompasses tools that are particularly
important in software maintenance where exist-
ing software is being modified. Examples regard-
ing program comprehension include

• program slicers, which select only parts of a
program affected by a change;

• static analyzers, which allow general view-
ing and summaries of a program content;

• dynamic analyzers, which allow the main-
tainer to trace the execution path of a
program;

• data flow analyzers, which allow the main-
tainer to track all possible data flows of a
program;

• cross-referencers, which generate indices of
program components; and

• dependency analyzers, which help maintain-
ers analyze and understand the interrelation-
ships between components of a program.

Reverse engineering tools assist the process by
working backwards from an existing product to
create artifacts such as specification and design
descriptions, which can then be transformed to
generate a new product from an old one. Main-
tainers also use software test, software configura-
tion management, software documentation, and
software measurement tools.

5-12 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

IE
E

E
/I

SO
/I

E
C

 1
47

64
 2

00
6

[1
*]

G
ru

bb
 a

nd
 T

ak
an

g
20

03

[2
*]

Sn
ee

d
20

08

[3
*]

1. Software Maintenance
Fundamentals

1.1. Definitions and Terminology c3 c1s2, c2s2

1.2. Nature of Maintenance c1s3

1.3. Need for Maintenance c1s5

1.4. Majority of Maintenance Costs c4s3, c5s5.2

1.5. Evolution of Software c3s5

1.6. Categories of Maintenance c3, c6s2 c3s3.1, c4s3

2. Key Issues in Software
Maintenance

2.1. Technical Issues

2.1.1. Limited Understanding c6

2.1.2. Testing c6s2.2.2 c9

2.1.3. Impact Analysis c5s2.5 c13s3

2.1.4. Maintainability c6s8, c3s4 c12s5.5

2.2. Management Issues

2.2.1. Alignment with
Organizational objectives c4

2.2.2. Staffing c4s5, c10s4

2.2.3. Process c5 c5

2.2.4. Organizational Aspects of
Maintenance c7s.2.3 c10

2.2.5. Outsourcing/Offshoring all

2.3. Maintenance Cost Estimation

2.3.1. Cost Estimation c7s4.1 c7s2.4

Software Maintenance 5-13

IE
E

E
/I

SO
/I

E
C

 1
47

64
 2

00
6

[1
*]

G
ru

bb
 a

nd
 T

ak
an

g
20

03

[2
*]

Sn
ee

d
20

08

[3
*]

2.3.2. Parametric Models c12s5.6

2.3.3. Experience c12s5.5

2.4. Software Maintenance
Measurement c6s5 c12, c12s3.1

2.4.1. Specific Measures c12

3. Maintenance Process

3.1. Maintenance Processes c5 c5

3.2. Maintenance Activities c5, c5s3.2.2,
c6s8.2, c7s3.3

3.2.1. Unique Activities c3s10, c6s9, c7s2,
c7s3 c6,c7

3.2.2. Supporting Activities c4s1, c5, c6s7 c9

3.2.3. Maintenance Planning
Activities c7s2, c7s.3

3.2.4. Software Configuration
Management c5s1.2.3 c11

3.2.5. Software Quality c6s5, c6s7, c6s8 c12s5.3

4. Techniques for Maintenance

4.1. Program Comprehension c6,c14s5

4.2. Reengineering c7

4.3. Reverse Engineering c6s2 c7, c14s5

4.4. Migration c5s5

4.5. Retirement c5s6

5. Software Maintenance Tools c6s4 c14

5-14 SWEBOK® Guide V3.0

FURTHER READINGS

A. April and A. Abran, Software Maintenance 
Management: Evaluation and Continuous 
Improvement [6].

This book explores the domain of small software
maintenance processes (S3M). It provides road-
maps for improving software maintenance pro-
cesses in organizations. It describes a software
maintenance specific maturity model organized
by levels which allow for benchmarking and con-
tinuous improvement. Goals for each key prac-
tice area are provided, and the process model pre-
sented is fully aligned with the architecture and
framework of international standards ISO12207,
ISO14764 and ISO15504 and popular maturity
models like ITIL, CoBIT, CMMI and CM3.

M. Kajko-Mattsson, “Towards a Business
Maintenance Model,” IEEE Int’l Conf.
Software Maintenance [7].

This paper presents an overview of the Correc-
tive Maintenance Maturity Model (CM3). In
contrast to other process models, CM3 is a spe-
cialized model, entirely dedicated to corrective
maintenance of software. It views maintenance in
terms of the activities to be performed and their
order, in terms of the information used by these
activities, goals, rules and motivations for their
execution, and organizational levels and roles
involved at various stages of a typical corrective
maintenance process.

REFERENCES

[1*] IEEE Std. 14764-2006 (a.k.a. ISO/IEC 
14764:2006) Standard for Software 
Engineering—Software Life Cycle 
Processes—Maintenance, IEEE, 2006.

[2*] P. Grubb and A.A. Takang, Software 
Maintenance: Concepts and Practice, 2nd
ed., World Scientific Publishing, 2003.

[3*] H.M. Sneed, “Offering Software
Maintenance as an Offshore Service,” Proc. 
IEEE Int’l Conf. Software Maintenance
(ICSM 08), IEEE, 2008, pp. 1–5.

[4*] J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.

[5] ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[6] A. April and A. Abran, Software 
Maintenance Management: Evaluation 
and Continuous Improvement, Wiley-IEEE
Computer Society Press, 2008.

[7] M. Kajko-Mattsson, “Towards a Business
Maintenance Model,” Proc. Int’l Conf. 
Software Maintenance, IEEE, 2001, pp.
500–509.

6-1

CHAPTER 6

SOFTWARE CONFIGURATION MANAGEMENT

ACRONYMS

CCB Configuration Control Board
CM Configuration Management
FCA Functional Configuration Audit

PCA Physical Configuration Audit

SCCB Software Configuration Control
Board

SCI Software Configuration Item

SCM Software Configuration
Management

SCMP Software Configuration
Management Plan

SCR Software Change Request

SCSA Software Configuration Status
Accounting

SDD Software Design Document

SEI/
CMMI

Software Engineering Institute’s
Capability Maturity Model
Integration

SQA Software Quality Assurance

SRS Software Requirement
Specification

INTRODUCTION

A system can be defined as the combination of
interacting elements organized to achieve one or
more stated purposes [1]. The configuration of a
system is the functional and physical characteris-
tics of hardware or software as set forth in techni-
cal documentation or achieved in a product [1]; it
can also be thought of as a collection of specific
versions of hardware, firmware, or software items
combined according to specific build procedures

to serve a particular purpose. Configuration man-
agement (CM), then, is the discipline of identify-
ing the configuration of a system at distinct points
in time for the purpose of systematically control-
ling changes to the configuration and maintaining
the integrity and traceability of the configuration
throughout the system life cycle. It is formally
defined as

A discipline applying technical and admin-
istrative direction and surveillance to: iden-
tify and document the functional and physi-
cal characteristics of a configuration item,
control changes to those characteristics,
record and report change processing and
implementation status, and verify compli-
ance with specified requirements. [1]

Software configuration management (SCM)
is a supporting-software life cycle process that
benefits project management, development and
maintenance activities, quality assurance activi-
ties, as well as the customers and users of the end
product.

The concepts of configuration management
apply to all items to be controlled, although there
are some differences in implementation between
hardware CM and software CM.

SCM is closely related to the software qual-
ity assurance (SQA) activity. As defined in the
Software Quality knowledge area (KA), SQA
processes provide assurance that the software
products and processes in the project life cycle
conform to their specified requirements by plan-
ning, enacting, and performing a set of activities
to provide adequate confidence that quality is
being built into the software. SCM activities help
in accomplishing these SQA goals. In some proj-
ect contexts, specific SQA requirements prescribe
certain SCM activities.

6-2 SWEBOK® Guide V3.0

The SCM activities are management and plan-
ning of the SCM process, software configuration
identification, software configuration control,
software configuration status accounting, soft-
ware configuration auditing, and software release
management and delivery.

The Software Configuration Management KA
is related to all the other KAs, since the object
of configuration management is the artifact pro-
duced and used throughout the software engi-
neering process.

BREAKDOWN OF TOPICS FOR
SOFTWARE CONFIGURATION
MANAGEMENT

The breakdown of topics for the Software Config-
uration Management KA is shown in Figure 6.1.

1. Management of the SCM Process

SCM controls the evolution and integrity of a
product by identifying its elements; managing and
controlling change; and verifying, recording, and
reporting on configuration information. From the
software engineer’s perspective, SCM facilitates

development and change implementation activi-
ties. A successful SCM implementation requires
careful planning and management. This, in turn,
requires an understanding of the organizational
context for, and the constraints placed on, the
design and implementation of the SCM process.

1.1. Organizational Context for SCM 
[2*, c6, ann. D] [3*, introduction] [4*, c29]

To plan an SCM process for a project, it is neces-
sary to understand the organizational context and
the relationships among organizational elements.
SCM interacts with several other activities or
organizational elements.

The organizational elements responsible for the
software engineering supporting processes may be
structured in various ways. Although the responsi-
bility for performing certain SCM tasks might be
assigned to other parts of the organization (such as
the development organization), the overall respon-
sibility for SCM often rests with a distinct organi-
zational element or designated individual.

Software is frequently developed as part of a
larger system containing hardware and firmware
elements. In this case, SCM activities take place

Figure 6.1. Breakdown of Topics for the Software Configuration Management KA

Software Configuration Management 6-3

in parallel with hardware and firmware CM activ-
ities and must be consistent with system-level
CM. Note that firmware contains hardware and
software; therefore, both hardware and software
CM concepts are applicable.

SCM might interface with an organization’s
quality assurance activity on issues such as
records management and nonconforming items.
Regarding the former, some items under SCM
control might also be project records subject to
provisions of the organization’s quality assurance
program. Managing nonconforming items is usu-
ally the responsibility of the quality assurance
activity; however, SCM might assist with track-
ing and reporting on software configuration items
falling into this category.

Perhaps the closest relationship is with the
software development and maintenance orga-
nizations. It is within this context that many of
the software configuration control tasks are con-
ducted. Frequently, the same tools support devel-
opment, maintenance, and SCM purposes.

1.2. Constraints and Guidance for the SCM 
Process 

[2*, c6, ann. D, ann. E] [3*, c2, c5]
 [5*, c19s2.2]

Constraints affecting, and guidance for, the SCM
process come from a number of sources. Poli-
cies and procedures set forth at corporate or other
organizational levels might influence or prescribe
the design and implementation of the SCM pro-
cess for a given project. In addition, the contract
between the acquirer and the supplier might con-
tain provisions affecting the SCM process. For
example, certain configuration audits might be
required, or it might be specified that certain items
be placed under CM. When software products to
be developed have the potential to affect public
safety, external regulatory bodies may impose
constraints. Finally, the particular software life
cycle process chosen for a software project and
the level of formalism selected to implement the
software affect the design and implementation of
the SCM process.

Guidance for designing and implementing an
SCM process can also be obtained from “best
practice,” as reflected in the standards on software

engineering issued by the various standards orga-
nizations (see Appendix B on standards).

1.3. Planning for SCM 
[2*, c6, ann. D, ann. E] [3*, c23] [4*, c29]

The planning of an SCM process for a given
project should be consistent with the organi-
zational context, applicable constraints, com-
monly accepted guidance, and the nature of the
project (for example, size, safety criticality, and
security). The major activities covered are soft-
ware configuration identification, software con-
figuration control, software configuration status
accounting, software configuration auditing, and
software release management and delivery. In
addition, issues such as organization and respon-
sibilities, resources and schedules, tool selection
and implementation, vendor and subcontractor
control, and interface control are typically con-
sidered. The results of the planning activity are
recorded in an SCM Plan (SCMP), which is typi-
cally subject to SQA review and audit.

Branching and merging strategies should be
carefully planned and communicated, since they
impact many SCM activities. From an SCM stand-
point, a branch is defined as a set of evolving source
file versions [1]. Merging consists in combining
different changes to the same file [1]. This typi-
cally occurs when more than one person changes a
configuration item. There are many branching and
merging strategies in common use (see the Further
Readings section for additional discussion).

The software development life cycle model
(see Software Life Cycle Models in the Software
Engineering Process KA) also impacts SCM
activities, and SCM planning should take this
into account. For instance, continuous integration
is a common practice in many software develop-
ment approaches. It is typically characterized by
frequent build-test-deploy cycles. SCM activities
must be planned accordingly.

1.3.1. SCM Organization and Responsibilities
[2*, ann. Ds5, ann. Ds6] [3*, c10-11]

 [4*, introduction, c29]

To prevent confusion about who will perform
given SCM activities or tasks, organizational

6-4 SWEBOK® Guide V3.0

roles to be involved in the SCM process need
to be clearly identified. Specific responsibilities
for given SCM activities or tasks also need to be
assigned to organizational entities, either by title
or by organizational element. The overall author-
ity and reporting channels for SCM should also be
identified, although this might be accomplished
at the project management or quality assurance
planning stage.

1.3.2. SCM Resources and Schedules
[2*, ann. Ds8] [3*, c23]

Planning for SCM identifies the staff and tools
involved in carrying out SCM activities and tasks.
It addresses scheduling questions by establishing
necessary sequences of SCM tasks and identify-
ing their relationships to the project schedules
and milestones established at the project manage-
ment planning stage. Any training requirements
necessary for implementing the plans and train-
ing new staff members are also specified.

1.3.3. Tool Selection and Implementation 
[3*, c26s2, c26s6] [4*, c29s5]

As for any area of software engineering, the
selection and implementation of SCM tools
should be carefully planned. The following ques-
tions should be considered:

• Organization: what motivates tool acquisi-
tion from an organizational perspective?

• Tools: can we use commercial tools or
develop them ourselves?

• Environment: what are the constraints
imposed by the organization and its techni-
cal context?

• Legacy: how will projects use (or not) the
new tools?

• Financing: who will pay for the tools’
acquisition, maintenance, training, and
customization?

• Scope: how will the new tools be deployed—
for instance, through the entire organization
or only on specific projects?

• Ownership: who is responsible for the intro-
duction of new tools?

• Future: what is the plan for the tools’ use in
the future?

• Change: how adaptable are the tools?
• Branching and merging: are the tools’ capa-

bilities compatible with the planned branch-
ing and merging strategies?

• Integration: do the various SCM tools inte-
grate among themselves? With other tools in
use in the organization?

• Migration: can the repository maintained by
the version control tool be ported to another
version control tool while maintaining com-
plete history of the configuration items it
contains?

SCM typically requires a set of tools, as
opposed to a single tool. Such tool sets are some-
times referred to as workbenches. In such a con-
text, another important consideration in plan-
ning for tool selection is determining if the SCM
workbench will be open (in other words, tools
from different suppliers will be used in differ-
ent activities of the SCM process) or integrated
(where elements of the workbench are designed
to work together).

The size of the organization and the type of
projects involved may also impact tool selection
(see topic 7, Software Configuration Manage-
ment Tools).

1.3.4. Vendor/Subcontractor Control
[2*, c13] [3*, c13s9, c14s2]

A software project might acquire or make use of
purchased software products, such as compilers
or other tools. SCM planning considers if and
how these items will be taken under configura-
tion control (for example, integrated into the proj-
ect libraries) and how changes or updates will be
evaluated and managed.

Similar considerations apply to subcontracted
software. When using subcontracted software,
both the SCM requirements to be imposed on
the subcontractor’s SCM process as part of the
subcontract and the means for monitoring com-
pliance need to be established. The latter includes
consideration of what SCM information must be
available for effective compliance monitoring.

Software Configuration Management 6-5

1.3.5. Interface Control
[2*, c12] [3*, c24s4]

When a software item will interface with
another software or hardware item, a change
to either item can affect the other. Planning for
the SCM process considers how the interfacing
items will be identified and how changes to the
items will be managed and communicated. The
SCM role may be part of a larger, system-level
process for interface specification and control;
it may involve interface specifications, interface
control plans, and interface control documents.
In this case, SCM planning for interface control
takes place within the context of the system-
level process.

1.4. SCM Plan
[2*, ann. D] [3*, c23] [4*, c29s1]

The results of SCM planning for a given project
are recorded in a software configuration manage-
ment plan (SCMP), a “living document” which
serves as a reference for the SCM process. It is
maintained (that is, updated and approved) as
necessary during the software life cycle. In imple-
menting the SCMP, it is typically necessary to
develop a number of more detailed, subordinate
procedures defining how specific requirements
will be carried out during day-to-day activities—
for example, which branching strategies will be
used and how frequently builds occur and auto-
mated tests of all kinds are run.

Guidance on the creation and maintenance of
an SCMP, based on the information produced by
the planning activity, is available from a number
of sources, such as [2*]. This reference provides
requirements for the information to be contained
in an SCMP; it also defines and describes six cat-
egories of SCM information to be included in an
SCMP:

• Introduction (purpose, scope, terms used)
• SCM Management (organization, respon-

sibilities, authorities, applicable policies,
directives, and procedures)

• SCM Activities (configuration identification,
configuration control, and so on)

• SCM Schedules (coordination with other
project activities)

• SCM Resources (tools, physical resources,
and human resources)

• SCMP Maintenance.

1.5. Surveillance of Software Configuration 
Management 

[3*, c11s3]

After the SCM process has been implemented,
some degree of surveillance may be necessary
to ensure that the provisions of the SCMP are
properly carried out. There are likely to be spe-
cific SQA requirements for ensuring compliance
with specified SCM processes and procedures.
The person responsible for SCM ensures that
those with the assigned responsibility perform
the defined SCM tasks correctly. The software
quality assurance authority, as part of a compli-
ance auditing activity, might also perform this
surveillance.

The use of integrated SCM tools with process
control capability can make the surveillance
task easier. Some tools facilitate process com-
pliance while providing flexibility for the soft-
ware engineer to adapt procedures. Other tools
enforce process, leaving the software engineer
with less flexibility. Surveillance requirements
and the level of flexibility to be provided to the
software engineer are important considerations
in tool selection.

1.5.1. SCM Measures and Measurement
[3*, c9s2, c25s2–s3]

SCM measures can be designed to provide spe-
cific information on the evolving product or to
provide insight into the functioning of the SCM
process. A related goal of monitoring the SCM
process is to discover opportunities for process
improvement. Measurements of SCM processes
provide a good means for monitoring the effec-
tiveness of SCM activities on an ongoing basis.
These measurements are useful in characteriz-
ing the current state of the process as well as in
providing a basis for making comparisons over
time. Analysis of the measurements may produce

6-6 SWEBOK® Guide V3.0

insights leading to process changes and corre-
sponding updates to the SCMP.

Software libraries and the various SCM tool
capabilities provide sources for extracting infor-
mation about the characteristics of the SCM
process (as well as providing project and man-
agement information). For example, information
about the time required to accomplish various
types of changes would be useful in an evalua-
tion of the criteria for determining what levels of
authority are optimal for authorizing certain types
of changes and for estimating future changes.

Care must be taken to keep the focus of the
surveillance on the insights that can be gained
from the measurements, not on the measurements
themselves. Discussion of software process and
product measurement is presented in the Soft-
ware Engineering Process KA. Software mea-
surement programs are described in the Software
Engineering Management KA.

1.5.2. In-Process Audits of SCM
[3*, c1s1]

Audits can be carried out during the software
engineering process to investigate the current sta-
tus of specific elements of the configuration or to
assess the implementation of the SCM process.
In-process auditing of SCM provides a more for-
mal mechanism for monitoring selected aspects
of the process and may be coordinated with the
SQA function (see topic 5, Software Configura-
tion Auditing).

2. Software Configuration Identification
[2*, c8] [4*, c29s1.1]

Software configuration identification identifies
items to be controlled, establishes identification
schemes for the items and their versions, and
establishes the tools and techniques to be used in
acquiring and managing controlled items. These
activities provide the basis for the other SCM
activities.

2.1. Identifying Items to Be Controlled 
[2*, c8s2.2] [4*, c29s1.1]

One of the first steps in controlling change is
identifying the software items to be controlled.

This involves understanding the software config-
uration within the context of the system configu-
ration, selecting software configuration items,
developing a strategy for labeling software items
and describing their relationships, and identifying
both the baselines to be used and the procedure
for a baseline’s acquisition of the items.

2.1.1. Software Configuration
[1, c3]

Software configuration is the functional and phys-
ical characteristics of hardware or software as set
forth in technical documentation or achieved in
a product. It can be viewed as part of an overall
system configuration.

2.1.2. Software Configuration Item
[4*, c29s1.1]

A configuration item (CI) is an item or aggre-
gation of hardware or software or both that is
designed to be managed as a single entity. A soft-
ware configuration item (SCI) is a software entity
that has been established as a configuration item
[1]. The SCM typically controls a variety of items
in addition to the code itself. Software items with
potential to become SCIs include plans, specifi-
cations and design documentation, testing mate-
rials, software tools, source and executable code,
code libraries, data and data dictionaries, and
documentation for installation, maintenance,
operations, and software use.

Selecting SCIs is an important process in
which a balance must be achieved between pro-
viding adequate visibility for project control pur-
poses and providing a manageable number of
controlled items.

2.1.3. Software Configuration Item 
Relationships

[3*, c7s4]

Structural relationships among the selected
SCIs, and their constituent parts, affect other
SCM activities or tasks, such as software
building or analyzing the impact of proposed
changes. Proper tracking of these relationships
is also important for supporting traceability.
The design of the identification scheme for SCIs

Software Configuration Management 6-7

should consider the need to map identified items
to the software structure, as well as the need to
support the evolution of the software items and
their relationships.

2.1.4. Software Version 
[1, c3] [4*, c29s3]

Software items evolve as a software project pro-
ceeds. A version of a software item is an identi-
fied instance of an item. It can be thought of as a
state of an evolving item. A variant is a version of
a program resulting from the application of soft-
ware diversity.

2.1.5. Baseline 
[1, c3]

A software baseline is a formally approved ver-
sion of a configuration item (regardless of media)
that is formally designated and fixed at a specific
time during the configuration item’s life cycle.
The term is also used to refer to a particular ver-
sion of a software configuration item that has
been agreed on. In either case, the baseline can
only be changed through formal change con-
trol procedures. A baseline, together with all
approved changes to the baseline, represents the
current approved configuration.

Commonly used baselines include func-
tional, allocated, developmental, and product

baselines. The functional baseline corresponds
to the reviewed system requirements. The allo-
cated baseline corresponds to the reviewed
software requirements specification and soft-
ware interface requirements specification. The
developmental baseline represents the evolving
software configuration at selected times during
the software life cycle. Change authority for
this baseline typically rests primarily with the
development organization but may be shared
with other organizations (for example, SCM or
Test). The product baseline corresponds to the
completed software product delivered for sys-
tem integration. The baselines to be used for a
given project, along with the associated levels of
authority needed for change approval, are typi-
cally identified in the SCMP.

2.1.6. Acquiring Software Configuration Items
[3*, c18]

Software configuration items are placed under
SCM control at different times; that is, they are
incorporated into a particular baseline at a particu-
lar point in the software life cycle. The triggering
event is the completion of some form of formal
acceptance task, such as a formal review. Figure
6.2 characterizes the growth of baselined items as
the life cycle proceeds. This figure is based on the
waterfall model for purposes of illustration only;
the subscripts used in the figure indicate versions

Figure 6.2. Acquisition of Items

6-8 SWEBOK® Guide V3.0

of the evolving items. The software change request
(SCR) is described in section 3.1.

In acquiring an SCI, its origin and initial integ-
rity must be established. Following the acquisi-
tion of an SCI, changes to the item must be for-
mally approved as appropriate for the SCI and
the baseline involved, as defined in the SCMP.
Following approval, the item is incorporated into
the software baseline according to the appropriate
procedure.

2.2. Software Library
[3*, c1s3] [4*, c29s1.2]

A software library is a controlled collection of
software and related documentation designed to
aid in software development, use, or maintenance
[1]. It is also instrumental in software release man-
agement and delivery activities. Several types of
libraries might be used, each corresponding to the
software item’s particular level of maturity. For
example, a working library could support coding
and a project support library could support test-
ing, while a master library could be used for fin-
ished products. An appropriate level of SCM con-
trol (associated baseline and level of authority for
change) is associated with each library. Security,
in terms of access control and the backup facili-
ties, is a key aspect of library management.

The tool(s) used for each library must support
the SCM control needs for that library—both in
terms of controlling SCIs and controlling access
to the library. At the working library level, this is
a code management capability serving develop-
ers, maintainers, and SCM. It is focused on man-
aging the versions of software items while sup-
porting the activities of multiple developers. At
higher levels of control, access is more restricted
and SCM is the primary user.

These libraries are also an important source
of information for measurements of work and
progress.

3. Software Configuration Control
[2*, c9] [4*, c29s2]

Software configuration control is concerned
with managing changes during the software
life cycle. It covers the process for determining

what changes to make, the authority for approv-
ing certain changes, support for the implementa-
tion of those changes, and the concept of formal
deviations from project requirements as well as
waivers of them. Information derived from these
activities is useful in measuring change traffic
and breakage as well as aspects of rework.

3.1. Requesting, Evaluating, and Approving 
Software Changes 

[2*, c9s2.4] [4*, c29s2]

The first step in managing changes to controlled
items is determining what changes to make. The
software change request process (see a typical
flow of a change request process in Figure 6.3)
provides formal procedures for submitting and
recording change requests, evaluating the poten-
tial cost and impact of a proposed change, and
accepting, modifying, deferring, or rejecting
the proposed change. A change request (CR) is
a request to expand or reduce the project scope;
modify policies, processes, plans, or procedures;
modify costs or budgets; or revise schedules
[1]. Requests for changes to software configura-
tion items may be originated by anyone at any
point in the software life cycle and may include
a suggested solution and requested priority. One
source of a CR is the initiation of corrective
action in response to problem reports. Regardless
of the source, the type of change (for example,
defect or enhancement) is usually recorded on the
Software CR (SCR).

This provides an opportunity for tracking
defects and collecting change activity measure-
ments by change type. Once an SCR is received,
a technical evaluation (also known as an impact
analysis) is performed to determine the extent of
the modifications that would be necessary should
the change request be accepted. A good under-
standing of the relationships among software
(and, possibly, hardware) items is important for
this task. Finally, an established authority—com-
mensurate with the affected baseline, the SCI
involved, and the nature of the change—will
evaluate the technical and managerial aspects
of the change request and either accept, modify,
reject, or defer the proposed change.

Software Configuration Management 6-9

3.1.1. Software Configuration Control Board 
[2*, c9s2.2] [3*, c11s1] [4*, c29s2]

The authority for accepting or rejecting proposed
changes rests with an entity typically known as a
Configuration Control Board (CCB). In smaller
projects, this authority may actually reside with
the leader or an assigned individual rather than a
multiperson board. There can be multiple levels
of change authority depending on a variety of cri-
teria—such as the criticality of the item involved,
the nature of the change (for example, impact on
budget and schedule), or the project’s current
point in the life cycle. The composition of the
CCBs used for a given system varies depending
on these criteria (an SCM representative would
always be present). All stakeholders, appropriate
to the level of the CCB, are represented. When
the scope of authority of a CCB is strictly soft-
ware, it is known as a Software Configuration
Control Board (SCCB). The activities of the CCB
are typically subject to software quality audit or
review.

3.1.2. Software Change Request Process
[3*, c1s4, c8s4]

An effective software change request (SCR) pro-
cess requires the use of supporting tools and pro-
cedures for originating change requests, enforc-
ing the flow of the change process, capturing

CCB decisions, and reporting change process
information. A link between this tool capability
and the problem-reporting system can facilitate
the tracking of solutions for reported problems.

3.2. Implementing Software Changes 
[4*, c29]

Approved SCRs are implemented using the
defined software procedures in accordance with
the applicable schedule requirements. Since a
number of approved SCRs might be implemented
simultaneously, it is necessary to provide a means
for tracking which SCRs are incorporated into
particular software versions and baselines. As
part of the closure of the change process, com-
pleted changes may undergo configuration audits
and software quality verification—this includes
ensuring that only approved changes have been
made. The software change request process
described above will typically document the
SCM (and other) approval information for the
change.

Changes may be supported by source code ver-
sion control tools. These tools allow a team of
software engineers, or a single software engineer,
to track and document changes to the source code.
These tools provide a single repository for storing
the source code, can prevent more than one soft-
ware engineer from editing the same module at
the same time, and record all changes made to the

Figure 6.3. Flow of a Change Control Process

6-10 SWEBOK® Guide V3.0

source code. Software engineers check modules
out of the repository, make changes, document
the changes, and then save the edited modules
in the repository. If needed, changes can also be
discarded, restoring a previous baseline. More
powerful tools can support parallel development
and geographically distributed environments.
These tools may be manifested as separate,
specialized applications under the control of an
independent SCM group. They may also appear
as an integrated part of the software engineering
environment. Finally, they may be as elementary
as a rudimentary change control system provided
with an operating system.

3.3. Deviations and Waivers 
[1, c3]

The constraints imposed on a software engineer-
ing effort or the specifications produced during the
development activities might contain provisions
that cannot be satisfied at the designated point
in the life cycle. A deviation is a written autho-
rization, granted prior to the manufacture of an
item, to depart from a particular performance or
design requirement for a specific number of units
or a specific period of time. A waiver is a writ-
ten authorization to accept a configuration item or
other designated item that is found, during produc-
tion or after having been submitted for inspection,
to depart from specified requirements but is nev-
ertheless considered suitable for use as-is or after
rework by an approved method. In these cases, a
formal process is used for gaining approval for
deviations from, or waivers of, the provisions.

4. Software Configuration Status Accounting
[2*, c10]

Software configuration status accounting (SCSA)
is an element of configuration management con-
sisting of the recording and reporting of informa-
tion needed to manage a configuration effectively.

4.1. Software Configuration Status Information 
[2*, c10s2.1]

The SCSA activity designs and operates a sys-
tem for the capture and reporting of necessary
information as the life cycle proceeds. As in any

information system, the configuration status infor-
mation to be managed for the evolving configura-
tions must be identified, collected, and maintained.
Various information and measurements are needed
to support the SCM process and to meet the con-
figuration status reporting needs of management,
software engineering, and other related activities.
The types of information available include the
approved configuration identification as well as
the identification and current implementation sta-
tus of changes, deviations, and waivers.

Some form of automated tool support is neces-
sary to accomplish the SCSA data collection and
reporting tasks; this could be a database capabil-
ity, a stand-alone tool, or a capability of a larger,
integrated tool environment.

4.2. Software Configuration Status Reporting 
[2*, c10s2.4] [3*, c1s5, c9s1, c17]

Reported information can be used by various
organizational and project elements—including
the development team, the maintenance team,
project management, and software quality activi-
ties. Reporting can take the form of ad hoc que-
ries to answer specific questions or the periodic
production of predesigned reports. Some infor-
mation produced by the status accounting activity
during the course of the life cycle might become
quality assurance records.

In addition to reporting the current status of the
configuration, the information obtained by the
SCSA can serve as a basis of various measure-
ments. Examples include the number of change
requests per SCI and the average time needed to
implement a change request.

5. Software Configuration Auditing
[2*, c11]

A software audit is an independent examina-
tion of a work product or set of work products to
assess compliance with specifications, standards,
contractual agreements, or other criteria [1].
Audits are conducted according to a well-defined
process consisting of various auditor roles and
responsibilities. Consequently, each audit must
be carefully planned. An audit can require a num-
ber of individuals to perform a variety of tasks
over a fairly short period of time. Tools to support

Software Configuration Management 6-11

the planning and conduct of an audit can greatly
facilitate the process.

Software configuration auditing determines
the extent to which an item satisfies the required
functional and physical characteristics. Informal
audits of this type can be conducted at key points
in the life cycle. Two types of formal audits might
be required by the governing contract (for exam-
ple, in contracts covering critical software): the
Functional Configuration Audit (FCA) and the
Physical Configuration Audit (PCA). Successful
completion of these audits can be a prerequisite
for the establishment of the product baseline.

5.1. Software Functional Configuration Audit 
[2*, c11s2.1]

The purpose of the software FCA is to ensure that
the audited software item is consistent with its
governing specifications. The output of the soft-
ware verification and validation activities (see
Verification and Validation in the Software Qual-
ity KA) is a key input to this audit.

5.2. Software Physical Configuration Audit
[2*, c11s2.2]

The purpose of the software physical configura-
tion audit (PCA) is to ensure that the design and
reference documentation is consistent with the
as-built software product.

5.3. In-Process Audits of a Software Baseline
[2*, c11s2.3]

As mentioned above, audits can be carried out
during the development process to investigate
the current status of specific elements of the con-
figuration. In this case, an audit could be applied
to sampled baseline items to ensure that per-
formance is consistent with specifications or to
ensure that evolving documentation continues to
be consistent with the developing baseline item.

6. Software Release Management and
Delivery

[2*, c14] [3*, c8s2]

In this context, release  refers to the distribu-
tion of a software configuration item outside

the development activity; this includes internal
releases as well as distribution to customers. When
different versions of a software item are available
for delivery (such as versions for different plat-
forms or versions with varying capabilities), it is
frequently necessary to recreate specific versions
and package the correct materials for delivery of
the version. The software library is a key element
in accomplishing release and delivery tasks.

6.1. Software Building 
[4*, c29s4]

Software building is the activity of combining the
correct versions of software configuration items,
using the appropriate configuration data, into an
executable program for delivery to a customer or
other recipient, such as the testing activity. For
systems with hardware or firmware, the executable
program is delivered to the system-building activ-
ity. Build instructions ensure that the proper build
steps are taken in the correct sequence. In addition
to building software for new releases, it is usually
also necessary for SCM to have the capability to
reproduce previous releases for recovery, testing,
maintenance, or additional release purposes.

Software is built using particular versions of
supporting tools, such as compilers (see Com-
piler Basics in the Computing Foundations KA).
It might be necessary to rebuild an exact copy of
a previously built software configuration item. In
this case, supporting tools and associated build
instructions need to be under SCM control to
ensure availability of the correct versions of the
tools.

A tool capability is useful for selecting the cor-
rect versions of software items for a given target
environment and for automating the process of
building the software from the selected versions
and appropriate configuration data. For projects
with parallel or distributed development envi-
ronments, this tool capability is necessary. Most
software engineering environments provide this
capability. These tools vary in complexity from
requiring the software engineer to learn a spe-
cialized scripting language to graphics-oriented
approaches that hide much of the complexity of
an “intelligent” build facility.

The build process and products are often sub-
ject to software quality verification. Outputs of

6-12 SWEBOK® Guide V3.0

the build process might be needed for future refer-
ence and may become quality assurance records.

6.2. Software Release Management 
[4*, c29s3.2]

Software release management encompasses the
identification, packaging, and delivery of the
elements of a product—for example, an execut-
able program, documentation, release notes, and
configuration data. Given that product changes
can occur on a continuing basis, one concern for
release management is determining when to issue
a release. The severity of the problems addressed
by the release and measurements of the fault den-
sities of prior releases affect this decision. The
packaging task must identify which product items
are to be delivered and then select the correct
variants of those items, given the intended appli-
cation of the product. The information document-
ing the physical contents of a release is known
as a version description document. The release
notes typically describe new capabilities, known
problems, and platform requirements necessary
for proper product operation. The package to be
released also contains installation or upgrading
instructions. The latter can be complicated by the
fact that some current users might have versions
that are several releases old. In some cases, release
management might be required in order to track
distribution of the product to various customers
or target systems—for example, in a case where
the supplier was required to notify a customer of
newly reported problems. Finally, a mechanism
to ensure the integrity of the released item can be
implemented—for example by releasing a digital
signature with it.

 A tool capability is needed for supporting
these release management functions. It is use-
ful to have a connection with the tool capability
supporting the change request process in order to
map release contents to the SCRs that have been
received. This tool capability might also maintain
information on various target platforms and on
various customer environments.

7. Software Configuration Management Tools
[3*, c26s1] [4*, c8s2]

When discussing software configuration manage-
ment tools, it is helpful to classify them. SCM
tools can be divided into three classes in terms
of the scope at which they provide support: indi-
vidual support, project-related support, and com-
panywide-process support.
Individual  support  tools are appropriate and

typically sufficient for small organizations or
development groups without variants of their
software products or other complex SCM require-
ments. They include:

• Version control tools: track, document, and
store individual configuration items such as
source code and external documentation.

• Build handling tools: in their simplest form,
such tools compile and link an executable
version of the software. More advanced
building tools extract the latest version from
the version control software, perform qual-
ity checks, run regression tests, and produce
various forms of reports, among other tasks.

• Change control tools: mainly support the
control of change requests and events noti-
fication (for example, change request status
changes, milestones reached).

Project-related  support  tools mainly support
workspace management for development teams
and integrators; they are typically able to sup-
port distributed development environments. Such
tools are appropriate for medium to large organi-
zations with variants of their software products
and parallel development but no certification
requirements.
Companywide-process support  tools can typi-

cally automate portions of a companywide pro-
cess, providing support for workflow manage-
ments, roles, and responsibilities. They are able
to handle many items, data, and life cycles. Such
tools add to project-related support by supporting
a more formal development process, including
certification requirements.

Software Configuration Management 6-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

IE
E

E
 8

28
-2

01
2

[2
*]

H
as

s 2
00

3
[3

*]

M
oo

re
 2

00
6

[5
*]

So
m

m
er

vi
lle

 2
01

1
[4

*]

1. Management of the SCM
Process

1.1. Organizational Context for
SCM c6, ann.D introduction c29

1.2. Constraints and Guidance
for the SCM Process

c6, ann.D,
ann.E c2 c19s2.2 c29 intro

1.3. Planning for SCM c6, ann.D,
ann.E c23 c29

1.3.1. SCM Organization and
Responsibilities ann.Ds5–6 c10–11 c29 intro

1.3.2. SCM Resources and
Schedules ann.Ds8 c23

1.3.3. Tool Selection and
Implementation c26s2; s6 c29s5

1.3.4. Vendor/Subcontractor
Control c13 c13s9–c14s2

1.3.5. Interface Control c12 c24s4
1.4. SCM Plan ann.D c23 c29s1
1.5. Surveillance of Software
Configuration Management c11s3

1.5.1. SCM Measures and
Measurement

c9s2;
c25s2–s3

1.5.2. In-Process Audits of
SCM c1s1

2. Software Configuration
Identification c29s1.1

2.1. Identifying Items to Be
Controlled c8s2.2 c29s1.1

2.1.1. Software Configuration
2.1.2. Software Configuration
Item c29s1.1

2.1.3. Software Configuration
Item Relationships c7s4

2.1.4. Software Version c29s3

6-14 SWEBOK® Guide V3.0

IE
E

E
 8

28
-2

01
2

[2
*]

H
as

s 2
00

3
[3

*]

M
oo

re
 2

00
6

[5
*]

So
m

m
er

vi
lle

 2
01

1
[4

*]

2.1.5. Baseline
2.1.6. Acquiring Software
Configuration Items c18

2.2. Software Library c1s3 c29s1.2
3. Software Configuration
Control c9 c29s2

3.1. Requesting, Evaluating, and
Approving Software Changes c9s2.4 c29s2

3.1.1. Software Configuration
Control Board c9s2.2 c11s1 c29s2

3.1.2. Software Change
Request Process c1s4, c8s4

3.2. Implementing Software
Changes c29

3.3. Deviations and Waivers
4. Software Configuration
Status Accounting c10

4.1. Software Configuration
Status Information c10s2.1

4.2. Software Configuration
Status Reporting c10s2.4 c1s5, c9s1,

c17
5. Software Configuration
Auditing c11

5.1. Software Functional
Configuration Audit c11s2.1

5.2. Software Physical
Configuration Audit c11s2.2

5.3. In-Process Audits of a
Software Baseline c11s2.3

6. Software Release
Management and Delivery c14 c8s2 c29s3

6.1. Software Building c29s4
6.2. Software Release
Management c29s3.2

7. Software Configuration
Management Tools c26s1

Software Configuration Management 6-15

FURTHER READINGS

Stephen P. Berczuk and Brad Appleton,
Software Configuration Management 
Patterns: Effective Teamwork, Practical 
Integration [6].

This book expresses useful SCM practices and
strategies as patterns. The patterns can be imple-
mented using various tools, but they are expressed
in a tool-agnostic fashion.

“CMMI for Development,” Version 1.3, pp.
137–147 [7].

This model presents a collection of best prac-
tices to help software development organizations
improve their processes. At maturity level 2, it
suggests configuration management activities.

REFERENCES

[1] ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[2*] IEEE Std. 828-2012, Standard for 
Configuration Management in Systems and 
Software Engineering, IEEE, 2012.

[3*] A.M.J. Hass, Configuration Management 
Principles and Practices, 1st ed., Addison-
Wesley, 2003.

[4*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[5*] J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.

[6] S.P. Berczuk and B. Appleton, Software 
Configuration Management Patterns: 
Effective Teamwork, Practical Integration,
Addison-Wesley Professional, 2003.

[7] CMMI Product Team, “CMMI for
Development, Version 1.3,” Software
Engineering Institute, 2010; http://
resources.sei.cmu.edu/library/asset-view.
cfm?assetID=9661.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661

7-1

CHAPTER 7

SOFTWARE ENGINEERING MANAGEMENT

ACRONYMS

PMBOK®

Guide
Guide to the Project Management 
Body of Knowledge

SDLC Software Development Life Cycle
SEM Software Engineering Management

SQA Software Quality Assurance

SWX Software Extension to the PMBOK®
Guide

WBS Work Breakdown Structure

INTRODUCTION

Software engineering management can be defined
as the application of management activities—plan-
ning, coordinating, measuring, monitoring, con-
trolling, and reporting1—to ensure that software
products and software engineering services are
delivered efficiently, effectively, and to the benefit
of stakeholders. The related discipline of manage-
ment is an important element of all the knowledge
areas (KAs), but it is of course more relevant to
this KA than to other KAs. Measurement is also an
important aspect of all KAs; the topic of measure-
ment programs is presented in this KA.

In one sense, it should be possible to manage
a software engineering project in the same way
other complex endeavors are managed. However,
there are aspects specific to software projects
and software life cycle processes that complicate
effective management, including these:

1 The terms Initiating, Planning, Executing,
Monitoring and Controlling, and Closing are used to
describe process groups in the PMBOK® Guide and
SWX.

• Clients often don’t know what is needed or
what is feasible.

• Clients often lack appreciation for the com-
plexities inherent in software engineering,
particularly regarding the impact of chang-
ing requirements.

• It is likely that increased understanding and
changing conditions will generate new or
changed software requirements.

• As a result of changing requirements, soft-
ware is often built using an iterative process
rather than as a sequence of closed tasks.

• Software engineering necessarily incorpo-
rates creativity and discipline. Maintaining
an appropriate balance between the two is
sometimes difficult.

• The degree of novelty and complexity is
often high.

• There is often a rapid rate of change in the
underlying technology.

Software engineering management activities
occur at three levels: organizational and infra-
structure management, project management,
and management of the measurement program.
The last two are covered in detail in this KA
description. However, this is not to diminish the
importance of organizational and infrastructure
management issues. It is generally agreed that
software organizational engineering managers
should be conversant with the project manage-
ment and software measurement knowledge
described in this KA. They should also possess
some target domain knowledge. Likewise, it is
also helpful if managers of complex projects and
programs in which software is a component of
the system architecture are aware of the differ-
ences that software processes introduce into proj-
ect management and project measurement.

7-2 SWEBOK® Guide V3.0

Other aspects of organizational management
exert an impact on software engineering (for
example, organizational policies and procedures
that provide the framework in which software
engineering projects are undertaken). These poli-
cies and procedures may need to be adjusted by
the requirements for effective software develop-
ment and maintenance. In addition, a number of
policies specific to software engineering may
need to be in place or established for effective
management of software engineering at the orga-
nizational level. For example, policies are usually
necessary to establish specific organization-wide
processes or procedures for software engineering
tasks such as software design, software construc-
tion, estimating, monitoring, and reporting. Such
policies are important for effective long-term
management of software engineering projects
across an organization (for example, establishing
a consistent basis by which to analyze past proj-
ect performance and implement improvements).

Another important aspect of organizational
management is personnel management policies
and procedures for hiring, training, and mentor-
ing personnel for career development, not only at
the project level, but also to the longer-term suc-
cess of an organization. Software engineering per-
sonnel may present unique training or personnel
management challenges (for example, maintaining
currency in a context where the underlying tech-
nology undergoes rapid and continuous change).

Communication management is also often
mentioned as an overlooked but important aspect
of the performance of individuals in a field where
precise understanding of user needs, software
requirements, and software designs is necessary.
Furthermore, portfolio management, which pro-
vides an overall view, not only of software cur-
rently under development in various projects and
programs (integrated projects), but also of soft-
ware planned and currently in use in an organiza-
tion, is desirable. Also, software reuse is a key

Figure 7.1. Breakdown of Topics for the Software Engineering Management KA

Software Engineering Management 7-3

factor in maintaining and improving productivity
and competitiveness. Effective reuse requires a
strategic vision that reflects the advantages and
disadvantages of reuse.

In addition to understanding the aspects of
management that are uniquely influenced by soft-
ware projects, software engineers should have
some knowledge of the more general aspects of
management that are discussed in this KA (even
in the first few years after graduation).

Attributes of organizational culture and behav-
ior, plus management of other functional areas
of the enterprise, have an influence, albeit indi-
rectly, on an organization’s software engineering
processes.

Extensive information concerning software
project management can be found in the Guide
to  the Project Management Body of Knowledge 
(PMBOK® Guide) and the Software Extension to 
the PMBOK® Guide (SWX) [1] [2]. Each of these
guides includes ten project management KAs:
project integration management, project scope
management, project time management, project
cost management, project quality management,
project human resource management, project
communications management, project risk man-
agement, project procurement management, and
project stakeholder management. Each KA has
direct relevance to this Software Engineering
Management KA.

Additional information is also provided in the
other references and further readings for this KA.

This Software Engineering Management KA
consists of the software project management pro-
cesses in the first five topics in Figure 7.1 (Initia-
tion and Scope Definition, Software Project Plan-
ning, Software Project Enactment, Review and
Evaluation, Closure), plus Software Engineering
Measurement in the sixth topic and Software
Engineering Management Tools in the seventh
topic. While project management and measure-
ment management are often regarded as being
separate, and indeed each does possess many
unique attributes, the close relationship has led to
combined treatment in this KA.

Unfortunately, a common perception of the soft-
ware industry is that software products are deliv-
ered late, over budget, of poor quality, and with
incomplete functionality. Measurement-informed

management—a basic principle of any true engi-
neering discipline (see Measurement in the Engi-
neering Foundations KA)—can help improve
the perception and the reality. In essence, man-
agement without measurement (qualitative and
quantitative) suggests a lack of discipline, and
measurement without management suggests a
lack of purpose or context. Effective management
requires a combination of both measurement and
experience.

The following working definitions are adopted
here:

• Management  is a system of processes and
controls required to achieve the strategic
objectives set by the organization.

• Measurement refers to the assignment of val-
ues and labels to software engineering work
products, processes, and resources plus the
models that are derived from them, whether
these models are developed using statistical
or other techniques [3* , c7, c8].

The software engineering project management
sections in this KA make extensive use of the
software engineering measurement section.

This KA is closely related to others in the
SWEBOK Guide, and reading the following KA
descriptions in conjunction with this one will be
particularly helpful:

• The Engineering Foundations KA describes
some general concepts of measurement that
are directly applicable to the Software Engi-
neering Measurement section of this KA.
In addition, the concepts and techniques
presented in the Statistical Analysis section
of the Engineering Foundations KA apply
directly to many topics in this KA.

• The Software Requirements KA describes
some of the activities that should be per-
formed during the Initiation and Scope defi-
nition phase of the project.

• The Software Configuration Management
KA deals with identification, control, status
accounting, and auditing of software con-
figurations along with software release man-
agement and delivery and software configu-
ration management tools.

7-4 SWEBOK® Guide V3.0

• The Software Engineering Process KA
describes software life cycle models and the
relationships between processes and work
products.

• The Software Quality KA emphasizes qual-
ity as a goal of management and as an aim of
many software engineering activities.

• The Software Engineering Economics KA
discusses how to make software-related
decisions in a business context.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING
MANAGEMENT

Because most software development life cycle
models require similar activities that may be exe-
cuted in different ways, the breakdown of topics
is activity-based. That breakdown is shown in
Figure 7.1. The elements of the top-level break-
down shown in that figure are the activities that
are usually performed when a software develop-
ment project is being managed, independent of
the software development life cycle model (see
Software Life Cycle Models in the Software
Engineering Process KA) that has been chosen for
a specific project. There is no intent in this break-
down to recommend a specific life cycle model.
The breakdown implies only what happens and
does not imply when, how, or how many times
each activity occurs. The seven topics are:

• Initiation and Scope Definition, which deal
with the decision to embark on a software
engineering project;

• Software Project Planning, which addresses
the activities undertaken to prepare for a suc-
cessful software engineering project from
the management perspective;

• Software Project Enactment, which deals
with generally accepted software engineering
management activities that occur during the
execution of a software engineering project;

• Review and Evaluation, which deal with
ensuring that technical, schedule, cost, and
quality engineering activities are satisfactory;

• Closure, which addresses the activities
accomplished to complete a project;

• Software Engineering Measurement, which
deals with the effective development and

implementation of measurement programs in
software engineering organizations;

• Software Engineering Management Tools,
which describes the selection and use of tools
for managing a software engineering project.

1. Initiation and Scope Definition

The focus of these activities is on effective deter-
mination of software requirements using vari-
ous elicitation methods and the assessment of
project feasibility from a variety of standpoints.
Once project feasibility has been established, the
remaining tasks within this section are the speci-
fication of requirements and selection of the pro-
cesses for revision and review of requirements.

1.1. Determination and Negotiation of 
Requirements

[3*, c3]

Determining and negotiating requirements set
the visible boundaries for the set of tasks being
undertaken (see the Software Requirements KA).
Activities include requirements elicitation, analy-
sis, specification, and validation. Methods and
techniques should be selected and applied, taking
into account the various stakeholder perspectives.
This leads to the determination of project scope in
order to meet objectives and satisfy constraints.

1.2. Feasibility Analysis
[4*, c4]

The purpose of feasibility analysis is to develop a
clear description of project objectives and evalu-
ate alternative approaches in order to determine
whether the proposed project is the best alterna-
tive given the constraints of technology, resources,
finances, and social/political considerations. An
initial project and product scope statement, project
deliverables, project duration constraints, and an
estimate of resources needed should be prepared.

Resources include a sufficient number of
people who have the needed skills, facilities,
infrastructure, and support (either internally or
externally). Feasibility analysis often requires
approximate estimations of effort and cost based
on appropriate methods (see section 2.3, Effort,
Schedule, and Cost Estimation).

Software Engineering Management 7-5

1.3. Process for the Review and Revision of 
Requirements

[3*, c3]

Given the inevitability of change, stakeholders
should agree on the means by which requirements
and scope are to be reviewed and revised (for
example, change management procedures, itera-
tive cycle retrospectives). This clearly implies
that scope and requirements will not be “set in
stone” but can and should be revisited at predeter-
mined points as the project unfolds (for example,
at the time when backlog priorities are created or
at milestone reviews). If changes are accepted,
then some form of traceability analysis and risk
analysis should be used to ascertain the impact
of those changes (see section 2.5, Risk Manage-
ment, and Software Configuration Control in the
Software Configuration Management KA).

A managed-change approach can also form the
basis for evaluation of success during closure of
an incremental cycle or an entire project, based
on changes that have occurred along the way (see
topic 5, Closure).

2. Software Project Planning

The first step in software project planning should
be selection of an appropriate software develop-
ment life cycle model and perhaps tailoring it
based on project scope, software requirements,
and a risk assessment. Other factors to be consid-
ered include the nature of the application domain,
functional and technical complexity, and soft-
ware quality requirements (see Software Quality
Requirements in the Software Quality KA).

In all SDLCs, risk assessment should be an
element of initial project planning, and the “risk
profile” of the project should be discussed and
accepted by all relevant stakeholders. Software
quality management processes (see Software
Quality Management Processes in the Software
Quality KA) should be determined as part of the
planning process and result in procedures and
responsibilities for software quality assurance,
verification and validation, reviews, and audits
(see the Software Quality KA). Processes and
responsibilities for ongoing review and revision
of the project plan and related plans should also
be clearly stated and agreed upon.

2.1. Process Planning 
[3*, c3, c4, c5] [5*, c1]

Software development life cycle (SDLC) mod-
els span a continuum from predictive to adaptive
(see Software Life Cycle Models in the Software
Engineering Process KA). Predictive SDLCs are
characterized by development of detailed soft-
ware requirements, detailed project planning, and
minimal planning for iteration among develop-
ment phases. Adaptive SDLCs are designed to
accommodate emergent software requirements
and iterative adjustment of plans. A highly pre-
dictive SDLC executes the first five processes
listed in Figure 7.1 in a linear sequence with revi-
sions to earlier phases only as necessary. Adap-
tive SDLCs are characterized by iterative devel-
opment cycles. SDLCs in the mid-range of the
SDLC continuum produce increments of func-
tionality on either a preplanned schedule (on the
predictive side of the continuum) or as the prod-
ucts of frequently updated development cycles
(on the adaptive side of the continuum).

Well-known SDLCs include the waterfall,
incremental, and spiral models plus various forms
of agile software development [2] [3*, c2].

Relevant methods (see the Software Engineer-
ing Models and Methods KA) and tools should be
selected as part of planning. Automated tools that
will be used throughout the project should also
be planned for and acquired. Tools may include
tools for project scheduling, software require-
ments, software design, software construction,
software maintenance, software configuration
management, software engineering process, soft-
ware quality, and others. While many of these
tools should be selected based primarily on the
technical considerations discussed in other KAs,
some of them are closely related to the manage-
ment considerations discussed in this chapter.

2.2. Determine Deliverables
[3*, c4, c5, c6]

The work product(s) of each project activity (for
example, software architecture design docu-
ments, inspection reports, tested software) should
be identified and characterized. Opportunities to
reuse software components from previous proj-
ects or to utilize off-the-shelf software products

7-6 SWEBOK® Guide V3.0

should be evaluated. Procurement of software
and use of third parties to develop deliverables
should be planned and suppliers selected (see
section 3.2, Software Acquisition and Supplier
Contract Management).

2.3. Effort, Schedule, and Cost Estimation
[3*, c6]

The estimated range of effort required for a proj-
ect, or parts of a project, can be determined using
a calibrated estimation model based on historical
size and effort data (when available) and other
relevant methods such as expert judgment and
analogy. Task dependencies can be established
and potential opportunities for completing tasks
concurrently and sequentially can be identified
and documented using a Gantt chart, for exam-
ple. For predictive SDLC projects, the expected
schedule of tasks with projected start times, dura-
tions, and end times is typically produced during
planning. For adaptive SDLC projects, an over-
all estimate of effort and schedule is typically
developed from the initial understanding of the
requirements, or, alternatively, constraints on
overall effort and schedule may be specified and
used to determine an initial estimate of the num-
ber of iterative cycles and estimates of effort and
other resources allocated to each cycle.

Resource requirements (for example, people
and tools) can be translated into cost estimates.
Initial estimation of effort, schedule, and cost is
an iterative activity that should be negotiated and
revised among affected stakeholders until con-
sensus is reached on resources and time available
for project completion.

2.4. Resource Allocation
[3*, c5, c10, c11]

Equipment, facilities, and people should be allo-
cated to the identified tasks, including the allo-
cation of responsibilities for completion of vari-
ous elements of a project and the overall project.
A matrix that shows who is responsible for,
accountable for, consulted about, and informed
about each of the tasks can be used. Resource
allocation is based on, and constrained by, the
availability of resources and their optimal use, as

well as by issues relating to personnel (for exam-
ple, productivity of individuals and teams, team
dynamics, and team structures).

2.5. Risk Management
[3*, c9] [5*, c5]

Risk and uncertainty are related but distinct con-
cepts. Uncertainty results from lack of informa-
tion. Risk is characterized by the probability of an
event that will result in a negative impact plus a
characterization of the negative impact on a proj-
ect. Risk is often the result of uncertainty. The
converse of risk is opportunity, which is charac-
terized by the probability that an event having a
positive outcome might occur.

Risk management entails identification of risk
factors and analysis of the probability and poten-
tial impact of each risk factor, prioritization of
risk factors, and development of risk mitigation
strategies to reduce the probability and minimize
the negative impact if a risk factor becomes a
problem. Risk assessment methods (for example,
expert judgment, historical data, decision trees,
and process simulations) can sometimes be used
in order to identify and evaluate risk factors.

Project abandonment conditions can also be
determined at this point in discussion with all
relevant stakeholders. Software-unique aspects
of risk, such as software engineers’ tendency to
add unneeded features, or the risks related to soft-
ware’s intangible nature, can influence risk man-
agement of a software project. Particular atten-
tion should be paid to the management of risks
related to software quality requirements such as
safety or security (see the Software Quality KA).
Risk management should be done not only at the
beginning of a project, but also at periodic inter-
vals throughout the project life cycle.

2.6. Quality Management
[3*, c4] [4*, c24]

Software quality requirements should be identi-
fied, perhaps in both quantitative and qualitative
terms, for a software project and the associated
work products. Thresholds for acceptable qual-
ity measurements should be set for each software
quality requirement based on stakeholder needs

Software Engineering Management 7-7

and expectations. Procedures concerned with
ongoing Software Quality Assurance (SQA) and
quality improvement throughout the development
process, and for verification and validation of
the deliverable software product, should also be
specified during quality planning (for example,
technical reviews and inspections or demonstra-
tions of completed functionality; see the Software
Quality KA).

2.7. Plan Management
[3*, c4]

For software projects, where change is an expec-
tation, plans should be managed. Managing the
project plan should thus be planned. Plans and
processes selected for software development
should be systematically monitored, reviewed,
reported, and, when appropriate, revised. Plans
associated with supporting processes (for exam-
ple, documentation, software configuration man-
agement, and problem resolution) also should be
managed. Reporting, monitoring, and controlling
a project should fit within the selected SDLC and
the realities of the project; plans should account
for the various artifacts that will be used to man-
age the project.

3. Software Project Enactment

During software project enactment (also known
as project execution) plans are implemented and
the processes embodied in the plans are enacted.
Throughout, there should be a focus on adher-
ence to the selected SDLC processes, with an
overriding expectation that adherence will lead to
the successful satisfaction of stakeholder require-
ments and achievement of the project’s objec-
tives. Fundamental to enactment are the ongoing
management activities of monitoring, control-
ling, and reporting.

3.1. Implementation of Plans
[4*, c2]

Project activities should be undertaken in accor-
dance with the project plan and supporting plans.
Resources (for example, personnel, technology,
and funding) are utilized and work products (for

example, software design, software code, and
software test cases) are generated.

3.2. Software Acquisition and Supplier Contract 
Management

[3*, c3, c4]

Software acquisition and supplier contract man-
agement is concerned with issues involved in
contracting with customers of the software devel-
opment organization who acquire the deliverable
work products and with suppliers who supply
products or services to the software engineering
organization.

This may involve selection of appropriate kinds
of contracts, such as fixed price, time and materi-
als, cost plus fixed fee, or cost plus incentive fee.
Agreements with customers and suppliers typi-
cally specify the scope of work and the deliver-
ables and include clauses such as penalties for late
delivery or nondelivery and intellectual property
agreements that specify what the supplier or sup-
pliers are providing and what the acquirer is pay-
ing for, plus what will be delivered to and owned
by the acquirer. For software being developed by
suppliers (both internal to or external to the soft-
ware development organization), agreements com-
monly indicate software quality requirements for
acceptance of the delivered software.

After the agreement has been put in place, exe-
cution of the project in compliance with the terms
of the agreement should be managed (see chapter
12 of SWX, Software Procurement Management,
for more information on this topic [2]).

3.3. Implementation of Measurement Process
[3*, c7]

The measurement process should be enacted dur-
ing the software project to ensure that relevant
and useful data are collected (see sections 6.2,
Plan the Measurement Process, and 6.3, Perform
the Measurement Process).

3.4. Monitor Process
[3*, c8]

Adherence to the project plan and related
plans should be assessed continually and at

7-8 SWEBOK® Guide V3.0

predetermined intervals. Also, outputs and com-
pletion criteria for each task should be assessed.
Deliverables should be evaluated in terms of their
required characteristics (for example, via inspec-
tions or by demonstrating working functionality).
Effort expenditure, schedule adherence, and costs
to date should be analyzed, and resource usage
examined. The project risk profile (see section
2.5, Risk Management) should be revisited, and
adherence to software quality requirements eval-
uated (see Software Quality Requirements in the
Software Quality KA).

Measurement data should be analyzed (see Sta-
tistical Analysis in the Engineering Foundations
KA). Variance analysis based on the deviation of
actual from expected outcomes and values should
be determined. This may include cost overruns,
schedule slippage, or other similar measures.
Outlier identification and analysis of quality and
other measurement data should be performed (for
example, defect analysis; see Software Quality
Measurement in the Software Quality KA). Risk
exposures should be recalculated (see section 2.5,
Risk Management). These activities can enable
problem detection and exception identification
based on thresholds that have been exceeded.
Outcomes should be reported when thresholds
have been exceeded, or as necessary.

3.5. Control Process
[3*, c7, c8]

The outcomes of project monitoring activities
provide the basis on which decisions can be made.
Where appropriate, and when the probability and
impact of risk factors are understood, changes can
be made to the project. This may take the form of
corrective action (for example, retesting certain
software components); it may involve incorpo-
rating additional actions (for example, deciding
to use prototyping to assist in software require-
ments validation; see Prototyping in the Software
Requirements KA); and/or it may entail revision
of the project plan and other project documents
(for example, the software requirements specifi-
cation) to accommodate unanticipated events and
their implications.

In some instances, the control process may
lead to abandonment of the project. In all cases,

software configuration control and software con-
figuration management procedures should be
adhered to (see the Software Configuration Man-
agement KA), decisions should be documented
and communicated to all relevant parties, plans
should be revisited and revised when necessary,
and relevant data recorded (see section 6.3, Per-
form the Measurement Process).

3.6. Reporting
[3*, c11]

At specified and agreed-upon times, progress to
date should be reported—both within the orga-
nization (for example, to a project steering com-
mittee) and to external stakeholders (for exam-
ple, clients or users). Reports should focus on
the information needs of the target audience as
opposed to the detailed status reporting within the
project team.

4. Review and Evaluation

At prespecified times and as needed, overall prog-
ress towards achievement of the stated objectives
and satisfaction of stakeholder (user and customer)
requirements should be evaluated. Similarly,
assessments of the effectiveness of the software
process, the personnel involved, and the tools and
methods employed should also be undertaken reg-
ularly and as determined by circumstances.

4.1. Determining Satisfaction of Requirements
[4*, c8]

Because achieving stakeholder satisfaction is
a principal goal of the software engineering
manager, progress towards this goal should
be assessed periodically. Progress should be
assessed on achievement of major project mile-
stones (for example, completion of software
design architecture or completion of a soft-
ware technical review), or upon completion of
an iterative development cycle that results in
a product increment. Variances from software
requirements should be identified and appropri-
ate actions should be taken.

As in the control process activity above (see sec-
tion 3.5, Control Process), software configuration

Software Engineering Management 7-9

control and software configuration management
procedures should be followed (see the Software
Configuration Management KA), decisions docu-
mented and communicated to all relevant parties,
plans revisited and revised where necessary, and
relevant data recorded (see section 6.3, Perform
the Measurement Process).

4.2. Reviewing and Evaluating Performance
[3*, c8, c10]

Periodic performance reviews for project per-
sonnel can provide insights as to the likelihood
of adherence to plans and processes as well as
possible areas of difficulty (for example, team
member conflicts). The various methods, tools,
and techniques employed should be evaluated for
their effectiveness and appropriateness, and the
process being used by the project should also be
systematically and periodically assessed for rel-
evance, utility, and efficacy in the project context.
Where appropriate, changes should be made and
managed.

5. Closure

An entire project, a major phase of a project,
or an iterative development cycle reaches clo-
sure when all the plans and processes have been
enacted and completed. The criteria for project,
phase, or iteration success should be evaluated.
Once closure is established, archival, retrospec-
tive, and process improvement activities can be
performed.

5.1. Determining Closure
[1, s3.7, s4.6]

Closure occurs when the specified tasks for a
project, a phase, or an iteration have been com-
pleted and satisfactory achievement of the com-
pletion criteria has been confirmed. Software
requirements can be confirmed as satisfied or not,
and the degree of achieving the objectives can
be determined. Closure processes should involve
relevant stakeholders and result in documentation
of relevant stakeholders’ acceptance; any known
problems should be documented.

5.2. Closure Activities
[2, s3.7, s4.8]

After closure has been confirmed, archiving of
project materials should be accomplished in
accordance with stakeholder agreed-upon meth-
ods, location, and duration—possibly including
destruction of sensitive information, software,
and the medium on which copies are resident.
The organization’s measurement database should
be updated with relevant project data. A project,
phase, or iteration retrospective analysis should
be undertaken so that issues, problems, risks,
and opportunities encountered can be analyzed
(see topic 4, Review and Evaluation). Lessons
learned should be drawn from the project and fed
into organizational learning and improvement
endeavors.

6. Software Engineering Measurement

The importance of measurement and its role in
better management and engineering practices is
widely acknowledged (see Measurement in the
Engineering Foundations KA). Effective mea-
surement has become one of the cornerstones
of organizational maturity. Measurement can be
applied to organizations, projects, processes, and
work products. In this section the focus is on the
application of measurement at the levels of proj-
ects, processes, and work products.

This section follows the IEEE 15939:2008
standard [6], which describes a process to define
the activities and tasks necessary to implement a
software measurement process. The standard also
includes a measurement information model.

6.1. Establish and Sustain Measurement 
Commitment

[7*, c1, c2]2

• Requirements for measurement. Each mea-
surement endeavor should be guided by
organizational objectives and driven by a set
of measurement requirements established by

2 Please note that these two chapters can be
downloaded free of charge from www.psmsc.com/
PSMBook.asp.

http://www.psmsc.com/PSMBook.asp
http://www.psmsc.com/PSMBook.asp

7-10 SWEBOK® Guide V3.0

the organization and the project (for exam-
ple, an organizational objective might be
“first-to-market with new products”).

• Scope of measurement. The organizational
unit to which each measurement requirement
is to be applied should be established. This
may consist of a functional area, a single
project, a single site, or an entire enterprise.
The temporal scope of the measurement
effort should also be considered because
time series of some measurements may be
required; for example, to calibrate estima-
tion models (see section 2.3, Effort, Sched-
ule, and Cost Estimation).

• Team commitment to measurement. The
commitment should be formally established,
communicated, and supported by resources
(see next item).

• Resources for measurement. An organiza-
tion’s commitment to measurement is an
essential factor for success, as evidenced by
the assignment of resources for implement-
ing the measurement process. Assigning
resources includes allocation of responsibil-
ity for the various tasks of the measurement
process (such as analyst and librarian). Ade-
quate funding, training, tools, and support to
conduct the process should also be allocated.

6.2. Plan the Measurement Process 
[7*, c1, c2]

• Characterize the organizational unit. The
organizational unit provides the context for
measurement, so the organizational context
should be made explicit, including the con-
straints that the organization imposes on
the measurement process. The characteriza-
tion can be stated in terms of organizational
processes, application domains, technology,
organizational interfaces, and organizational
structure.

• Identify information needs. Information
needs are based on the goals, constraints,
risks, and problems of the organizational
unit. They may be derived from business,
organizational, regulatory, and/or product
objectives. They should be identified and

prioritized. Then a subset of objectives to be
addressed can be selected, documented, com-
municated, and reviewed by stakeholders.

• Select measures. Candidate measures should
be selected, with clear links to the informa-
tion needs. Measures should be selected
based on the priorities of the information
needs and other criteria such as cost of col-
lection, degree of process disruption during
collection, ease of obtaining accurate, con-
sistent data, and ease of analysis and report-
ing. Because internal quality characteristics
(see Models and Quality Characteristics in
the Software Quality KA) are often not con-
tained in the contractually binding software
requirements, it is important to consider mea-
suring the internal quality of the software to
provide an early indicator of potential issues
that may impact external stakeholders.

• Define data collection, analysis, and report-
ing procedures. This encompasses collection
procedures and schedules, storage, verifica-
tion, analysis, reporting, and configuration
management of data.

• Select criteria for evaluating the information
products. Criteria for evaluation are influ-
enced by the technical and business objec-
tives of the organizational unit. Information
products include those associated with the
product being produced, as well as those
associated with the processes being used to
manage and measure the project.

• Provide resources for measurement tasks. The
measurement plan should be reviewed and
approved by the appropriate stakeholders to
include all data collection procedures; storage,
analysis, and reporting procedures; evaluation
criteria; schedules; and responsibilities. Crite-
ria for reviewing these artifacts should have
been established at the organizational-unit
level or higher and should be used as the basis
for these reviews. Such criteria should take
into consideration previous experience, avail-
ability of resources, and potential disruptions
to projects when changes from current prac-
tices are proposed. Approval demonstrates
commitment to the measurement process.

• Identify resources to be made available for
implementing the planned and approved

Software Engineering Management 7-11

measurement tasks. Resource availability
may be staged in cases where changes are
to be piloted before widespread deployment.
Consideration should be paid to the resources
necessary for successful deployment of new
procedures or measures.

• Acquire and deploy supporting technologies.
This includes evaluation of available supporting
technologies, selection of the most appropriate
technologies, acquisition of those technologies,
and deployment of those technologies.

6.3. Perform the Measurement Process
[7*, c1, c2]

• Integrate measurement procedures with rel-
evant software processes. The measurement
procedures, such as data collection, should
be integrated into the software processes
they are measuring. This may involve chang-
ing current software processes to accommo-
date data collection or generation activities.
It may also involve analysis of current soft-
ware processes to minimize additional effort
and evaluation of the effect on employees to
ensure that the measurement procedures will
be accepted. Morale issues and other human
factors should be considered. In addition, the
measurement procedures should be commu-
nicated to those providing the data. Training
and support may also need to be provided.
Data analysis and reporting procedures are
typically integrated into organizational and/
or project processes in a similar manner.

• Collect data. Data should be collected, veri-
fied, and stored. Collection can sometimes
be automated by using software engineer-
ing management tools (see topic 7, Soft-
ware Engineering Management Tools) to
analyze data and develop reports. Data may
be aggregated, transformed, or recoded as
part of the analysis process, using a degree
of rigor appropriate to the nature of the data
and the information needs. The results of
this analysis are typically indicators such as
graphs, numbers, or other indications that
will be interpreted, resulting in conclusions
and recommendations to be presented to
stakeholders (see Statistical Analysis in the

Engineering Foundations KA). The results
and conclusions are usually reviewed, using
a process defined by the organization (which
may be formal or informal). Data providers
and measurement users should participate
in reviewing the data to ensure that they are
meaningful and accurate and that they can
result in reasonable actions.

• Communicate results. Information products
should be documented and communicated to
users and stakeholders.

6.4. Evaluate Measurement
[7*, c1, c2]

• Evaluate information products and the mea-
surement process against specified evalu-
ation criteria and determine strengths and
weaknesses of the information products or
process, respectively. Evaluation may be
performed by an internal process or an exter-
nal audit; it should include feedback from
measurement users. Lessons learned should
be recorded in an appropriate database.

• Identify potential improvements. Such
improvements may be changes in the format
of indicators, changes in units measured, or
reclassification of measurement categories.
The costs and benefits of potential improve-
ments should be determined and appropriate
improvement actions should be reported.

• Communicate proposed improvements to the
measurement process owner and stakehold-
ers for review and approval. Also, lack of
potential improvements should be commu-
nicated if the analysis fails to identify any
improvements.

7. Software Engineering Management Tools
[3*, c5, c6, c7]

Software engineering management tools are often
used to provide visibility and control of software
engineering management processes. Some tools
are automated while others are manually imple-
mented. There has been a recent trend towards
the use of integrated suites of software engineer-
ing tools that are used throughout a project to
plan, collect and record, monitor and control, and

7-12 SWEBOK® Guide V3.0

report project and product information. Tools can
be divided into the following categories:
Project Planning  and Tracking Tools. Project

planning and tracking tools can be used to esti-
mate project effort and cost and to prepare project
schedules. Some projects use automated estima-
tion tools that accept as input the estimated size
and other characteristics of a software product
and produce estimates of the required total effort,
schedule, and cost. Planning tools also include
automated scheduling tools that analyze the tasks
within a work breakdown structure, their esti-
mated durations, their precedence relationships,
and the resources assigned to each task to pro-
duce a schedule in the form of a Gantt chart.

Tracking tools can be used to track project
milestones, regularly scheduled project status
meetings, scheduled iteration cycles, product
demonstrations, and/or action items.
Risk  Management  Tools.  Risk management

tools (see section 2.5, Risk Management) can
be used to track risk identification, estimation,
and monitoring. These tools include the use of
approaches such as simulation or decision trees
to analyze the effect of costs versus payoffs

and subjective estimates of the probabilities of
risk events. Monte Carlo simulation tools can
be used to produce probability distributions of
effort, schedule, and risk by combining multiple
input probability distributions in an algorithmic
manner.
Communications  Tools. Communication tools

can assist in providing timely and consistent
information to relevant stakeholders involved in a
project. These tools can include things like email
notifications and broadcasts to team members
and stakeholders. They also include communica-
tion of minutes from regularly scheduled project
meetings, daily stand-up meetings, plus charts
showing progress, backlogs, and maintenance
request resolutions.
Measurement  Tools. Measurement tools sup-

port activities related to the software measure-
ment program (see topic 6, Software Engineer-
ing Measurement). There are few completely
automated tools in this category. Measurement
tools used to gather, analyze, and report project
measurement data may be based on spreadsheets
developed by project team members or organiza-
tional employees.

Software Engineering Management 7-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Fa
ir

le
y

20
09

[3

*]

So
m

m
er

vi
lle

 2
01

1
[4

*]

B
oe

hm
 a

nd
 T

ur
ne

r
20

03

[5
*]

M
cG

ar
ry

 e
t a

l.
20

01

[7
*]

1. Initiation and Scope
Definition

1.1. Determination and
Negotiation of Requirements c3

1.2. Feasibility Analysis c4
1.3. Process for the Review and
Revision of Requirements c3

2. Software Project Planning
2.1. Process Planning c2, c3, c4, c5 c1
2.2. Determine Deliverables c4, c5, c6
2.3. Effort, Schedule, and Cost
Estimation c6

2.4. Resource Allocation c5, c10, c11
2.5. Risk Management c9 c5
2.6. Quality Management c4 c24
2.7. Plan Management c4

3. Software Project Enactment
3.1. Implementation of Plans c2
3.2. Software Acquisition and
Supplier Contract Management c3, c4

3.3. Implementation of
Measurement Process c7

3.4. Monitor Process c8
3.5. Control Process c7, c8
3.6. Reporting c11

4. Review and Evaluation
4.1. Determining Satisfaction of
Requirements
4.2. Reviewing and Evaluating
Performance c8, c10

7-14 SWEBOK® Guide V3.0

Fa
ir

le
y

20
09

[3

*]

So
m

m
er

vi
lle

 2
01

1
[4

*]

B
oe

hm
 a

nd
 T

ur
ne

r
20

03

[5
*]

M
cG

ar
ry

 e
t a

l.
20

01

[7
*]

5. Closure
5.1. Determining Closure
5.2. Closure Activities

6. Software Engineering
Measurement

6.1. Establish and Sustain
Measurement Commitment c1, c2

6.2. Plan the Measurement
Process c1, c2

6.3. Perform the Measurement
Process c1, c2

6.4. Evaluate Measurement c1, c2
7. Software Engineering
Management Tools c5, c6, c7

Software Engineering Management 7-15

FURTHER READINGS

A Guide to the Project Management Body of 
Knowledge (PMBOK® Guide) [1].

The PMBOK® Guide provides guidelines for
managing individual projects and defines project
management-related concepts. It also describes
the project management life cycle and its related
processes, as well as the project life cycle. It is
a globally recognized guide for the project man-
agement profession.

Software Extension to the Guide to the 
Project Management Body of Knowledge 
(PMBOK® Guide) [2].

SWX provides adaptations and extensions to
the generic practices of project management
documented in the PMBOK® Guide for manag-
ing software projects. The primary contribution
of this extension to the PMBOK®  Guide is a
description of processes that are applicable for
managing adaptive life cycle software projects.

IEEE Standard Adoption of ISO/IEC 15939 [6].

This international standard identifies a process
that supports defining a suitable set of measures
to address specific information needs. It identi-
fies the activities and tasks that are necessary to
successfully identify, define, select, apply, and
improve measurement within an overall project
or organizational measurement structure.

J. McDonald, Managing the Development of 
Software Intensive Systems, Wiley, 2010 [8].

This textbook provides an introduction to project
management for beginning software and hard-
ware developers plus unique advanced material
for experienced project managers. Case studies
are included for planning and managing verifica-
tion and validation for large software projects,
complex software, and hardware systems, as well
as inspection results and testing metrics to moni-
tor project status.

REFERENCES

[1] Project Management Institute, A Guide to the 
Project Management Body of Knowledge 
(PMBOK(R) Guide), 5th ed., Project
Management Institute, 2013.

[2] Project Management Institute and IEEE
Computer Society, Software Extension to 
the PMBOK® Guide Fifth Edition, Project
Management Institute, 2013.

[3*] R.E. Fairley, Managing and Leading 
Software Projects, Wiley-IEEE Computer
Society Press, 2009.

[4*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[5*] B. Boehm and R. Turner, Balancing Agility 
and Discipline: A Guide for the Perplexed,
Addison-Wesley, 2003.

[6] IEEE Std. 15939-2008 Standard Adoption of 
ISO/IEC 15939:2007 Systems and Software 
Engineering—Measurement Process,
IEEE, 2008.

[7*] J. McGarry et al., Practical Software 
Measurement: Objective Information 
for Decision Makers, Addison-Wesley
Professional, 2001.

[8] J. McDonald, Managing the Development of 
Software Intensive Systems, John Wiley and
Sons, Inc., 2010.

8-1

CHAPTER 8

SOFTWARE ENGINEERING PROCESS

ACRONYMS

BPMN Business Process Modeling
Notation

CASE Computer-Assisted Software
Engineering

CM Configuration Management

CMMI Capability Maturity Model
Integration

GQM Goal-Question-Metric
IDEF0 Integration Definition
LOE Level of Effort
ODC Orthogonal Defect Classification
SDLC Software Development Life Cycle
SPLC Software Product Life Cycle
UML Unified Modeling Language

INTRODUCTION

An engineering process consists of a set of inter-
related activities that transform one or more inputs
into outputs while consuming resources to accom-
plish the transformation. Many of the processes of
traditional engineering disciplines (e.g., electrical,
mechanical, civil, chemical) are concerned with
transforming energy and physical entities from
one form into another, as in a hydroelectric dam
that transforms potential energy into electrical
energy or a petroleum refinery that uses chemical
processes to transform crude oil into gasoline.

In this knowledge area (KA), software engineer-
ing processes are concerned with work activities
accomplished by software engineers to develop,
maintain, and operate software, such as require-
ments, design, construction, testing, configura-
tion management, and other software engineering
processes. For readability, “software engineering

process” will be referred to as “software process”
in this KA. In addition, please note that “software
process” denotes work activities—not the execu-
tion process for implemented software.

Software processes are specified for a number
of reasons: to facilitate human understanding,
communication, and coordination; to aid man-
agement of software projects; to measure and
improve the quality of software products in an
efficient manner; to support process improve-
ment; and to provide a basis for automated sup-
port of process execution.

SWEBOK KAs closely related to this Soft-
ware Engineering Process KA include Software
Engineering Management, Software Engineer-
ing Models and Methods, and Software Quality;
the Measurement and Root Cause Analysis topic
found in the Engineering Foundations KA is also
closely related. Software Engineering Manage-
ment is concerned with tailoring, adapting, and
implementing software processes for a specific
software project (see Process Planning in the
Software Engineering Management KA). Mod-
els and methods support a systematic approach to
software development and modification.

The Software Quality KA is concerned with
the planning, assurance, and control processes
for project and product quality. Measurement and
measurement results in the Engineering Founda-
tions KA are essential for evaluating and control-
ling software processes.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING PROCESS

As illustrated in Figure 8.1, this KA is concerned
with software process definition, software life
cycles, software process assessment and improve-
ment, software measurement, and software engi-
neering process tools.

8-2 SWEBOK® Guide V3.0

1. Software Process Definition
[1*, p177] [2*, p295] [3*, p28–29, p36, c5]

This topic is concerned with a definition of soft-
ware process, software process management, and
software process infrastructure.

As stated above, a software process is a set of
interrelated activities and tasks that transform
input work products into output work products.
At minimum, the description of a software pro-
cess includes required inputs, transforming work
activities, and outputs generated. As illustrated in
Figure 8.2, a software process may also include
its entry and exit criteria and decomposition
of the work activities into tasks, which are the
smallest units of work subject to management
accountability. A process input may be a trigger-
ing event or the output of another process. Entry
criteria should be satisfied before a process can
commence. All specified conditions should be
satisfied before a process can be successfully

concluded, including the acceptance criteria for
the output work product or work products.

A software process may include subprocesses.
For example, software requirements validation is
a process used to determine whether the require-
ments will provide an adequate basis for software
development; it is a subprocess of the software
requirements process. Inputs for requirements val-
idation are typically a software requirements spec-
ification and the resources needed to perform vali-
dation (personnel, validation tools, sufficient time).
The tasks of the requirements validation activity
might include requirements reviews, prototyping,
and model validation. These tasks involve work
assignments for individuals and teams. The output
of requirements validation is typically a validated
software requirements specification that provides
inputs to the software design and software test-
ing processes. Requirements validation and other
subprocesses of the software requirements process
are often interleaved and iterated in various ways;

Figure 8.1. Breakdown of Topics for the Software Engineering Process KA

Software Engineering Process 8-3

the software requirements process and its subpro-
cesses may be entered and exited multiple times
during software development or modification.

Complete definition of a software process may
also include the roles and competencies, IT sup-
port, software engineering techniques and tools,
and work environment needed to perform the
process, as well as the approaches and measures
(Key Performance Indicators) used to determine
the efficiency and effectiveness of performing the
process.

In addition, a software process may include
interleaved technical, collaborative, and adminis-
trative activities.

Notations for defining software processes
include textual lists of constituent activities and
tasks described in natural language; data-flow
diagrams; state charts; BPMN; IDEF0; Petri nets;
and UML activity diagrams. The transforming
tasks within a process may be defined as proce-
dures; a procedure may be specified as an ordered
set of steps or, alternatively, as a checklist of the
work to be accomplished in performing a task.

It must be emphasized that there is no best soft-
ware process or set of software processes. Soft-
ware processes must be selected, adapted, and
applied as appropriate for each project and each
organizational context. No ideal process, or set of
processes, exists.

1.1. Software Process Management 
[3*, s26.1] [4*, p453–454]

Two objectives of software process management
are to realize the efficiency and effectiveness that

result from a systematic approach to accomplish-
ing software processes and producing work prod-
ucts—be it at the individual, project, or organiza-
tional level—and to introduce new or improved
processes.

Processes are changed with the expectation that
a new or modified process will improve the effi-
ciency and/or effectiveness of the process and the
quality of the resulting work products. Changing
to a new process, improving an existing process,
organizational change, and infrastructure change
(technology insertion or changes in tools) are
closely related, as all are usually initiated with the
goal of improving the cost, development sched-
ule, or quality of the software products. Process
change has impacts not only for the software
product; they often lead to organizational change.
Changing a process or introducing a new process
can have ripple effects throughout an organiza-
tion. For example, changes in IT infrastruc-
ture tools and technology often require process
changes.

Existing processes may be modified when
other new processes are deployed for the first
time (for example, introducing an inspection
activity within a software development project
will likely impact the software testing process—
see Reviews and Audits in the Software Quality
KA and in the Software Testing KA). These situ-
ations can also be termed “process evolution.”
If the modifications are extensive, then changes
in the organizational culture and business model
will likely be necessary to accommodate the pro-
cess changes.

Figure 8.2. Elements of a Software Process

8-4 SWEBOK® Guide V3.0

1.2. Software Process Infrastructure
[2*, p183, p186] [4*, p437–438]

Establishing, implementing, and managing soft-
ware processes and software life cycle models
often occurs at the level of individual software
projects. However, systematic application of
software processes and software life cycle mod-
els across an organization can provide benefits
to all software work within the organization,
although it requires commitment at the organi-
zational level. A software process infrastructure
can provide process definitions, policies for inter-
preting and applying the processes, and descrip-
tions of the procedures to be used to implement
the processes. Additionally, a software process
infrastructure may provide funding, tools, train-
ing, and staff members who have been assigned
responsibilities for establishing and maintaining
the software process infrastructure.

Software process infrastructure varies, depend-
ing on the size and complexity of the organization
and the projects undertaken within the organiza-
tion. Small, simple organizations and projects
have small, simple infrastructure needs. Large,
complex organizations and projects, by neces-
sity, have larger and more complex software
process infrastructures. In the latter case, various
organizational units may be established (such as
a software engineering process group or a steer-
ing committee) to oversee implementation and
improvement of the software processes.

A common misperception is that establishing a
software process infrastructure and implementing
repeatable software processes will add time and
cost to software development and maintenance.
There is a cost associated with introducing or
improving a software process; however, experi-
ence has shown that implementing systematic
improvement of software processes tends to result
in lower cost through improved efficiency, avoid-
ance of rework, and more reliable and affordable
software. Process performance thus influences
software product quality.

2. Software Life Cycles
[1*, c2] [2*, p190]

This topic addresses categories of software pro-
cesses, software life cycle models, software

process adaptation, and practical considerations.
A software development life cycle (SDLC)
includes the software processes used to specify
and transform software requirements into a deliv-
erable software product. A software product life
cycle (SPLC) includes a software development
life cycle plus additional software processes that
provide for deployment, maintenance, support,
evolution, retirement, and all other inception-
to-retirement processes for a software product,
including the software configuration management
and software quality assurance processes that are
applied throughout a software product life cycle.
A software product life cycle may include multi-
ple software development life cycles for evolving
and enhancing the software.

Individual software processes have no tempo-
ral ordering among them. The temporal relation-
ships among software processes are provided by
a software life cycle model: either an SDLC or
SPLC. Life cycle models typically emphasize
the key software processes within the model
and their temporal and logical interdependen-
cies and relationships. Detailed definitions of
the software processes in a life cycle model may
be provided directly or by reference to other
documents.

In addition to conveying the temporal and
logical relationships among software processes,
the software development life cycle model (or
models used within an organization) includes the
control mechanisms for applying entry and exit
criteria (e.g., project reviews, customer approv-
als, software testing, quality thresholds, dem-
onstrations, team consensus). The output of one
software process often provides the input for oth-
ers (e.g., software requirements provide input for
a software architectural design process and the
software construction and software testing pro-
cesses). Concurrent execution of several software
process activities may produce a shared output
(e.g., the interface specifications for interfaces
among multiple software components developed
by different teams). Some software processes
may be regarded as less effective unless other
software processes are being performed at the
same time (e.g., software test planning during
software requirements analysis can improve the
software requirements).

Software Engineering Process 8-5

2.1. Categories of Software Processes
[1*, Preface] [2* , p294–295] [3*, c22–c24]

Many distinct software processes have been
defined for use in the various parts of the soft-
ware development and software maintenance life
cycles. These processes can be categorized as
follows:

1. Primary  processes  include software pro-
cesses for development, operation, and
maintenance of software.

2. Supporting  processes are applied intermit-
tently or continuously throughout a software
product life cycle to support primary pro-
cesses; they include software processes such
as configuration management, quality assur-
ance, and verification and validation.

3. Organizational  processes provide sup-
port for software engineering; they include
training, process measurement analysis,
infrastructure management, portfolio and
reuse management, organizational process
improvement, and management of software
life cycle models.

4. Cross-project processes, such as reuse, soft-
ware product line, and domain engineering;
they involve more than a single software
project in an organization.

Software processes in addition to those listed
above include the following.

Project management processes include pro-
cesses for planning and estimating, resource
management, measuring and controlling, leading,
managing risk, managing stakeholders, and coor-
dinating the primary, supporting, organizational,
and cross-project processes of software develop-
ment and maintenance projects.

Software processes are also developed for
particular needs, such as process activities that
address software quality characteristics (see
the Software Quality KA). For example, secu-
rity concerns during software development may
necessitate one or more software processes to
protect the security of the development environ-
ment and reduce the risk of malicious acts. Soft-
ware processes may also be developed to provide
adequate grounds for establishing confidence in
the integrity of the software.

2.2. Software Life Cycle Models 
[1*, c2] [2*, s3.2] [3*, s2.1] [5]

The intangible and malleable nature of software
permits a wide variety of software development
life cycle models, ranging from linear models in
which the phases of software development are
accomplished sequentially with feedback and
iteration as needed followed by integration, test-
ing, and delivery of a single product; to iterative
models in which software is developed in incre-
ments of increasing functionality on iterative
cycles; to agile models that typically involve
frequent demonstrations of working software to
a customer or user representative who directs
development of the software in short iterative
cycles that produce small increments of working,
deliverable software. Incremental, iterative, and
agile models can deliver early subsets of working
software into the user environment, if desired.

Linear SDLC models are sometimes referred
to as predictive software development life cycle
models, while iterative and agile SDLCs are
referred to as adaptive software development
life cycle models. It should be noted that vari-
ous maintenance activities during an SPLC can
be conducted using different SDLC models, as
appropriate to the maintenance activities.

A distinguishing feature of the various soft-
ware development life cycle models is the way in
which software requirements are managed. Lin-
ear development models typically develop a com-
plete set of software requirements, to the extent
possible, during project initiation and planning.
The software requirements are then rigorously
controlled. Changes to the software requirements
are based on change requests that are processed
by a change control board (see Requesting,
Evaluating and Approving Software Changes in
the Change Control Board in the Software Con-
figuration Management KA). An incremental
model produces successive increments of work-
ing, deliverable software based on partitioning
of the software requirements to be implemented
in each of the increments. The software require-
ments may be rigorously controlled, as in a linear
model, or there may be some flexibility in revising
the software requirements as the software product
evolves. Agile models may define product scope
and high-level features initially; however, agile

8-6 SWEBOK® Guide V3.0

models are designed to facilitate evolution of the
software requirements during the project.

It must be emphasized that the continuum of
SDLCs from linear to agile is not a thin, straight
line. Elements of different approaches may be
incorporated into a specific model; for exam-
ple, an incremental software development life
cycle model may incorporate sequential soft-
ware requirements and design phases but permit
considerable flexibility in revising the software
requirements and architecture during software
construction.

2.3. Software Process Adaptation
[1*, s2.7] [2*, p51]

Predefined SDLCs, SPLCs, and individual soft-
ware processes often need to be adapted (or
“tailored”) to better serve local needs. Organiza-
tional context, innovations in technology, project
size, product criticality, regulatory requirements,
industry practices, and corporate culture may
determine needed adaptations. Adaptation of
individual software processes and software life
cycle models (development and product) may
consist of adding more details to software pro-
cesses, activities, tasks, and procedures to address
critical concerns. It may consist of using an alter-
nate set of activities that achieves the purpose and
outcomes of the software process. Adaptation
may also include omitting software processes
or activities from a development or product life
cycle model that are clearly inapplicable to the
scope of work to be accomplished.

2.4. Practical Considerations
[2*, p188–190]

In practice, software processes and activities are
often interleaved, overlapped, and applied concur-
rently. Software life cycle models that specify dis-
crete software processes, with rigorously specified
entry and exit criteria and prescribed boundaries
and interfaces, should be recognized as idealiza-
tions that must be adapted to reflect the realities of
software development and maintenance within the
organizational context and business environment.

Another practical consideration: software
processes (such as configuration management,

construction, and testing) can be adapted to facili-
tate operation, support, maintenance, migration,
and retirement of the software.

Additional factors to be considered when
defining and tailoring a software life cycle model
include required conformance to standards, direc-
tives, and policies; customer demands; criticality
of the software product; and organizational matu-
rity and competencies. Other factors include the
nature of the work (e.g., modification of exist-
ing software versus new development) and the
application domain (e.g., aerospace versus hotel
management).

3. Software Process Assessment and
Improvement

[2*, p188, p194] [3*, c26] [4*, p397, c15]

This topic addresses software process assess-
ment models, software process assessment meth-
ods, software process improvement models, and
continuous and staged process ratings. Software
process assessments are used to evaluate the form
and content of a software process, which may
be specified by a standardized set of criteria. In
some instances, the terms “process appraisal”
and “capability evaluation” are used instead of
process assessment. Capability evaluations are
typically performed by an acquirer (or potential
acquirer) or by an external agent on behalf of
an acquirer (or potential acquirer). The results
are used as an indicator of whether the software
processes used by a supplier (or potential sup-
plier) are acceptable to the acquirer. Performance
appraisals are typically performed within an orga-
nization to identify software processes in need of
improvement or to determine whether a process
(or processes) satisfies the criteria at a given level
of process capability or maturity.

Process assessments are performed at the lev-
els of entire organizations, organizational units
within organizations, and individual projects.
Assessment may involve issues such as assess-
ing whether software process entry and exit cri-
teria are being met, to review risk factors and
risk management, or to identify lessons learned.
Process assessment is carried out using both an
assessment model and an assessment method. The
model can provide a norm for a benchmarking

Software Engineering Process 8-7

comparison among projects within an organiza-
tion and among organizations.

A process audit differs from a process assess-
ment. Assessments are performed to determine
levels of capability or maturity and to identify
software processes to be improved. Audits are
typically conducted to ascertain compliance with
policies and standards. Audits provide manage-
ment visibility into the actual operations being
performed in the organization so that accurate
and meaningful decisions can be made concern-
ing issues that are impacting a development proj-
ect, a maintenance activity, or a software-related
topic.

Success factors for software process assess-
ment and improvement within software engineer-
ing organizations include management sponsor-
ship, planning, training, experienced and capable
leaders, team commitment, expectation manage-
ment, the use of change agents, plus pilot projects
and experimentation with tools. Additional fac-
tors include independence of the assessor and the
timeliness of the assessment.

3.1. Software Process Assessment Models
[2*, s4.5, s4.6] [3*, s26.5] [4*, p44–48]

Software process assessment models typically
include assessment criteria for software processes
that are regarded as constituting good practices.
These practices may address software develop-
ment processes only, or they may also include
topics such as software maintenance, software
project management, systems engineering, or
human resources management.

3.2. Software Process Assessment Methods
[1*, p322–331] [3*, s26.3]

 [4*, p44–48, s16.4] [6]

A software process assessment method can be
qualitative or quantitative. Qualitative assess-
ments rely on the judgment of experts; quanti-
tative assessments assign numerical scores to
software processes based on analysis of objective
evidence that indicates attainment of the goals
and outcomes of a defined software process. For
example, a quantitative assessment of the soft-
ware inspection process might be performed by

examining the procedural steps followed and
results obtained plus data concerning defects
found and time required to find and fix the defects
as compared to software testing.

A typical method of software process assess-
ment includes planning, fact-finding (by collect-
ing evidence through questionnaires, interviews,
and observation of work practices), collection
and validation of process data, and analysis and
reporting. Process assessments may rely on the
subjective, qualitative judgment of the assessor,
or on the objective presence or absence of defined
artifacts, records, and other evidence.

The activities performed during a software pro-
cess assessment and the distribution of effort for
assessment activities are different depending on
the purpose of the software process assessment.
Software process assessments may be undertaken
to develop capability ratings used to make recom-
mendations for process improvements or may be
undertaken to obtain a process maturity rating in
order to qualify for a contract or award.

The quality of assessment results depends on
the software process assessment method, the
integrity and quality of the obtained data, the
assessment team’s capability and objectivity, and
the evidence examined during the assessment.
The goal of a software process assessment is to
gain insight that will establish the current status
of a process or processes and provide a basis for
process improvement; performing a software
process assessment by following a checklist for
conformance without gaining insight adds little
value.

3.3. Software Process Improvement Models 
[2*, p187–188] [3*, s26.5] [4*, s2.7]

Software process improvement models empha-
size iterative cycles of continuous improvement.
A software process improvement cycle typically
involves the subprocesses of measuring, ana-
lyzing, and changing. The Plan-Do-Check-Act
model is a well-known iterative approach to
software process improvement. Improvement
activities include identifying and prioritizing
desired improvements (planning); introducing
an improvement, including change management
and training (doing); evaluating the improvement

8-8 SWEBOK® Guide V3.0

as compared to previous or exemplary process
results and costs (checking); and making further
modifications (acting). The Plan-Do-Check-Act
process improvement model can be applied, for
example, to improve software processes that
enhance defect prevention.

3.4. Continuous and Staged Software Process 
Ratings

[1*, p28–34] [3*, s26.5] [4*, p39–45]

Software process capability and software process
maturity are typically rated using five or six levels
to characterize the capability or maturity of the
software processes used within an organization.

A continuous rating system involves assign-
ing a rating to each software process of interest;
a staged rating system is established by assign-
ing the same maturity rating to all of the software
processes within a specified process level. A rep-
resentation of continuous and staged process lev-
els is provided in Table 8.1. Continuous models
typically use a level 0 rating; staged models typi-
cally do not.

Table 8.1. Software Process Rating Levels

Level

Continuous
Representation
of Capability
Levels

Staged
Representation
of Maturity
Levels

0 Incomplete
1 Performed Initial
2 Managed Managed
3 Defined Defined

4 Quantitatively
Managed

5 Optimizing

In Table 8.1, level 0 indicates that a software
process is incompletely performed or may not be
performed. At level 1, a software process is being
performed (capability rating), or the software
processes in a maturity level 1 group are being
performed but on an ad hoc, informal basis. At
level 2, a software process (capability rating) or
the processes in maturity level 2 are being per-
formed in a manner that provides management

visibility into intermediate work products and
can exert some control over transitions between
processes. At level 3, a single software process or
the processes in a maturity level 3 group plus the
process or processes in maturity level 2 are well
defined (perhaps in organizational policies and
procedures) and are being repeated across dif-
ferent projects. Level 3 of process capability or
maturity provides the basis for process improve-
ment across an organization because the process
is (or processes are) conducted in a similar man-
ner. This allows collection of performance data
in a uniform manner across multiple projects. At
maturity level 4, quantitative measures can be
applied and used for process assessment; statis-
tical analysis may be used. At maturity level 5,
the mechanisms for continuous process improve-
ments are applied.

Continuous and staged representations can be
used to determine the order in which software
processes are to be improved. In the continuous
representation, the different capability levels for
different software processes provide a guideline
for determining the order in which software pro-
cesses will be improved. In the staged representa-
tion, satisfying the goals of a set of software pro-
cesses within a maturity level is accomplished for
that maturity level, which provides a foundation
for improving all of the software processes at the
next higher level.

4. Software Measurement
[3*, s26.2] [4*, s18.1.1]

This topic addresses software process and prod-
uct measurement, quality of measurement results,
software information models, and software pro-
cess measurement techniques (see Measurement
in the Engineering Foundations KA).

Before a new process is implemented or a cur-
rent process is modified, measurement results for
the current situation should be obtained to pro-
vide a baseline for comparison between the cur-
rent situation and the new situation. For exam-
ple, before introducing the software inspection
process, effort required to fix defects discovered
by testing should be measured. Following an ini-
tial start-up period after the inspection process
is introduced, the combined effort of inspection

Software Engineering Process 8-9

plus testing can be compared to the previous
amount of effort required for testing alone. Simi-
lar considerations apply if a process is changed.

4.1. Software Process and Product Measurement 
[1*, s6.3, p273] [3*, s26.2, p638]

Software process and product measurement are
concerned with determining the efficiency and
effectiveness of a software process, activity, or
task. The efficiency of a software process, activity,
or task is the ratio of resources actually consumed
to resources expected or desired to be consumed
in accomplishing a software process, activity, or
task (see Efficiency in the Software Engineering
Economics KA). Effort (or equivalent cost) is the
primary measure of resources for most software
processes, activities, and tasks; it is measured in
units such as person-hours, person-days, staff-
weeks, or staff-months of effort or in equivalent
monetary units—such as euros or dollars.
Effectiveness is the ratio of actual output to

expected output produced by a software process,
activity, or task; for example, actual number of
defects detected and corrected during software
testing to expected number of defects to be
detected and corrected—perhaps based on his-
torical data for similar projects (see Effectiveness
in the Software Engineering Economics KA).
Note that measurement of software process effec-
tiveness requires measurement of the relevant
product attributes; for example, measurement of
software defects discovered and corrected during
software testing.

One must take care when measuring product
attributes for the purpose of determining process
effectiveness. For example, the number of defects
detected and corrected by testing may not achieve
the expected number of defects and thus provide
a misleadingly low effectiveness measure, either
because the software being tested is of better-
than-usual quality or perhaps because introduc-
tion of a newly introduced upstream inspection
process has reduced the remaining number of
defects in the software.

Product measures that may be important in
determining the effectiveness of software pro-
cesses include product complexity, total defects,
defect density, and the quality of requirements,

design documentation, and other related work
products.

Also note that efficiency and effectiveness are
independent concepts. An effective software pro-
cess can be inefficient in achieving a desired soft-
ware process result; for example, the amount of
effort expended to find and fix software defects
could be very high and result in low efficiency, as
compared to expectations.

An efficient process can be ineffective in accom-
plishing the desired transformation of input work
products into output work products; for example,
failure to find and correct a sufficient number of
software defects during the testing process.

Causes of low efficiency and/or low effective-
ness in the way a software process, activity, or
task is executed might include one or more of the
following problems: deficient input work prod-
ucts, inexperienced personnel, lack of adequate
tools and infrastructure, learning a new process,
a complex product, or an unfamiliar product
domain. The efficiency and effectiveness of soft-
ware process execution are also affected (either
positively or negatively) by factors such as turn-
over in software personnel, schedule changes, a
new customer representative, or a new organiza-
tional policy.

In software engineering, productivity in per-
forming a process, activity, or task is the ratio of
output produced divided by resources consumed;
for example, the number of software defects dis-
covered and corrected divided by person-hours of
effort (see Productivity in the Software Engineer-
ing Economics KA). Accurate measurement of
productivity must include total effort used to sat-
isfy the exit criteria of a software process, activ-
ity, or task; for example, the effort required to
correct defects discovered during software test-
ing must be included in software development
productivity.

Calculation of productivity must account for
the context in which the work is accomplished.
For example, the effort to correct discovered
defects will be included in the productivity cal-
culation of a software team if team members
correct the defects they find—as in unit testing
by software developers or in a cross-functional
agile team. Or the productivity calculation
may include either the effort of the software

8-10 SWEBOK® Guide V3.0

developers or the effort of an independent test-
ing team, depending on who fixes the defects
found by the independent testers. Note that this
example refers to the effort of teams of devel-
opers or teams of testers and not to individuals.
Software productivity calculated at the level of
individuals can be misleading because of the
many factors that can affect the individual pro-
ductivity of software engineers.

Standardized definitions and counting rules
for measurement of software processes and work
products are necessary to provide standardized
measurement results across projects within an
organization, to populate a repository of histori-
cal data that can be analyzed to identify software
processes that need to be improved, and to build
predictive models based on accumulated data. In
the example above, definitions of software defects
and staff-hours of testing effort plus counting
rules for defects and effort would be necessary to
obtain satisfactory measurement results.

The extent to which the software process is
institutionalized is important; failure to institu-
tionalize a software process may explain why
“good” software processes do not always pro-
duce anticipated results. Software processes may
be institutionalized by adoption within the local
organizational unit or across larger units of an
enterprise.

4.2. Quality of Measurement Results
[4*, s3.4–3.7]

The quality of process and product measurement
results is primarily determined by the reliability
and validity of the measured results. Measure-
ments that do not satisfy these quality criteria
can result in incorrect interpretations and faulty
software process improvement initiatives. Other
desirable properties of software measurements
include ease of collection, analysis, and presenta-
tion plus a strong correlation between cause and
effect.

The Software Engineering Measurement topic
in the Software Engineering Management KA
describes a process for implementing a software
measurement program.

4.3. Software Information Models
[1*, p310–311] [3*, p712–713] [4*, s19.2]

Software information models allow modeling,
analysis, and prediction of software process and
software product attributes to provide answers to
relevant questions and achieve process and product
improvement goals. Needed data can be collected
and retained in a repository; the data can be ana-
lyzed and models can be constructed. Validation
and refinement of software information models
occur during software projects and after projects
are completed to ensure that the level of accuracy
is sufficient and that their limitations are known
and understood. Software information models may
also be developed for contexts other than software
projects; for example, a software information
model might be developed for processes that apply
across an organization, such as software configu-
ration management or software quality assurance
processes at the organizational level.

Analysis-driven software information model
building involves the development, calibration,
and evaluation of a model. A software infor-
mation model is developed by establishing a
hypothesized transformation of input variables
into desired outputs; for example, product size
and complexity might be transformed into esti-
mated effort needed to develop a software prod-
uct using a regression equation developed from
observed data from past projects. A model is
calibrated by adjusting parameters in the model
to match observed results from past projects; for
example, the exponent in a nonlinear regression
model might be changed by applying the regres-
sion equation to a different set of past projects
other than the projects used to develop the model.

A model is evaluated by comparing computed
results to actual outcomes for a different set of
similar data. There are three possible evaluation
outcomes:

1. results computed for a different data set vary
widely from actual outcomes for that data
set, in which case the derived model is not
applicable for the new data set and should
not be applied to analyze or make predictions
for future projects;

Software Engineering Process 8-11

2. results computed for a new data set are
close to actual outcomes for that data set,
in which case minor adjustments are made
to the parameters of the model to improve
agreement;

3. results computed for the new data set and
subsequent data sets are very close and no
adjustments to the model are needed.

Continuous evaluation of the model may indi-
cate a need for adjustments over time as the con-
text in which the model is applied changes.

The Goals/Questions/Metrics (GQM) method
was originally intended for establishing measure-
ment activities, but it can also be used to guide
analysis and improvement of software processes.

 It can be used to guide analysis-driven software
information model building; results obtained
from the software information model can be used
to guide process improvement.

The following example illustrates application
of the GQM method:

• Goal: Reduce the average change request
processing time by 10% within six months.

• Question 1-1: What is the baseline change
request processing time?

• Metric 1-1-1: Average of change request
processing times on starting date

• Metric 1-1-2: Standard deviation of change
request processing times on starting date

• Question 1-2: What is the current change
request processing time?

• Metric 1-2-1: Average of change request
processing times currently

• Metric 1-2-2: Standard deviation of change
request processing times currently

4.4. Software Process Measurement Techniques
[1*, c8]

Software process measurement techniques are
used to collect process data and work product
data, transform the data into useful information,
and analyze the information to identify process
activities that are candidates for improvement.
In some cases, new software processes may be
needed.

Process measurement techniques also provide
the information needed to measure the effects of
process improvement initiatives. Process mea-
surement techniques can be used to collect both
quantitative and qualitative data.

4.4.1. Quantitative Process Measurement 
Techniques

[4*, s5.1, s5.7, s9.8]

The purpose of quantitative process measurement
techniques is to collect, transform, and analyze
quantitative process and work product data that
can be used to indicate where process improve-
ments are needed and to assess the results of
process improvement initiatives. Quantitative
process measurement techniques are used to col-
lect and analyze data in numerical form to which
mathematical and statistical techniques can be
applied.

Quantitative process data can be collected as
a byproduct of software processes. For example,
the number of defects discovered during software
testing and the staff-hours expended can be col-
lected by direct measurement, and the productiv-
ity of defect discovery can be derived by calculat-
ing defects discovered per staff-hour.

Basic tools for quality control can be used to
analyze quantitative process measurement data
(e.g., check sheets, Pareto diagrams, histograms,
scatter diagrams, run charts, control charts, and
cause-and-effect diagrams) (see Root Cause
Analysis in the Engineering Foundations KA). In
addition, various statistical techniques can be used
that range from calculation of medians and means
to multivariate analysis methods (see Statistical
Analysis in the Engineering Foundations KA).

Data collected using quantitative process mea-
surement techniques can also be used as inputs
to simulation models (see Modeling, Prototyp-
ing, and Simulation in the Engineering Founda-
tions KA); these models can be used to assess the
impact of various approaches to software process
improvement.

Orthogonal Defect Classification (ODC) can
be used to analyze quantitative process measure-
ment data. ODC can be used to group detected
defects into categories and link the defects in

8-12 SWEBOK® Guide V3.0

each category to the software process or soft-
ware processes where a group of defects origi-
nated (see Defect Characterization in the Soft-
ware Quality KA). Software interface defects,
for example, may have originated during an inad-
equate software design process; improving the
software design process will reduce the number
of software interface defects. ODC can provide
quantitative data for applying root cause analysis.

Statistical Process Control can be used to track
process stability, or the lack of process stability,
using control charts.

4.4.2. Qualitative Process Measurement 
Techniques

[1*, s6.4]

Qualitative process measurement techniques—
including interviews, questionnaires, and expert
judgment—can be used to augment quantitative
process measurement techniques. Group consen-
sus techniques, including the Delphi technique,
can be used to obtain consensus among groups of
stakeholders.

5. Software Engineering Process Tools
[1*, s8.7]

Software process tools support many of the nota-
tions used to define, implement, and manage
individual software processes and software life
cycle models. They include editors for notations
such as data-flow diagrams, state charts, BPMN,
IDEF0 diagrams, Petri nets, and UML activity
diagrams. In some cases, software process tools
allow different types of analyses and simula-
tions (for example, discrete event simulation). In

addition, general purpose business tools, such as
a spreadsheet, may be useful.

Computer-Assisted Software Engineering
(CASE) tools can reinforce the use of integrated
processes, support the execution of process defi-
nitions, and provide guidance to humans in per-
forming well-defined processes. Simple tools
such as word processors and spreadsheets can
be used to prepare textual descriptions of pro-
cesses, activities, and tasks; these tools also sup-
port traceability among the inputs and outputs of
multiple software processes (such as stakeholder
needs analysis, software requirements specifica-
tion, software architecture, and software detailed
design) as well as the results of software pro-
cesses such as documentation, software compo-
nents, test cases, and problem reports.

Most of the knowledge areas in this Guide
describe specialized tools that can be used to
manage the processes within that KA. In particu-
lar, see the Software Configuration Management
KA for a discussion of software configuration
management tools that can be used to manage the
construction, integration, and release processes
for software products. Other tools, such as those
for requirements management and testing, are
described in the appropriate KAs.

Software process tools can support projects
that involve geographically dispersed (virtual)
teams. Increasingly, software process tools are
available through cloud computing facilities as
well as through dedicated infrastructures.

A project control panel or dashboard can dis-
play selected process and product attributes for
software projects and indicate measurements that
are within control limits and those needing cor-
rective action.

Software Engineering Process 8-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Fa
ir

le
y

20
09

[1

*]

M
oo

re
 2

00
9

[2
*]

So
m

m
er

vi
lle

 2
01

1
[3

*]

K
an

 2
00

3
[4

*]

1. Software Process Definition p177 p295
p28–29,

p36,
c5

1.1. Software Process Management s26.1 p453–454

1.2. Software Process Infrastructure p183, p186 p437–438

2. Software Life Cycles c2 p190

2.1. Categories of Software Processes preface p294–295 c22, c23,
c24

2.2. Software Life Cycle Models c2 s3.2 s2.1
2.3. Software Process Adaptation s2.7 p51

2.4. Practical Considerations p188–190

3. Software Process Assessment and
Improvement p188, p194 c26 p397, c15

3.1. Software Process Assessment Models s4.5,
s4.6 s26.5 p44–48

3.2. Software Process Assessment
Methods p322–331 s26.3 p44–48,

s16.4
3.3. Software Process Improvement
Models p187–188 s26.5 s2.7

3.4. Continuous and Staged Ratings p28–34 s26.5 p39–45
4. Software Measurement s26.2 s18.1.1

4.1. Software Process and Product
Measurement

s6.3,
p273

s26.2,
p638

4.2. Quality of Measurement Results

s3.4,
s3.5,
s3.6,
s3.7

4.3. Software Information Models p310–311 p. 712–713 s19.2

4.4. Software Process Measurement
Techniques

s6.4,
c8

s5.1,
s5.7,
s9.8

5. Software Engineering Process Tools s8.7

8-14 SWEBOK® Guide V3.0

FURTHER READINGS

Software Extension to the Guide to the Project 
Management Body of Knowledge® (SWX)
[5].

SWX provides adaptations and extensions to the
generic practices of project management docu-
mented in the PMBOK®  Guide for managing
software projects. The primary contribution of
this extension to the PMBOK® Guide is descrip-
tion of processes that are applicable for managing
adaptive life cycle software projects.

D. Gibson, D. Goldenson, and K. Kost,
“Performance Results of CMMI-Based
Process Improvement” [6].

This technical report summarizes publicly avail-
able empirical evidence about the performance
results that can occur as a consequence of CMMI-
based process improvement. The report contains
a series of brief case descriptions that were cre-
ated with collaboration from representatives
from 10 organizations that have achieved notable
quantitative performance results through their
CMMI-based improvement efforts.

CMMI® for Development, Version 1.3 [7].

CMMI® for Development, Version 1.3 provides an
integrated set of process guidelines for develop-
ing and improving products and services. These
guidelines include best practices for developing
and improving products and services to meet the
needs of customers and end users.

ISO/IEC 15504-1:2004 Information tech-
nology—Process assessment—Part 1: 
Concepts and vocabulary [8].

This standard, commonly known as SPICE
(Software Process Improvement and Capability
Determination), includes multiple parts. Part 1
provides concepts and vocabulary for software
development processes and related business-
management functions. Other parts of 15504
define the requirements and procedures for per-
forming process assessments.

REFERENCES

[1*] R.E. Fairley, Managing and Leading 
Software Projects, Wiley-IEEE Computer
Society Press, 2009.

[2*] J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.

[3*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[4*] S.H. Kan, Metrics and Models in Software 
Quality Engineering, 2nd ed., Addison-
Wesley, 2002.

[5] Project Management Institute and IEEE
Computer Society, Software Extension 
to the PMBOK® Guide Fifth Edition, ed:
Project Management Institute, 2013.

[6] D. Gibson, D. Goldenson, and K. Kost,
“Performance Results of CMMI-Based
Process Improvement,” Software
Engineering Institute, 2006; http://
resources.sei.cmu.edu/library/asset-view.
cfm?assetID=8065.

[7] CMMI Product Team, “CMMI for
Development, Version 1.3,” Software
Engineering Institute, 2010; http://
resources.sei.cmu.edu/library/asset-view.
cfm?assetID=9661.

[8] ISO/IEC 15504-1:2004, Information 
Technology—Process Assessment—Part 1: 
Concepts and Vocabulary, ISO/IEC, 2004.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=8065
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=8065
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=8065
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661

9-1

CHAPTER 9

SOFTWARE ENGINEERING MODELS
AND METHODS

ACRONYMS

3GL 3rd Generation Language
BNF Backus-Naur Form
FDD Feature-Driven Development

IDE Integrated Development
Environment

PBI Product Backlog Item
RAD Rapid Application Development
UML Unified Modeling Language
XP eXtreme Programming

INTRODUCTION

Software engineering models and methods
impose structure on software engineering with
the goal of making that activity systematic,
repeatable, and ultimately more success-oriented.
Using models provides an approach to problem
solving, a notation, and procedures for model
construction and analysis. Methods provide an
approach to the systematic specification, design,
construction, test, and verification of the end-item
software and associated work products.

Software engineering models and methods
vary widely in scope—from addressing a single
software life cycle phase to covering the com-
plete software life cycle. The emphasis in this
knowledge area (KA) is on software engineer-
ing models and methods that encompass multiple
software life cycle phases, since methods specific
for single life cycle phases are covered by other
KAs.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING MODELS
AND METHODS

This chapter on software engineering models and
methods is divided into four main topic areas:

• Modeling: discusses the general practice
of modeling and presents topics in model-
ing principles; properties and expression of
models; modeling syntax, semantics, and
pragmatics; and preconditions, postcondi-
tions, and invariants.

• Types  of  Models: briefly discusses models
and aggregation of submodels and provides
some general characteristics of model types
commonly found in the software engineering
practice.

• Analysis  of  Models: presents some of the
common analysis techniques used in model-
ing to verify completeness, consistency, cor-
rectness, traceability, and interaction.

• Software  Engineering  Methods: presents a
brief summary of commonly used software
engineering methods. The discussion guides
the reader through a summary of heuristic
methods, formal methods, prototyping, and
agile methods.

The breakdown of topics for the Software
Engineering Models and Methods KA is shown
in Figure 9.1.

1. Modeling

Modeling of software is becoming a pervasive
technique to help software engineers understand,

9-2 SWEBOK® Guide V3.0

engineer, and communicate aspects of the soft-
ware to appropriate stakeholders. Stakeholders
are those persons or parties who have a stated
or implied interest in the software (for example,
user, buyer, supplier, architect, certifying author-
ity, evaluator, developer, software engineer, and
perhaps others).

While there are many modeling languages,
notations, techniques, and tools in the literature
and in practice, there are unifying general con-
cepts that apply in some form to them all. The
following sections provide background on these
general concepts.

1.1. Modeling Principles 
[1*, c2s2, c5s1, c5s2] [2*, c2s2] [3*, c5s0]

Modeling provides the software engineer with
an organized and systematic approach for repre-
senting significant aspects of the software under
study, facilitating decision-making about the soft-
ware or elements of it, and communicating those

significant decisions to others in the stakeholder
communities. There are three general principles
guiding such modeling activities:

• Model  the  Essentials: good models do not
usually represent every aspect or feature of
the software under every possible condition.
Modeling typically involves developing only
those aspects or features of the software that
need specific answers, abstracting away any
nonessential information. This approach
keeps the models manageable and useful.

• Provide  Perspective: modeling provides
views of the software under study using
a defined set of rules for expression of the
model within each view. This perspective-
driven approach provides dimensionality to
the model (for example, a structural view,
behavioral view, temporal view, organiza-
tional view, and other views as relevant).
Organizing information into views focuses
the software modeling efforts on specific

Figure 9.1. Breakdown of Topics for the Software Engineering Models and Methods KA

Software Engineering Models and Methods 9-3

concerns relevant to that view using the
appropriate notation, vocabulary, methods,
and tools.

• Enable Effective Communications: modeling
employs the application domain vocabulary
of the software, a modeling language, and
semantic expression (in other words, mean-
ing within context). When used rigorously
and systematically, this modeling results in
a reporting approach that facilitates effective
communication of software information to
project stakeholders.

A model is an abstraction or simplification of
a software component. A consequence of using
abstraction is that no single abstraction com-
pletely describes a software component. Rather,
the model of the software is represented as an
aggregation of abstractions, which—when taken
together—describe only selected aspects, per-
spectives, or views—only those that are needed
to make informed decisions and respond to the
reasons for creating the model in the first place.
This simplification leads to a set of assumptions
about the context within which the model is
placed that should also be captured in the model.
Then, when reusing the model, these assumptions
can be validated first to establish the relevancy of
the reused model within its new use and context.

1.2. Properties and Expression of Models
[1*, c5s2, c5s3] [3*, c4s1.1p7, c4s6p3,

c5s0p3]

Properties of models are those distinguishing fea-
tures of a particular model used to characterize
its completeness, consistency, and correctness
within the chosen modeling notation and tooling
used. Properties of models include the following:

• Completeness: the degree to which all
requirements have been implemented and
verified within the model.

• Consistency: the degree to which the model
contains no conflicting requirements, asser-
tions, constraints, functions, or component
descriptions.

• Correctness: the degree to which the model
satisfies its requirements and design specifi-
cations and is free of defects.

Models are constructed to represent real-world
objects and their behaviors to answer specific
questions about how the software is expected
to operate. Interrogating the models—either
through exploration, simulation, or review—may
expose areas of uncertainty within the model and
the software to which the model refers. These
uncertainties or unanswered questions regarding
the requirements, design, and/or implementation
can then be handled appropriately.

The primary expression element of a model is
an entity. An entity may represent concrete arti-
facts (for example, processors, sensors, or robots)
or abstract artifacts (for example, software mod-
ules or communication protocols). Model enti-
ties are connected to other entities using rela-
tions (in other words, lines or textual operators
on target entities). Expression of model entities
may be accomplished using textual or graphical
modeling languages; both modeling language
types connect model entities through specific lan-
guage constructs. The meaning of an entity may
be represented by its shape, textual attributes, or
both. Generally, textual information adheres to
language-specific syntactic structure. The pre-
cise meanings related to the modeling of context,
structure, or behavior using these entities and
relations is dependent on the modeling language
used, the design rigor applied to the modeling
effort, the specific view being constructed, and
the entity to which the specific notation element
may be attached. Multiple views of the model
may be required to capture the needed semantics
of the software.

When using models supported with automa-
tion, models may be checked for completeness
and consistency. The usefulness of these checks
depends greatly on the level of semantic and syn-
tactic rigor applied to the modeling effort in addi-
tion to explicit tool support. Correctness is typi-
cally checked through simulation and/or review.

1.3. Syntax, Semantics, and Pragmatics
[2* c2s2.2.2p6] [3*, c5s0]

Models can be surprisingly deceptive. The fact
that a model is an abstraction with missing infor-
mation can lead one into a false sense of com-
pletely understanding the software from a single
model. A complete model (“complete” being

9-4 SWEBOK® Guide V3.0

relative to the modeling effort) may be a union
of multiple submodels and any special function
models. Examination and decision-making rela-
tive to a single model within this collection of
submodels may be problematic.

Understanding the precise meanings of mod-
eling constructs can also be difficult. Modeling
languages are defined by syntactic and semantic
rules. For textual languages, syntax is defined
using a notation grammar that defines valid lan-
guage constructs (for example, Backus-Naur
Form (BNF)). For graphical languages, syntax is
defined using graphical models called metamod-
els. As with BNF, metamodels define the valid
syntactical constructs of a graphical modeling
language; the metamodel defines how these con-
structs can be composed to produce valid models.

Semantics for modeling languages specify the
meaning attached to the entities and relations
captured within the model. For example, a simple
diagram of two boxes connected by a line is open
to a variety of interpretations. Knowing that the
diagram on which the boxes are placed and con-
nected is an object diagram or an activity diagram
can assist in the interpretation of this model.

As a practical matter, there is usually a good
understanding of the semantics of a specific
software model due to the modeling language
selected, how that modeling language is used to
express entities and relations within that model,
the experience base of the modeler(s), and the
context within which the modeling has been
undertaken and so represented. Meaning is com-
municated through the model even in the presence
of incomplete information through abstraction;
pragmatics explains how meaning is embodied
in the model and its context and communicated
effectively to other software engineers.

There are still instances, however, where cau-
tion is needed regarding modeling and semantics.
For example, any model parts imported from
another model or library must be examined for
semantic assumptions that conflict in the new
modeling environment; this may not be obvious.
The model should be checked for documented
assumptions. While modeling syntax may be
identical, the model may mean something quite
different in the new environment, which is a dif-
ferent context. Also, consider that as software
matures and changes are made, semantic discord

can be introduced, leading to errors. With many
software engineers working on a model part over
time coupled with tool updates and perhaps new
requirements, there are opportunities for portions
of the model to represent something different
from the original author’s intent and initial model
context.

1.4. Preconditions, Postconditions, and 
Invariants

[2*, c4s4] [4*, c10s4p2, c10s5p2p4]

When modeling functions or methods, the soft-
ware engineer typically starts with a set of
assumptions about the state of the software prior
to, during, and after the function or method exe-
cutes. These assumptions are essential to the cor-
rect operation of the function or method and are
grouped, for discussion, as a set of preconditions,
postconditions, and invariants.

• Preconditions: a set of conditions that must
be satisfied prior to execution of the function
or method. If these preconditions do not hold
prior to execution of the function or method,
the function or method may produce errone-
ous results.

• Postconditions: a set of conditions that is
guaranteed to be true after the function or
method has executed successfully. Typically,
the postconditions represent how the state
of the software has changed, how param-
eters passed to the function or method have
changed, how data values have changed, or
how the return value has been affected.

• Invariants: a set of conditions within the
operational environment that persist (in
other words, do not change) before and after
execution of the function or method. These
invariants are relevant and necessary to the
software and the correct operation of the
function or method.

2. Types of Models

A typical model consists of an aggregation of
submodels. Each submodel is a partial descrip-
tion and is created for a specific purpose; it may
be comprised of one or more diagrams. The
collection of submodels may employ multiple

Software Engineering Models and Methods 9-5

modeling languages or a single modeling lan-
guage. The Unified Modeling Language (UML)
recognizes a rich collection of modeling dia-
grams. Use of these diagrams, along with the
modeling language constructs, brings about three
broad model types commonly used: information
models, behavioral models, and structure models
(see section 1.1).

2.1. Information Modeling
[1*, c7s2.2] [3*, c8s1]

Information models provide a central focus on
data and information. An information model is an
abstract representation that identifies and defines
a set of concepts, properties, relations, and con-
straints on data entities. The semantic or concep-
tual information model is often used to provide
some formalism and context to the software being
modeled as viewed from the problem perspective,
without concern for how this model is actually
mapped to the implementation of the software.
The semantic or conceptual information model
is an abstraction and, as such, includes only the
concepts, properties, relations, and constraints
needed to conceptualize the real-world view of
the information. Subsequent transformations of
the semantic or conceptual information model
lead to the elaboration of logical and then physi-
cal data models as implemented in the software.

2.2. Behavioral Modeling
[1*, c7s2.1, c7s2.3, c7s2.4] [2*, c9s2]

 [3*, c5s4]

Behavioral models identify and define the func-
tions of the software being modeled. Behav-
ioral models generally take three basic forms:
state machines, control-flow models, and data-
flow models. State machines provide a model
of the software as a collection of defined states,
events, and transitions. The software transitions
from one state to the next by way of a guarded
or unguarded triggering event that occurs in the
modeled environment. Control-flow models
depict how a sequence of events causes processes
to be activated or deactivated. Data-flow behav-
ior is typified as a sequence of steps where data
moves through processes toward data stores or
data sinks.

2.3. Structure Modeling
[1*, c7s2.5, c7s3.1, c7s3.2] [3*, c5s3] [4*, c4]

Structure models illustrate the physical or logical
composition of software from its various com-
ponent parts. Structure modeling establishes the
defined boundary between the software being
implemented or modeled and the environment
in which it is to operate. Some common struc-
tural constructs used in structure modeling are
composition, decomposition, generalization, and
specialization of entities; identification of rel-
evant relations and cardinality between entities;
and the definition of process or functional inter-
faces. Structure diagrams provided by the UML
for structure modeling include class, component,
object, deployment, and packaging diagrams.

3. Analysis of Models

The development of models affords the software
engineer an opportunity to study, reason about,
and understand the structure, function, opera-
tional usage, and assembly considerations asso-
ciated with software. Analysis of constructed
models is needed to ensure that these models are
complete, consistent, and correct enough to serve
their intended purpose for the stakeholders.

The sections that follow briefly describe the
analysis techniques generally used with soft-
ware models to ensure that the software engineer
and other relevant stakeholders gain appropriate
value from the development and use of models.

3.1. Analyzing for Completeness
[3*, c4s1.1p7, c4s6] [5*, p8–11]

In order to have software that fully meets the needs
of the stakeholders, completeness is critical—from
the requirements elicitation process to code imple-
mentation. Completeness is the degree to which
all of the specified requirements have been imple-
mented and verified. Models may be checked for
completeness by a modeling tool that uses tech-
niques such as structural analysis and state-space
reachability analysis (which ensure that all paths in
the state models are reached by some set of correct
inputs); models may also be checked for complete-
ness manually by using inspections or other review
techniques (see the Software Quality KA). Errors

9-6 SWEBOK® Guide V3.0

and warnings generated by these analysis tools and
found by inspection or review indicate probable
needed corrective actions to ensure completeness
of the models.

3.2. Analyzing for Consistency
[3*, c4s1.1p7, c4s6] [5*, p8–11]

Consistency is the degree to which models con-
tain no conflicting requirements, assertions, con-
straints, functions, or component descriptions.
Typically, consistency checking is accomplished
with the modeling tool using an automated analysis
function; models may also be checked for consis-
tency manually using inspections or other review
techniques (see the Software Quality KA). As
with completeness, errors and warnings generated
by these analysis tools and found by inspection or
review indicate the need for corrective action.

3.3. Analyzing for Correctness
[5*, p8–11]

Correctness is the degree to which a model sat-
isfies its software requirements and software
design specifications, is free of defects, and ulti-
mately meets the stakeholders’ needs. Analyzing
for correctness includes verifying syntactic cor-
rectness of the model (that is, correct use of the
modeling language grammar and constructs) and
verifying semantic correctness of the model (that
is, use of the modeling language constructs to
correctly represent the meaning of that which is
being modeled). To analyze a model for syntactic
and semantic correctness, one analyzes it—either
automatically (for example, using the modeling
tool to check for model syntactic correctness)
or manually (using inspections or other review
techniques)—searching for possible defects and
then removing or repairing the confirmed defects
before the software is released for use.

3.4. Traceability
[3*, c4s7.1, c4s7.2]

Developing software typically involves the use,
creation, and modification of many work products
such as planning documents, process specifica-
tions, software requirements, diagrams, designs

and pseudo-code, handwritten and tool-generated
code, manual and automated test cases and reports,
and files and data. These work products may be
related through various dependency relationships
(for example, uses, implements, and tests). As soft-
ware is being developed, managed, maintained, or
extended, there is a need to map and control these
traceability relationships to demonstrate soft-
ware requirements consistency with the software
model (see Requirements Tracing in the Software
Requirements KA) and the many work products.
Use of traceability typically improves the manage-
ment of software work products and software pro-
cess quality; it also provides assurances to stake-
holders that all requirements have been satisfied.
Traceability enables change analysis once the soft-
ware is developed and released, since relationships
to software work products can easily be traversed
to assess change impact. Modeling tools typically
provide some automated or manual means to spec-
ify and manage traceability links between require-
ments, design, code, and/or test entities as may be
represented in the models and other software work
products. (For more information on traceability,
see the Software Configuration Management KA).

3.5. Interaction Analysis
[2*, c10, c11] [3*, c29s1.1, c29s5] [4*, c5]

Interaction analysis focuses on the communica-
tions or control flow relations between entities
used to accomplish a specific task or function
within the software model. This analysis exam-
ines the dynamic behavior of the interactions
between different portions of the software model,
including other software layers (such as the oper-
ating system, middleware, and applications). It
may also be important for some software applica-
tions to examine interactions between the com-
puter software application and the user interface
software. Some software modeling environments
provide simulation facilities to study aspects of
the dynamic behavior of modeled software. Step-
ping through the simulation provides an analysis
option for the software engineer to review the
interaction design and verify that the different
parts of the software work together to provide the
intended functions.

Software Engineering Models and Methods 9-7

4. Software Engineering Methods

Software engineering methods provide an orga-
nized and systematic approach to developing soft-
ware for a target computer. There are numerous
methods from which to choose, and it is important
for the software engineer to choose an appropriate
method or methods for the software development
task at hand; this choice can have a dramatic effect
on the success of the software project. Use of these
software engineering methods coupled with people
of the right skill set and tools enable the software
engineers to visualize the details of the software
and ultimately transform the representation into a
working set of code and data.

Selected software engineering methods are dis-
cussed below. The topic areas are organized into
discussions of Heuristic Methods, Formal Meth-
ods, Prototyping Methods, and Agile Methods.

4.1. Heuristic Methods
[1*, c13, c15, c16] [3*, c2s2.2, c5s4.1, c7s1,]

Heuristic methods are those experience-based
software engineering methods that have been and
are fairly widely practiced in the software indus-
try. This topic area contains three broad discus-
sion categories: structured analysis and design
methods, data modeling methods, and object-
oriented analysis and design methods.

• Structured  Analysis  and  Design  Methods:
The software model is developed primarily
from a functional or behavioral viewpoint,
starting from a high-level view of the soft-
ware (including data and control elements)
and then progressively decomposing or refin-
ing the model components through increas-
ingly detailed designs. The detailed design
eventually converges to very specific details
or specifications of the software that must be
coded (by hand, automatically generated, or
both), built, tested, and verified.

• Data Modeling Methods: The data model is
constructed from the viewpoint of the data or
information used. Data tables and relation-
ships define the data models. This data mod-
eling method is used primarily for defining
and analyzing data requirements supporting

database designs or data repositories typi-
cally found in business software, where data
is actively managed as a business systems
resource or asset.

• Object-Oriented Analysis and Design Meth-
ods: The object-oriented model is represented
as a collection of objects that encapsulate
data and relationships and interact with other
objects through methods. Objects may be
real-world items or virtual items. The soft-
ware model is constructed using diagrams
to constitute selected views of the software.
Progressive refinement of the software mod-
els leads to a detailed design. The detailed
design is then either evolved through suc-
cessive iteration or transformed (using some
mechanism) into the implementation view
of the model, where the code and packag-
ing approach for eventual software product
release and deployment is expressed.

4.2. Formal Methods
[1*, c18] [3*, c27] [5*, p8–24]

Formal methods are software engineering meth-
ods used to specify, develop, and verify the soft-
ware through application of a rigorous mathemat-
ically based notation and language. Through use
of a specification language, the software model
can be checked for consistency (in other words,
lack of ambiguity), completeness, and correctness
in a systematic and automated or semi-automated
fashion. This topic is related to the Formal Analy-
sis section in the Software Requirements KA.

This section addresses specification languages,
program refinement and derivation, formal verifi-
cation, and logical inference.

• Specification  Languages: Specification
languages provide the mathematical basis
for a formal method; specification lan-
guages are formal, higher level computer
languages (in other words, not a classic
3rd Generation Language (3GL) program-
ming language) used during the software
specification, requirements analysis, and/
or design stages to describe specific input/
output behavior. Specification languages are
not directly executable languages; they are

9-8 SWEBOK® Guide V3.0

typically comprised of a notation and syntax,
semantics for use of the notation, and a set of
allowed relations for objects.

• Program  Refinement  and  Derivation: Pro-
gram refinement is the process of creating a
lower level (or more detailed) specification
using a series of transformations. It is through
successive transformations that the software
engineer derives an executable representation
of a program. Specifications may be refined,
adding details until the model can be formu-
lated in a 3GL programming language or in
an executable portion of the chosen specifica-
tion language. This specification refinement is
made possible by defining specifications with
precise semantic properties; the specifications
must set out not only the relationships between
entities but also the exact runtime meanings of
those relationships and operations.

• Formal  Verification: Model checking is
a formal verification method; it typically
involves performing a state-space explora-
tion or reachability analysis to demonstrate
that the represented software design has or
preserves certain model properties of inter-
est. An example of model checking is an
analysis that verifies correct program behav-
ior under all possible interleaving of event or
message arrivals. The use of formal verifi-
cation requires a rigorously specified model
of the software and its operational environ-
ment; this model often takes the form of a
finite state machine or other formally defined
automaton.

• Logical  Inference: Logical inference is a
method of designing software that involves
specifying preconditions and postconditions
around each significant block of the design,
and—using mathematical logic—developing
the proof that those preconditions and post-
conditions must hold under all inputs. This
provides a way for the software engineer to
predict software behavior without having
to execute the software. Some Integrated
Development Environments (IDEs) include
ways to represent these proofs along with the
design or code.

4.3. Prototyping Methods
[1*, c12s2] [3*, c2s3.1] [6*, c7s3p5]

Software prototyping is an activity that generally
creates incomplete or minimally functional ver-
sions of a software application, usually for try-
ing out specific new features, soliciting feedback
on software requirements or user interfaces, fur-
ther exploring software requirements, software
design, or implementation options, and/or gaining
some other useful insight into the software. The
software engineer selects a prototyping method to
understand the least understood aspects or com-
ponents of the software first; this approach is in
contrast with other software engineering methods
that usually begin development with the most
understood portions first. Typically, the proto-
typed product does not become the final software
product without extensive development rework
or refactoring.

This section discusses prototyping styles, tar-
gets, and evaluation techniques in brief.

• Prototyping Style: This addresses the various
approaches to developing prototypes. Proto-
types can be developed as throwaway code
or paper products, as an evolution of a work-
ing design, or as an executable specification.
Different prototyping life cycle processes are
typically used for each style. The style cho-
sen is based on the type of results the project
needs, the quality of the results needed, and
the urgency of the results.

• Prototyping  Target: The target of the pro-
totype activity is the specific product being
served by the prototyping effort. Examples
of prototyping targets include a requirements
specification, an architectural design element
or component, an algorithm, or a human-
machine user interface.

• Prototyping Evaluation Techniques: A pro-
totype may be used or evaluated in a num-
ber of ways by the software engineer or
other project stakeholders, driven primarily
by the underlying reasons that led to pro-
totype development in the first place. Pro-
totypes may be evaluated or tested against
the actual implemented software or against

Software Engineering Models and Methods 9-9

a target set of requirements (for example, a
requirements prototype); the prototype may
also serve as a model for a future software
development effort (for example, as in a user
interface specification).

4.4. Agile Methods 
[3*, c3] [6*, c7s3p7] [7*, c6, App. A]

Agile methods were born in the 1990s from the
need to reduce the apparent large overhead associ-
ated with heavyweight, plan-based methods used
in large-scale software-development projects.
Agile methods are considered lightweight meth-
ods in that they are characterized by short, itera-
tive development cycles, self-organizing teams,
simpler designs, code refactoring, test-driven
development, frequent customer involvement, and
an emphasis on creating a demonstrable working
product with each development cycle.

Many agile methods are available in the lit-
erature; some of the more popular approaches,
which are discussed here in brief, include Rapid
Application Development (RAD), eXtreme Pro-
gramming (XP), Scrum, and Feature-Driven
Development (FDD).

• RAD: Rapid software development methods
are used primarily in data-intensive, business-
systems application development. The RAD
method is enabled with special-purpose data-
base development tools used by software
engineers to quickly develop, test, and deploy
new or modified business applications.

• XP: This approach uses stories or scenarios
for requirements, develops tests first, has
direct customer involvement on the team
(typically defining acceptance tests), uses
pair programming, and provides for continu-
ous code refactoring and integration. Stories
are decomposed into tasks, prioritized, esti-
mated, developed, and tested. Each incre-
ment of software is tested with automated
and manual tests; an increment may be
released frequently, such as every couple of
weeks or so.

• Scrum: This agile approach is more project
management-friendly than the others. The
scrum master manages the activities within
the project increment; each increment is
called a sprint and lasts no more than 30
days. A Product Backlog Item (PBI) list is
developed from which tasks are identified,
defined, prioritized, and estimated. A work-
ing version of the software is tested and
released in each increment. Daily scrum
meetings ensure work is managed to plan.

• FDD:  This is a model-driven, short, itera-
tive software development approach using
a five-phase process: (1) develop a product
model to scope the breadth of the domain, (2)
create the list of needs or features, (3) build
the feature development plan, (4) develop
designs for iteration-specific features, and
(5) code, test, and then integrate the features.
FDD is similar to an incremental software
development approach; it is also similar to
XP, except that code ownership is assigned
to individuals rather than the team. FDD
emphasizes an overall architectural approach
to the software, which promotes building the
feature correctly the first time rather than
emphasizing continual refactoring.

There are many more variations of agile meth-
ods in the literature and in practice. Note that
there will always be a place for heavyweight,
plan-based software engineering methods as well
as places where agile methods shine. There are
new methods arising from combinations of agile
and plan-based methods where practitioners are
defining new methods that balance the features
needed in both heavyweight and lightweight
methods based primarily on prevailing organi-
zational business needs. These business needs,
as typically represented by some of the project
stakeholders, should and do drive the choice in
using one software engineering method over
another or in constructing a new method from the
best features of a combination of software engi-
neering methods.

9-10 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

B
ud

ge
n

20
03

[1

*]

M
el

lo
r

an
d

B
al

ce
r

20
02

[2

*]

So
m

m
er

vi
lle

 2
01

1
[3

*]

Pa
ge

-J
on

es
 1

99
9

[4
*]

W
in

g
19

90

[5
*]

B
ro

ok
sh

ea
r

20
08

[6

*]

B
oe

hm
 a

nd
 T

ur
ne

r
20

03

[7
*]

1. Modeling

1.1. Modeling
Principles

c2s2,
c5s1,
c5s2

c2s2 c5s0

1.2. Properties
and Expression of
Models

c5s2,
c5s3

c4s1.1p7,
c4s6p3,
c5s0p3

1.3. Syntax,
Semantics, and
Pragmatics

c2s2.2.2
p6 c5s0

1.4. Preconditions,
Postconditions, and
Invariants

c4s4
c10s4p2,

c10s5
p2p4

2. Types of Models
2.1. Information
Modeling c7s2.2 c8s1

2.2. Behavioral
Modeling

c7s2.1,
c7s2.3,
c7s2.4

c9s2 c5s4

2.3. Structure
Modeling

c7s2.5,
c7s3.1,
c7s3.2

c5s3 c4

3. Analysis of Models
3.1. Analyzing for
Completeness

c4s1.1p7,
c4s6 pp8–11

3.2. Analyzing for
Consistency

c4s1.1p7,
c4s6 pp8–11

3.3. Analyzing for
Correctness pp8–11

3.4. Traceability c4s7.1,
c4s7.2

3.5. Interaction
Analysis c10, c11 c29s1.1,

c29s5 c5

Software Engineering Models and Methods 9-11

B
ud

ge
n

20
03

[1

*]

M
el

lo
r

an
d

B
al

ce
r

20
02

[2

*]

So
m

m
er

vi
lle

 2
01

1
[3

*]

Pa
ge

-J
on

es
 1

99
9

[4
*]

W
in

g
19

90

[5
*]

B
ro

ok
sh

ea
r

20
08

[6

*]

B
oe

hm
 a

nd
 T

ur
ne

r
20

03

[7
*]

4. Software
Engineering Methods

4.1. Heuristic
Methods

c13, c15,
c16

c2s2.2,
c7s1,

c5s4.1
4.2. Formal Methods c18 c27 pp8–24
4.3. Prototyping
Methods c12s2 c2s3.1 c7s3p5

4.4. Agile Methods c3 c7s3p7 c6, app.
A

9-12 SWEBOK® Guide V3.0

REFERENCES

[1*] D. Budgen, Software Design, 2nd ed.,
Addison-Wesley, 2003.

[2*] S.J. Mellor and M.J. Balcer, Executable 
UML: A Foundation for Model-Driven 
Architecture, 1st ed., Addison-Wesley,
2002.

[3*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[4*] M. Page-Jones, Fundamentals of Object-
Oriented Design in UML, 1st ed., Addison-
Wesley, 1999.

[5*] J.M. Wing, “A Specifier’s Introduction to
Formal Methods,” Computer, vol. 23, no. 9,
1990, pp. 8, 10–23.

[6*] J.G. Brookshear, Computer Science: An 
Overview, 10th ed., Addison-Wesley, 2008.

[7*] B. Boehm and R. Turner, Balancing Agility 
and Discipline: A Guide for the Perplexed,
Addison-Wesley, 2003.

10-1

CHAPTER 10

SOFTWARE QUALITY

ACRONYMS

CMMI Capability Maturity Model
Integration

CoSQ Cost of Software Quality

COTS Commercial Off-the-Shelf
Software

FMEA Failure Mode and Effects Analysis
FTA Fault Tree Analysis
PDCA Plan-Do-Check-Act
PDSA Plan-Do-Study-Act
QFD Quality Function Deployment
SPI Software Process Improvement
SQA Software Quality Assurance
SQC Software Quality Control
SQM Software Quality Management
TQM Total Quality Management
V&V Verification and Validation

INTRODUCTION

What is software quality, and why is it so impor-
tant that it is included in many knowledge areas
(KAs) of the SWEBOK Guide?

One reason is that the term software quality is
overloaded. Software quality may refer: to desir-
able characteristics of software products, to the
extent to which a particular software product pos-
sess those characteristics, and to processes, tools,
and techniques used to achieve those character-
istics. Over the years, authors and organizations
have defined the term quality differently. To Phil
Crosby, it was “conformance to requirements”
[1]. Watts Humphrey refers to it as “achieving
excellent levels of “fitness for use” [2]. Mean-
while, IBM coined the phrase “market-driven

quality,” where the “customer is the final arbiter”
[3*, p8].

More recently, software quality is defined as the
“capability of software product to satisfy stated
and implied needs under specified conditions” [4]
and as “the degree to which a software product
meets established requirements; however, quality
depends upon the degree to which those estab-
lished requirements accurately represent stake-
holder needs, wants, and expectations” [5]. Both
definitions embrace the premise of conformance
to requirements. Neither refers to types of require-
ments (e.g., functional, reliability, performance,
dependability, or any other characteristic). Signifi-
cantly, however, these definitions emphasize that
quality is dependent upon requirements.

These definitions also illustrate another reason
for the prevalence of software quality through-
out this Guide: a frequent ambiguity of software 
quality  versus software  quality  requirements
(“the -ilities” is a common shorthand). Software
quality requirements are actually attributes of (or
constraints on) functional requirements (what
the system does). Software requirements may
also specify resource usage, a communication
protocol, or many other characteristics. This KA
attempts clarity by using software quality in the
broadest sense from the definitions above and
by using software  quality  requirements as con-
straints on functional requirements. Software
quality is achieved by conformance to all require-
ments regardless of what characteristic is speci-
fied or how requirements are grouped or named.

Software quality is also considered in many of
the SWEBOK KAs because it is a basic param-
eter of a software engineering effort. For all engi-
neered products, the primary goal is delivering
maximum stakeholder value, while balancing the
constraints of development cost and schedule;
this is sometimes characterized as “fitness for

10-2 SWEBOK® Guide V3.0

use.” Stakeholder value is expressed in require-
ments. For software products, stakeholders could
value price (what they pay for the product), lead
time (how fast they get the product), and software
quality.

This KA addresses definitions and provides an
overview of practices, tools, and techniques for
defining software quality and for appraising the
state of software quality during development,
maintenance, and deployment. Cited references
provide additional details.

BREAKDOWN OF TOPICS FOR
SOFTWARE QUALITY

The breakdown of topics for the Software Quality
KA is presented in Figure 10.1.

1. Software Quality Fundamentals

Reaching agreement on what constitutes quality
for all stakeholders and clearly communicating
that agreement to software engineers require that

the many aspects of quality be formally defined
and discussed.

A software engineer should understand qual-
ity concepts, characteristics, values, and their
application to the software under development or
maintenance. The important concept is that the
software requirements define the required quality
attributes of the software. Software requirements
influence the measurement methods and accep-
tance criteria for assessing the degree to which
the software and related documentation achieve
the desired quality levels.

1.1. Software Engineering Culture and Ethics
[3*, c1s4] [6*, c2s3.5]

Software engineers are expected to share a com-
mitment to software quality as part of their culture.
A healthy software engineering culture includes
many characteristics, including the understanding
that tradeoffs among cost, schedule, and quality
are a basic tenant of the engineering of any prod-
uct. A strong software engineering ethic assumes

Figure 10.1. Breakdown of Topics for the Software Quality KA

Software Quality 10-3

that engineers accurately report information, con-
ditions, and outcomes related to quality.

Ethics also play a significant role in software
quality, the culture, and the attitudes of software
engineers. The IEEE Computer Society and the
ACM have developed a code of ethics and pro-
fessional practice (see Codes of Ethics and Pro-
fessional Conduct in the Software Engineering
Professional Practice KA).

1.2. Value and Costs of Quality
[7*, c17, c22]

Defining and then achieving software quality is
not simple. Quality characteristics may or may
not be required, or they may be required to a
greater or lesser degree, and tradeoffs may be
made among them. To help determine the level
of software quality, i.e., achieving stakeholder
value, this section presents cost of software qual-
ity (CoSQ): a set of measurements derived from
the economic assessment of software quality
development and maintenance processes. The
CoSQ measurements are examples of process
measurements that may be used to infer charac-
teristics of a product.

The premise underlying the CoSQ is that the
level of quality in a software product can be
inferred from the cost of activities related to deal-
ing with the consequences of poor quality. Poor
quality means that the software product does not
fully “satisfy stated and implied needs” or “estab-
lished requirements.” There are four cost of qual-
ity categories: prevention, appraisal, internal fail-
ure, and external failure.

Prevention costs include investments in software
process improvement efforts, quality infrastruc-
ture, quality tools, training, audits, and manage-
ment reviews. These costs are usually not specific
to a project; they span the organization. Appraisal
costs arise from project activities that find defects.
These appraisal activities can be categorized into
costs of reviews (design, peer) and costs of test-
ing (software unit testing, software integration,
system level testing, acceptance testing); appraisal
costs would be extended to subcontracted software
suppliers. Costs of internal failures are those that
are incurred to fix defects found during appraisal
activities and discovered prior to delivery of the

software product to the customer. External fail-
ure costs include activities to respond to software
problems discovered after delivery to the customer.

Software engineers should be able to use CoSQ
methods to ascertain levels of software quality
and should also be able to present quality alter-
natives and their costs so that tradeoffs between
cost, schedule, and delivery of stakeholder value
can be made.

1.3. Models and Quality Characteristics
[3*, c24s1] [7*, c2s4] [8*, c17]

Terminology for software quality characteristics
differs from one taxonomy (or model of software
quality) to another, each model perhaps having
a different number of hierarchical levels and a
different total number of characteristics. Various
authors have produced models of software qual-
ity characteristics or attributes that can be useful
for discussing, planning, and rating the quality
of software products. ISO/IEC 25010: 2011 [4]
defines product quality and quality in use as two
related quality models. Appendix B in the SWE-
BOK Guide provides a list of applicable standards
for each KA. Standards for this KA cover various
ways of characterizing software quality.

1.3.1. Software Process Quality

Software quality management and software engi-
neering process quality have a direct bearing on
the quality of the software product.

Models and criteria that evaluate the capabili-
ties of software organizations are primarily proj-
ect organization and management considerations
and, as such, are covered in the Software Engi-
neering Management and Software Engineering
Process KAs.

It is not possible to completely distinguish pro-
cess quality from product quality because process
outcomes include products. Determining whether
a process has the capability to consistently pro-
duce products of desired quality is not simple.

The software engineering process, discussed
in the Software Engineering Process KA, influ-
ences the quality characteristics of software prod-
ucts, which in turn affect quality as perceived by
stakeholders.

10-4 SWEBOK® Guide V3.0

1.3.2. Software Product Quality

The software engineer, first of all, must determine
the real purpose of the software. In this regard,
stakeholder requirements are paramount, and they
include quality requirements in addition to func-
tional requirements. Thus, software engineers
have a responsibility to elicit quality requirements
that may not be explicit at the outset and to under-
stand their importance as well as the level of diffi-
culty in attaining them. All software development
processes (e.g., eliciting requirements, designing,
constructing, building, checking, improving qual-
ity) are designed with these quality requirements
in mind and may carry additional development
costs if attributes such as safety, security, and
dependability are important. The additional devel-
opment costs help ensure that quality obtained can
be traded off against the anticipated benefits.

The term work-product means any artifact that
is the outcome of a process used to create the
final software product. Examples of a work-prod-
uct include a system/subsystem specification, a
software requirements specification for a soft-
ware component of a system, a software design
description, source code, software test documen-
tation, or reports. While some treatments of qual-
ity are described in terms of final software and
system performance, sound engineering practice
requires that intermediate work-products relevant
to quality be evaluated throughout the software
engineering process.

1.4. Software Quality Improvement
[3*, c1s4] [9*, c24] [10*, c11s2.4]

The quality of software products can be improved
through preventative processes or an itera-
tive process of continual improvement, which
requires management control, coordination, and
feedback from many concurrent processes: (1)
the software life cycle processes, (2) the process
of fault/defect detection, removal, and preven-
tion, and (3) the quality improvement process.

The theory and concepts behind qual-
ity improvement—such as building in quality
through the prevention and early detection of
defects, continual improvement, and stakeholder
focus—are pertinent to software engineering.
These concepts are based on the work of experts

in quality who have stated that the quality of a
product is directly linked to the quality of the
process used to create it. Approaches such as the
Deming improvement cycle of Plan-Do-Check-
Act (PDCA), evolutionary delivery, kaizen, and
quality function deployment (QFD) offer tech-
niques to specify quality objectives and determine
whether they are met. The Software Engineering
Institute’s IDEAL is another method [7*]. Qual-
ity management is now recognized by the SWE-
BOK Guide as an important discipline.

Management sponsorship supports process and
product evaluations and the resulting findings.
Then an improvement program is developed
identifying detailed actions and improvement
projects to be addressed in a feasible time frame.
Management support implies that each improve-
ment project has enough resources to achieve the
goal defined for it. Management sponsorship is
solicited frequently by implementing proactive
communication activities.

1.5. Software Safety 
[9*, c11s3]

Safety-critical systems are those in which a sys-
tem failure could harm human life, other living
things, physical structures, or the environment.
The software in these systems is safety-critical.
There are increasing numbers of applications
of safety-critical software in a growing number
of industries. Examples of systems with safety-
critical software include mass transit systems,
chemical manufacturing plants, and medical
devices. The failure of software in these systems
could have catastrophic effects. There are indus-
try standards, such as DO-178C [11], and emerg-
ing processes, tools, and techniques for develop-
ing safetycritical software. The intent of these
standards, tools, and techniques is to reduce the
risk of injecting faults into the software and thus
improve software reliability.

Safety-critical software can be categorized as
direct or indirect. Direct is that software embed-
ded in a safety-critical system, such as the flight
control computer of an aircraft. Indirect includes
software applications used to develop safety-
critical software. Indirect software is included in
software engineering environments and software
test environments.

Software Quality 10-5

Three complementary techniques for reduc-
ing the risk of failure are avoidance, detection
and removal, and damage limitation. These
techniques impact software functional require-
ments, software performance requirements, and
development processes. Increasing levels of risk
imply increasing levels of software quality assur-
ance and control techniques such as inspections.
Higher risk levels may necessitate more thorough
inspections of requirements, design, and code
or the use of more formal analytical techniques.
Another technique for managing and control-
ling software risk is building assurance cases. An
assurance case is a reasoned, auditable artifact
created to support the contention that its claim
or claims are satisfied. It contains the following
and their relationships: one or more claims about
properties; arguments that logically link the evi-
dence and any assumptions to the claims; and a
body of evidence and assumptions supporting
these arguments [12].

2. Software Quality Management Processes

Software quality management is the collection of
all processes that ensure that software products,
services, and life cycle process implementations
meet organizational software quality objectives
and achieve stakeholder satisfaction [13, 14].
SQM defines processes, process owners, require-
ments for the processes, measurements of the
processes and their outputs, and feedback chan-
nels throughout the whole software life cycle.

SQM comprises four subcategories: software
quality planning, software quality assurance
(SQA), software quality control (SQC), and soft-
ware process improvement (SPI). Software qual-
ity planning includes determining which quality
standards are to be used, defining specific quality
goals, and estimating the effort and schedule of
software quality activities. In some cases, soft-
ware quality planning also includes defining the
software quality processes to be used. SQA activ-
ities define and assess the adequacy of software
processes to provide evidence that establishes
confidence that the software processes are appro-
priate for and produce software products of suit-
able quality for their intended purposes [5]. SQC
activities examine specific project artifacts (docu-
ments and executables) to determine whether they

comply with standards established for the project
(including requirements, constraints, designs,
contracts, and plans). SQC evaluates intermedi-
ate products as well as the final products.

The fourth SQM category dealing with improve-
ment has various names within the software indus-
try, including SPI, software quality improvement,
and software corrective and preventive action. The
activities in this category seek to improve process
effectiveness, efficiency, and other characteris-
tics with the ultimate goal of improving software
quality. Although SPI could be included in any of
the first three categories, an increasing number
of organizations organize SPI into a separate cat-
egory that may span across many projects (see the
Software Engineering Process KA).

Software quality processes consist of tasks
and techniques to indicate how software plans
(e.g., software management, development, qual-
ity management, or configuration management
plans) are being implemented and how well the
intermediate and final products are meeting their
specified requirements. Results from these tasks
are assembled in reports for management before
corrective action is taken. The management of
an SQM process is tasked with ensuring that the
results of these reports are accurate.

Risk management can also play an important
role in delivering quality software. Incorporating
disciplined risk analysis and management tech-
niques into the software life cycle processes can
help improve product quality (see the Software
Engineering Management KA for related mate-
rial on risk management).

2.1. Software Quality Assurance
[7*, c4–c6, c11, c12, c26–27]

To quell a widespread misunderstanding, soft-
ware quality assurance is not testing. software
quality assurance (SQA) is a set of activities that
define and assess the adequacy of software pro-
cesses to provide evidence that establishes confi-
dence that the software processes are appropriate
and produce software products of suitable qual-
ity for their intended purposes. A key attribute of
SQA is the objectivity of the SQA function with
respect to the project. The SQA function may
also be organizationally independent of the proj-
ect; that is, free from technical, managerial, and

10-6 SWEBOK® Guide V3.0

financial pressures from the project [5]. SQA has
two aspects: product assurance and process assur-
ance, which are explained in section 2.3.

The software quality plan (in some industry
sectors it is termed the software quality assurance
plan) defines the activities and tasks employed
to ensure that software developed for a specific
product satisfies the project’s established require-
ments and user needs within project cost and
schedule constraints and is commensurate with
project risks. The SQAP first ensures that quality
targets are clearly defined and understood.

The SQA plan’s quality activities and tasks are
specified with their costs, resource requirements,
objectives, and schedule in relation to related
objectives in the software engineering manage-
ment, software development, and software main-
tenance plans. The SQA plan should be consis-
tent with the software configuration management
plan (see the Software Configuration Manage-
ment KA). The SQA plan identifies documents,
standards, practices, and conventions governing
the project and how these items are checked and
monitored to ensure adequacy and compliance.
The SQA plan also identifies measures; statistical
techniques; procedures for problem reporting and
corrective action; resources such as tools, tech-
niques, and methodologies; security for physical
media; training; and SQA reporting and docu-
mentation. Moreover, the SQA plan addresses
the software quality assurance activities of any
other type of activity described in the software
plans—such as procurement of supplier software
for the project, commercial off-the-shelf software
(COTS) installation, and service after delivery of
the software. It can also contain acceptance crite-
ria as well as reporting and management activi-
ties that are critical to software quality.

2.2. Verification & Validation
[9*, c2s2.3, c8, c15s1.1, c21s3.3]

As stated in [15],

The purpose of V&V is to help the devel-
opment organization build quality into the
system during the life cycle. V&V pro-
cesses provide an objective assessment
of products and processes throughout the

life cycle. This assessment demonstrates
whether the requirements are correct, com-
plete, accurate, consistent, and testable.
The V&V processes determine whether
the development products of a given activ-
ity conform to the requirements of that
activity and whether the product satisfies
its intended use and user needs.

Verification is an attempt to ensure that the
product is built correctly, in the sense that the
output products of an activity meet the specifi-
cations imposed on them in previous activities.
Validation is an attempt to ensure that the right
product is built—that is, the product fulfills its
specific intended purpose. Both the verification
process and the validation process begin early
in the development or maintenance phase. They
provide an examination of key product features
in relation to both the product’s immediate prede-
cessor and the specifications to be met.

The purpose of planning V&V is to ensure that
each resource, role, and responsibility is clearly
assigned. The resulting V&V plan documents
describe the various resources and their roles and
activities, as well as the techniques and tools to be
used. An understanding of the different purposes of
each V&V activity helps in the careful planning of
the techniques and resources needed to fulfill their
purposes. The plan also addresses the manage-
ment, communication, policies, and procedures of
the V&V activities and their interaction, as well as
defect reporting and documentation requirements.

2.3. Reviews and Audits
[9*, c24s3] [16*]

Reviews and audit processes are broadly defined
as static—meaning that no software programs or
models are executed—examination of software
engineering artifacts with respect to standards that
have been established by the organization or proj-
ect for those artifacts. Different types of reviews
and audits are distinguished by their purpose, lev-
els of independence, tools and techniques, roles,
and by the subject of the activity. Product assur-
ance and process assurance audits are typically
conducted by software quality assurance (SQA)
personnel who are independent of development

Software Quality 10-7

teams. Management reviews are conducted by
organizational or project management. The engi-
neering staff conducts technical reviews.

• Management reviews evaluate actual project
results with respect to plans.

• Technical reviews (including inspections,
walkthrough, and desk checking) examine
engineering work-products.

• Process assurance audits. SQA process
assurance activities make certain that the
processes used to develop, install, operate,
and maintain software conform to contracts,
comply with any imposed laws, rules, and
regulations and are adequate, efficient and
effective for their intended purpose [5].

• Product assurance audits. SQA product
assurance activities make certain to provide
evidence that software products and related
documentation are identified in and comply
with contracts; and ensure that nonconfor-
mances are identified and addressed [5].

2.3.1. Management Reviews

As stated in [16*],

The purpose of a management review is to
monitor progress, determine the status of
plans and schedules, and evaluate the effec-
tiveness of management processes, tools
and techniques. Management reviews com-
pare actual project results against plans to
determine the status of projects or mainte-
nance efforts. The main parameters of man-
agement reviews are project cost, schedule,
scope, and quality. Management reviews
evaluate decisions about corrective actions,
changes in the allocation of resources, or
changes to the scope of the project.

Inputs to management reviews may include
audit reports, progress reports, V&V reports, and
plans of many types, including risk management,
project management, software configuration
management, software safety, and risk assess-
ment, among others. (Refer to the Software Engi-
neering Management and the Software Configu-
ration Management KAs for related material.)

2.3.2. Technical Reviews

As stated in [16*],

The purpose of a technical review is to
evaluate a software product by a team of
qualified personnel to determine its suit-
ability for its intended use and identify
discrepancies from specifications and
standards. It provides management with
evidence to confirm the technical status of
the project.

Although any work-product can be reviewed,
technical reviews are performed on the main
software engineering work-products of software
requirements and software design.

Purpose, roles, activities, and most importantly
the level of formality distinguish different types
of technical reviews. Inspections are the most for-
mal, walkthroughs less, and pair reviews or desk
checks are the least formal.

Examples of specific roles include a decision
maker (i.e., software lead), a review leader, a
recorder, and checkers (technical staff members
who examine the work-products). Reviews are
also distinguished by whether meetings (face to
face or electronic) are included in the process. In
some review methods checkers solitarily exam-
ine work-products and send their results back to
a coordinator. In other methods checkers work
cooperatively in meetings. A technical review
may require that mandatory inputs be in place in
order to proceed:

• Statement of objectives
• Specific software product
• Specific project management plan
• Issues list associated with this product
• Technical review procedure.

The team follows the documented review pro-
cedure. The technical review is completed once
all the activities listed in the examination have
been completed.

Technical reviews of source code may include a
wide variety of concerns such as analysis of algo-
rithms, utilization of critical computer resources,
adherence to coding standards, structure and

10-8 SWEBOK® Guide V3.0

organization of code for testability, and safety-
critical considerations.

Note that technical reviews of source code or
design models such as UML are also termed static
analysis (see topic 3, Practical Considerations).

2.3.3. Inspections

“The purpose of an inspection is to detect and
identify software product anomalies” [16*].
Some important differentiators of inspections as
compared to other types of technical reviews are
these:

1. Rules. Inspections are based upon examining
a work-product with respect to a defined set
of criteria specified by the organization. Sets
of rules can be defined for different types of
workproducts (e.g., rules for requirements,
architecture descriptions, source code).

2. Sampling. Rather that attempt to examine
every word and figure in a document, the
inspection process allows checkers to evalu-
ate defined subsets (samples) of the docu-
ments under review.

3. Peer. Individuals holding management posi-
tions over members of the inspection team
do not participate in the inspection. This is
a key distinction between peer review and
management review.

4. Led. An impartial moderator who is trained
in inspection techniques leads inspection
meetings.

5. Meeting. The inspection process includes
meetings (face to face or electronic) con-
ducted by a moderator according to a formal
procedure in which inspection team mem-
bers report the anomalies they have found
and other issues.

Software inspections always involve the author
of an intermediate or final product; other reviews
might not. Inspections also include an inspection
leader, a recorder, a reader, and a few (two to five)
checkers (inspectors). The members of an inspec-
tion team may possess different expertise, such as
domain expertise, software design method exper-
tise, or programming language expertise. Inspec-
tions are usually conducted on one relatively

small section of the product at a time (samples).
Each team member examines the software prod-
uct and other review inputs prior to the review
meeting, perhaps by applying an analytical tech-
nique (see section 3.3.3) to a small section of
the product or to the entire product with a focus
on only one aspect—e.g., interfaces. During the
inspection, the moderator conducts the session
and verifies that everyone has prepared for the
inspection and conducts the session. The inspec-
tion recorder documents anomalies found. A set
of rules, with criteria and questions germane to
the issues of interest, is a common tool used in
inspections. The resulting list often classifies the
anomalies (see section 3.2, Defect Characteriza-
tion) and is reviewed for completeness and accu-
racy by the team. The inspection exit decision
corresponds to one of the following options:

1. Accept with no or, at most, minor reworking
2. Accept with rework verification
3. Reinspect.

2.3.4. Walkthroughs

As stated in [16*],

The purpose of a systematic walk-through
is to evaluate a software product. A walk-
through may be conducted for the purpose
of educating an audience regarding a soft-
ware product.

Walkthroughs are distinguished from inspec-
tions. The main difference is that the author pres-
ents the work-product to the other participants in
a meeting (face to face or electronic). Unlike an
inspection, the meeting participants may not have
necessarily seen the material prior to the meet-
ing. The meetings may be conducted less for-
mally. The author takes the role of explaining and
showing the material to participants and solicits
feedback. Like inspections, walkthroughs may be
conducted on any type of work-product including
project plan, requirements, design, source code,
and test reports.

Software Quality 10-9

2.3.5. Process Assurance and Product Assur-
ance Audits

As stated in [16*],

The purpose of a software audit is to pro-
vide an independent evaluation of the con-
formance of software products and pro-
cesses to applicable regulations, standards,
guidelines, plans, and procedures.

Process assurance audits determine the adequacy
of plans, schedules, and requirements to achieve
project objectives [5]. The audit is a formally
organized activity with participants having spe-
cific roles—such as lead auditor, another auditor, a
recorder, or an initiator—and including a represen-
tative of the audited organization. Audits identify
instances of nonconformance and produce a report
requiring the team to take corrective action.

While there may be many formal names for
reviews and audits, such as those identified in the
standard [16*], the important point is that they
can occur on almost any product at any stage of
the development or maintenance process.

3. Practical Considerations

3.1. Software Quality Requirements
[9*, c11s1] [18*, c12]

 [17*, c15s3.2.2, c15s3.3.1, c16s9.10]

3.1.1. Influence Factors

Various factors influence planning, management,
and selection of SQM activities and techniques,
including

• the domain of the system in which the soft-
ware resides; the system functions could be
safety-critical, mission-critical, business-
critical, security-critical

• the physical environment in which the soft-
ware system resides

• system and software functional (what the
system does) and quality (how well the sys-
tem performs its functions) requirements

• the commercial (external) or standard (inter-
nal) components to be used in the system

• the specific software engineering standards
applicable

• the methods and software tools to be used for
development and maintenance and for qual-
ity evaluation and improvement

• the budget, staff, project organization, plans,
and scheduling of all processes

• the intended users and use of the system
• the integrity level of the system.

Information on these factors influences how
the SQM processes are organized and docu-
mented, how specific SQM activities are selected,
what resources are needed, and which of those
resources impose bounds on the efforts.

3.1.2. Dependability

In cases where system failure may have extremely
severe consequences, overall dependability (hard-
ware, software, and human or operational) is the
main quality requirement over and above basic
functionality. This is the case for the following
reasons: system failures affect a large number of
people; users often reject systems that are unre-
liable, unsafe, or insecure; system failure costs
may be enormous; and undependable systems
may cause information loss. System and soft-
ware dependability include such characteristics
as availability, reliability, safety, and security.
When developing dependable software, tools and
techniques can be applied to reduce the risk of
injecting faults into the intermediate deliverables
or the final software product. Verification, valida-
tion, and testing processes, techniques, methods,
and tools identify faults that impact dependability
as early as possible in the life cycle. Addition-
ally, mechanisms may need to be in place in the
software to guard against external attacks and to
tolerate faults.

3.1.3. Integrity Levels of Software

Defining integrity levels is a method of risk
management.

Software integrity levels are a range of
values that represent software complexity,
criticality, risk, safety level, security level,

10-10 SWEBOK® Guide V3.0

desired performance, reliability, or other
project-unique characteristics that define
the importance of the software to the user
and acquirer. The characteristics used to
determine software integrity level vary
depending on the intended application and
use of the system. The software is a part of
the system, and its integrity level is to be
determined as a part of that system.

The assigned software integrity levels may
change as the software evolves. Design, coding,
procedural, and technology features implemented
in the system or software can raise or lower the
assigned software integrity levels. The software
integrity levels established for a project result
from agreements among the acquirer, supplier,
developer, and independent assurance authorities.
A software integrity level scheme is a tool used in
determining software integrity levels. [5]

As noted in [17*], “the integrity levels can be
applied during development to allocate additional
verification and validation efforts to high-integ-
rity components.”

3.2. Defect Characterization
[3*, c3s3, c8s8, c10s2]

Software quality evaluation (i.e., software quality
control) techniques find defects, faults and fail-
ures. Characterizing these techniques leads to an
understanding of the product, facilitates correc-
tions to the process or the product, and informs
management and other stakeholders of the sta-
tus of the process or product. Many taxonomies
exist and, while attempts have been made to gain
consensus, the literature indicates that there are
quite a few in use. Defect characterization is also
used in audits and reviews, with the review leader
often presenting a list of issues provided by team
members for consideration at a review meeting.

As new design methods and languages evolve,
along with advances in overall software technolo-
gies, new classes of defects appear, and a great
deal of effort is required to interpret previously
defined classes. When tracking defects, the soft-
ware engineer is interested in not only the number
of defects but also the types. Information alone,
without some classification, may not be sufficient
to identify the underlying causes of the defects.

Specific types of problems need to be grouped to
identify trends over time. The point is to establish
a defect taxonomy that is meaningful to the orga-
nization and to software engineers.

Software quality control activities discover infor-
mation at all stages of software development and
maintenance. In some cases, the word defect is
overloaded to refer to different types of anomalies.
However, different engineering cultures and stan-
dards may use somewhat different meanings for
these terms. The variety of terms prompts this sec-
tion to provide a widely used set of definitions [19]:

• Computational  Error: “the difference
between a computed, observed, or measured
value or condition and the true, specified, or
theoretically correct value or condition.”

• Error: “A human action that produces an
incorrect result.” A slip or mistake that a per-
son makes. Also called human error.

• Defect: An “imperfection or deficiency in a
work product where that work product does
not meet its requirements or specifications
and needs to be either repaired or replaced.”
A defect is caused by a person committing
an error.

• Fault: A defect in source code. An “incorrect
step, process, or data definition in computer
program.” The encoding of a human error in
source code. Fault is the formal name of a bug.

• Failure: An “event in which a system or sys-
tem component does not perform a required
function within specified limits.” A failure is
produced when a fault is encountered by the
processor under specified conditions.

Using these definitions three widely used soft-
ware quality measurements are defect density
(number of defects per unit size of documents),
fault density (number of faults per 1K lines of
code), and failure intensity (failures per use-hour
or per test-hour). Reliability models are built
from failure data collected during software test-
ing or from software in service and thus can be
used to estimate the probability of future failures
and to assist in decisions on when to stop testing.

One probable action resulting from SQM find-
ings is to remove the defects from the product
under examination (e.g., find and fix bugs, create
new build). Other activities attempt to eliminate

Software Quality 10-11

the causes of the defects—for example, root cause
analysis (RCA). RCA activities include analyzing
and summarizing the findings to find root causes
and using measurement techniques to improve
the product and the process as well as to track the
defects and their removal. Process improvement
is primarily discussed in the Software Engineer-
ing Process KA, with the SQM process being a
source of information.

Data on inadequacies and defects found by
software quality control techniques may be lost
unless they are recorded. For some techniques
(e.g., technical reviews, audits, inspections),
recorders are present to set down such informa-
tion, along with issues and decisions. When auto-
mated tools are used (see topic 4, Software Qual-
ity Tools), the tool output may provide the defect
information. Reports about defects are provided
to the management of the organization.

3.3. Software Quality Management Techniques
[7*, c7s3] [8*, c17] [9*, c12s5, c15s1, p417]

[16*]

Software quality control techniques can be cat-
egorized in many ways, but a straightforward
approach uses just two categories: static and
dynamic. Dynamic techniques involve executing
the software; static techniques involve analyzing
documents and source code but not executing the
software.

3.3.1. Static Techniques

Static techniques examine software documenta-
tion (including requirements, interface specifica-
tions, designs, and models) and software source
code without executing the code. There are many
tools and techniques for statically examining soft-
ware work-products (see section 2.3.2). In addi-
tion, tools that analyze source code control flow
and search for dead code are considered to be
static analysis tools because they do not involve
executing the software code.

Other, more formal, types of analytical tech-
niques are known as formal methods. They are
notably used to verify software requirements and
designs. They have mostly been used in the veri-
fication of crucial parts of critical systems, such
as specific security and safety requirements. (See

also Formal Methods in the Software Engineer-
ing Models and Methods KA.)

3.3.2. Dynamic Techniques

Dynamic techniques involve executing the soft-
ware code. Different kinds of dynamic techniques
are performed throughout the development and
maintenance of software. Generally, these are
testing techniques, but techniques such as simu-
lation and model analysis may be considered
dynamic (see the Software Engineering Models
and Methods KA). Code reading is considered a
static technique, but experienced software engi-
neers may execute the code as they read through
it. Code reading may utilize dynamic techniques.
This discrepancy in categorizing indicates that
people with different roles and experience in the
organization may consider and apply these tech-
niques differently.

Different groups may perform testing during
software development, including groups inde-
pendent of the development team. The Software
Testing KA is devoted entirely to this subject.

3.3.3. Testing

Two types of testing may fall under V&V because
of their responsibility for the quality of the mate-
rials used in the project:

• Evaluation and tests of tools to be used on
the project

• Conformance tests (or review of confor-
mance tests) of components and COTS prod-
ucts to be used in the product.

Sometimes an independent (third-party or
IV&V) organization may be tasked to perform
testing or to monitor the test process V&V may
be called upon to evaluate the testing itself: ade-
quacy of plans, processes, and procedures, and
adequacy and accuracy of results.

The third party is not the developer, nor is it
associated with the development of the product.
Instead, the third party is an independent facil-
ity, usually accredited by some body of authority.
Their purpose is to test a product for conformance
to a specific set of requirements (see the Software
Testing KA).

10-12 SWEBOK® Guide V3.0

3.4. Software Quality Measurement
[3*, c4] [8*, c17] [9*, p90]

Software quality measurements are used to
support decision-making. With the increasing
sophistication of software, questions of quality
go beyond whether or not the software works to
how well it achieves measurable quality goals.

Decisions supported by software quality mea-
surement include determining levels of software
quality (notably because models of software
product quality include measures to determine
the degree to which the software product achieves
quality goals); managerial questions about effort,
cost, and schedule; determining when to stop test-
ing and release a product (see Termination under
section 5.1, Practical Considerations, in the Soft-
ware Testing KA); and determining the efficacy
of process improvement efforts.

The cost of SQM processes is an issue fre-
quently raised in deciding how a project or a soft-
ware development and maintenance group should
be organized. Often, generic models of cost are
used, which are based on when a defect is found
and how much effort it takes to fix the defect rela-
tive to finding the defect earlier in the develop-
ment process. Software quality measurement data
collected internally may give a better picture of
cost within this project or organization.

While the software quality measurement data
may be useful in itself (e.g., the number of defec-
tive requirements or the proportion of defective
requirements), mathematical and graphical tech-
niques can be applied to aid in the interpretation
of the measures (see the Engineering Foundations
KA). These techniques include

• descriptive statistics based (e.g., Pareto
analysis, run charts, scatter plots, normal
distribution)

• statistical tests (e.g., the binomial test, chi-
squared test)

• trend analysis (e.g., control charts; see
The  Quality  Toolbox in the list of further
readings)

• prediction (e.g., reliability models).

Descriptive statistics-based techniques and
tests often provide a snapshot of the more

troublesome areas of the software product under
examination. The resulting charts and graphs
are visualization aids, which the decision mak-
ers can use to focus resources and conduct pro-
cess improvements where they appear to be most
needed. Results from trend analysis may indicate
that a schedule is being met, such as in testing, or
that certain classes of faults may become more
likely to occur unless some corrective action is
taken in development. The predictive techniques
assist in estimating testing effort and schedule
and in predicting failures. More discussion on
measurement in general appears in the Software
Engineering Process and Software Engineering
Management KAs. More specific information on
testing measurement is presented in the Software
Testing KA.

Software quality measurement includes mea-
suring defect occurrences and applying statistical
methods to understand the types of defects that
occur most frequently. This information may be
used by software process improvement for deter-
mining methods to prevent, reduce, or eliminate
their recurrence. They also aid in understanding
trends, how well detection and containment tech-
niques are working, and how well the develop-
ment and maintenance processes are progressing.

From these measurement methods, defect
profiles can be developed for a specific applica-
tion domain. Then, for the next software project
within that organization, the profiles can be used
to guide the SQM processes—that is, to expend
the effort where problems are most likely to occur.
Similarly, benchmarks, or defect counts typical of
that domain, may serve as one aid in determining
when the product is ready for delivery. Discus-
sion on using data from SQM to improve devel-
opment and maintenance processes appears in the
Software Engineering Management and Software
Engineering Process KAs.

4. Software Quality Tools

Software quality tools include static and dynamic
analysis tools. Static analysis tools input source
code, perform syntactical and semantic analysis
without executing the code, and present results to
users. There is a large variety in the depth, thor-
oughness, and scope of static analysis tools that

Software Quality 10-13

can be applied to artifacts including models, in
addition to source code. (See the Software Con-
struction, Software Testing, and Software Main-
tenance KAs for descriptions of dynamic analysis
tools.)

Categories of static analysis tools include the
following:

• Tools that facilitate and partially automate
reviews and inspections of documents and
code. These tools can route work to differ-
ent participants in order to partially automate
and control a review process. They allow
users to enter defects found during inspec-
tions and reviews for later removal.

• Some tools help organizations perform soft-
ware safety hazard analysis. These tools
provide, e.g., automated support for failure
mode and effects analysis (FMEA) and fault
tree analysis (FTA).

• Tools that support tracking of software prob-
lems provide for entry of anomalies discov-
ered during software testing and subsequent
analysis, disposition, and resolution. Some
tools include support for workflow and for
tracking the status of problem resolution.

• Tools that analyze data captured from soft-
ware engineering environments and soft-
ware test environments and produce visual
displays of quantified data in the form of
graphs, charts, and tables. These tools some-
times include the functionality to perform
statistical analysis on data sets (for the pur-
pose of discerning trends and making fore-
casts). Some of these tools provide defect
and removal injection rates; defect densities;
yields; distribution of defect injection and
removal for each of the life cycle phases.

10-14 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

K
an

 2
00

2
[3

*]

B
ot

t e
t a

l.
20

00

[6
*]

G
al

in
 2

00
4

[7
*]

N
ai

k
an

d
Tr

ip
at

hy
 2

00
8

[8
*]

So
m

m
er

vi
lle

 2
01

1
[9

*]

Vo
la

nd
 2

00
3

[1
0*

]

IE
E

E
 S

td
. 1

02
8-

20
08

[1

6*
]

M
oo

re
 2

00
6

[1
7*

]

W
ie

ge
rs

 2
00

3
[1

8*
]

1. Software
Quality
Fundamentals

1.1. Software
Engineering
Culture and
Ethics

c1s4 c2s3.5

1.2. Value and
Cost of Quality

c17,
c22

1.3. Models
and Quality
Characteristics

c24s1 c2s4 c17

1.4. Software
Quality
Improvement

c1s4 c24 c11
s2.4

1.5. Software
Safety c11s3

2. Software
Quality
Management
Processes

2.1. Software
Quality
Assurance

c4–c6,
c11,

c26–27

2.2. Verification
and Validation

c2
s2.3,

c8, c15
s1.1,
c21
s3.3

2.3. Reviews
and Audits c24s3 *

Software Quality 10-15

K
an

 2
00

2
[3

*]

B
ot

t e
t a

l.
20

00

[6
*]

G
al

in
 2

00
4

[7
*]

N
ai

k
an

d
Tr

ip
at

hy
 2

00
8

[8
*]

So
m

m
er

vi
lle

 2
01

1
[9

*]

Vo
la

nd
 2

00
3

[1
0*

]

IE
E

E
 S

td
. 1

02
8-

20
08

[1

6*
]

M
oo

re
 2

00
6

[1
7*

]

W
ie

ge
rs

 2
00

3
[1

8*
]

3. Software
Quality Practical
Considerations

3.1. Software
Quality
Requirements

c11s1

c15
s3.2.2,

c15
s3.3.1,

c16
s9.10

c12

3.2. Defect
Characterization

c3s3,
c8s8,
c10s2

3.3. SQM
Techniques c7s3 c17

c12s5,
c15s1,
p417

*

3.4. Software
Quality
Measurement

c4 c17 p90

4. Software
Quality Tools

10-16 SWEBOK® Guide V3.0

FURTHER READINGS

N. Leveson, Safeware: System Safety and 
Computers [20].

This book describes the importance of software
safety practices and how these practices can be
incorporated into software development projects.

T. Gilb, Principles of Software Engineering 
Management [21].

This is one of the first books on iterative and
incremental development techniques. The Evo
Method defines quantified goals, frequent time-
boxed iterations, measurements of progress
toward goals, and adaptation of plans based on
actual results.

T. Gilb and D. Graham, Software Inspection
[22].

This book introduces measurement and statisti-
cal sampling for reviews and defects. It presents
techniques that produce quantified results for
reducing defects, improving productivity, track-
ing projects, and creating documentation.

K.E. Wiegers, Peer Reviews in Software: A 
Practical Guide [23].

This book provides clear, succinct explanations
of different peer review methods distinguished by
level of formality and effectiveness. Pragmatic
guidance for implementing the methods and how
to select which methods are appropriate for given
circumstances is provided.

N.R. Tague, The Quality Toolbox, 2nd ed., [24].

Provides a pragmatic how-to explanation of a
comprehensive set of methods, tools, and tech-
niques for solving quality improvement prob-
lems. Includes the seven basic quality control
tools and many others.

IEEE Std. P730-2013 Draft Standard for 
Software Quality Assurance Processes [5].

This draft standard expands the SQA processes
identified in IEEE/ISO/IEC 12207-2008. P730
establishes standards for initiating, planning,
controlling, and executing the software quality
assurance processes of a software development
or maintenance project. Approval of this draft
standard is expected in 2014.

Software Quality 10-17

REFERENCES

[1] P.B. Crosby, Quality Is Free, McGraw-Hill,
1979.

[2] W. Humphrey, Managing the Software 
Process, Addison-Wesley, 1989.

[3*] S.H. Kan, Metrics and Models in Software 
Quality Engineering, 2nd ed., Addison-
Wesley, 2002.

[4] ISO/IEC 25010:2011 Systems and Software 
Engineering—Systems and Software 
Quality Requirements and Evaluation 
(SQuaRE)—Systems and Software Quality 
Models, ISO/IEC, 2011.

[5] IEEE P730™/D8 Draft Standard for 
Software Quality Assurance Processes,
IEEE, 2012.

[6*] F. Bott et al., Professional Issues in 
Software Engineering, 3rd ed., Taylor &
Francis, 2000.

[7*] D. Galin, Software Quality Assurance: 
From Theory to Implementation, Pearson
Education Limited, 2004.

[8*] S. Naik and P. Tripathy, Software Testing 
and Quality Assurance: Theory and 
Practice, Wiley-Spektrum, 2008.

[9*] P. Clements et al., Documenting Software 
Architectures: Views and Beyond, 2nd ed.,
Pearson Education, 2010.

[10*] G. Voland, Engineering by Design, 2nd
ed., Prentice Hall, 2003.

[11] RTCA DO-178C, Software Considerations 
in Airborne Systems and Equipment 
Certification, Radio Technical Commission
for Aeronautics, 2011.

[12] IEEE Std. 15026.1-2011 Trial-Use Standard 
Adoption of ISO/IEC TR 15026-1:2010 
Systems and Software Engineering—
Systems and Software Assurance—Part 1: 
Concepts and Vocabulary, IEEE, 2011.

[13] IEEE Std. 12207-2008 (a.k.a. ISO/IEC 
12207:2008) Standard for Systems and 
Software Engineering—Software Life Cycle 
Processes, IEEE, 2008.

[14] ISO 9000:2005 Quality Management 
Systems—Fundamentals and Vocabulary,
ISO, 2005.

[15] IEEE Std. 1012-2012 Standard for System 
and Software Verification and Validation,
IEEE, 2012.

[16*] IEEE Std. 1028-2008, Software Reviews 
and Audits, IEEE, 2008.

[17*] J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.

[18*] K.E. Wiegers, Software Requirements, 2nd
ed., Microsoft Press, 2003.

[19] ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[20] N. Leveson, Safeware: System Safety and 
Computers, Addison-Wesley Professional,
1995.

[21] T. Gilb, Principles of Software Engineering 
Management, Addison-Wesley Professional,
1988.

[22] T. Gilb and D. Graham, Software 
Inspection, Addison-Wesley Professional,
1993.

[23] K. Wiegers, Peer Reviews in Software:  A 
Practical Guide, Addison-Wesley
Professional, 2001.

[24] N.R. Tague, The Quality Toolbox, 2nd ed.,
ASQ Quality Press, 2010.

11-1

CHAPTER 11

SOFTWARE ENGINEERING
PROFESSIONAL PRACTICE

ACRONYMS

ACM Association for Computing
Machinery

BCS British Computer Society

CSDA Certified Software Development
Associate

CSDP Certified Software Development
Professional

IEC International Electrotechnical
Commission

IEEE CS IEEE Computer Society

IFIP International. Federation for
Information Processing

IP Intellectual Property

ISO International Organization for
Standardization

NDA Non-Disclosure Agreement

WIPO World Intellectual Property
Organization

WTO World Trade Organization

INTRODUCTION

The Software Engineering Professional Prac-
tice knowledge area (KA) is concerned with the
knowledge, skills, and attitudes that software
engineers must possess to practice software engi-
neering in a professional, responsible, and ethi-
cal manner. Because of the widespread applica-
tions of software products in social and personal
life, the quality of software products can have
profound impact on our personal well-being
and societal harmony. Software engineers must
handle unique engineering problems, producing

software with known characteristics and reliabil-
ity. This requirement calls for software engineers
who possess a proper set of knowledge, skills,
training, and experience in professional practice.

The term “professional practice” refers to a
way of conducting services so as to achieve cer-
tain standards or criteria in both the process of
performing a service and the end product result-
ing from the service. These standards and crite-
ria can include both technical and nontechnical
aspects. The concept of professional practice can
be viewed as being more applicable within those
professions that have a generally accepted body
of knowledge; codes of ethics and professional
conduct with penalties for violations; accepted
processes for accreditation, certification, and
licensing; and professional societies to provide
and administer all of these. Admission to these
professional societies is often predicated on a pre-
scribed combination of education and experience.

A software engineer maintains a professional
practice by performing all work in accordance
with generally accepted practices, standards, and
guidelines notably set forth by the applicable pro-
fessional society. For example, the Association for
Computing Machinery (ACM) and IEEE Com-
puter Society (IEEE CS) have established a Soft-
ware Engineering Code of Ethics and Professional
Practice. Both the British Computer Society (BCS)
and the International Federation for Information
Processing (IFIP) have established similar profes-
sional practice standards. ISO/IEC and IEEE have
further provided internationally accepted software
engineering standards (see Appendix B of this
Guide). IEEE CS has established two international
certification programs (CSDA, CSDP) and a corre-
sponding Guide to the Software Engineering Body 
of Knowledge (SWEBOK Guide). All of these are

11-2 SWEBOK® Guide V3.0

elements that lay the foundation for of the profes-
sional practice of software engineering.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING
PROFESSIONAL PRACTICE

The Software Engineering Professional Practice
KA’s breakdown of topics is shown in Figure

11.1. The subareas presented in this KA are pro-
fessionalism, group dynamics and psychology,
and communication skills.

1. Professionalism

A software engineer displays professionalism
notably through adherence to codes of ethics
and professional conduct and to standards and

Figure 11.1. Breakdown of Topics for the Software Engineering Professional Practice KA

Software Engineering Professional Practice 11-3

practices that are established by the engineer’s
professional community.

The professional community is often repre-
sented by one or more professional societies;
those societies publish codes of ethics and profes-
sional conduct as well as criteria for admittance
to the community. Those criteria form the basis
for accreditation and licensing activities and may
be used as a measure to determine engineering
competence or negligence.

1.1. Accreditation, Certification, and Licensing
[1*, c1s4.1, c1s5.1–c1s5.4]

1.1.1. Accreditation 

Accreditation is a process to certify the compe-
tency, authority, or credibility of an organization.
Accredited schools or programs are assured to
adhere to particular standards and maintain cer-
tain qualities. In many countries, the basic means
by which engineers acquire knowledge is through
completion of an accredited course of study.
Often, engineering accreditation is performed by
a government organization, such as the ministry
of education. Such countries with government
accreditations include China, France, Germany,
Israel, Italy, and Russia.

In other countries, however, the accredita-
tion process is independent of government and
performed by private membership associations.
For example, in the United States, engineer-
ing accreditation is performed by an organiza-
tion known as ABET. An organization known as
CSAB serving as a participating body of ABET
is the lead society within ABET for the accredita-
tion of degree programs in software engineering.

While the process of accreditation may be dif-
ferent for each country and jurisdiction, the general
meaning is the same. For an institution’s course of
study to be accredited means that “the accredita-
tion body recognizes an educational institution as
maintaining standards that qualify the graduates
for admission to higher or more specialized insti-
tutions or for professional practice” [2].

1.1.2. Certification

Certification refers to the confirmation of a per-
son’s particular characteristics. A common type

of certification is professional certification, where
a person is certified as being able to complete an
activity in a certain discipline at a stated level
of competency. Professional certification also
can also verify the holder’s ability to meet pro-
fessional standards and to apply professional
judgment in solving or addressing problems.
Professional certification can also involve the
verification of prescribed knowledge, the master-
ing of best practice and proven methodologies,
and the amount of professional experience.

An engineer usually obtains certification by
passing an examination in conjunction with other
experience-based criteria. These examinations
are often administered by nongovernmental orga-
nizations, such as professional societies.

In software engineering, certification testi-
fies to one’s qualification as a software engineer.
For example, the IEEE CS has enacted two cer-
tification programs (CSDA and CSDP) designed
to confirm a software engineer’s knowledge of
standard software engineering practices and to
advance one’s career. A lack of certification does
not exclude the individual from working as a
software engineer. Currently certification in soft-
ware engineering is completely voluntary. In fact,
most software engineers are not certified under
any program.

1.1.3. Licensing

“Licensing” is the action of giving a person the
authorization to perform certain kinds of activi-
ties and take responsibility for resultant engineer-
ing products. The noun “license” refers to both
that authorization and the document recording
that authorization. Governmental authorities or
statutory bodies usually issue licenses.

Obtaining a license to practice requires not only
that an individual meets a certain standard, but
also that they do so with a certain ability to prac-
tice or operate. Sometimes there is an entry-level
requirement which sets the minimum skills and
capabilities to practice, but as the professional
moves through his or her career, the required
skills and capabilities change and evolve.

In general, engineers are licensed as a means of
protecting the public from unqualified individuals.
In some countries, no one can practice as a pro-
fessional engineer unless licensed; or further, no

11-4 SWEBOK® Guide V3.0

company may offer “engineering services” unless
at least one licensed engineer is employed there.

1.2. Codes of Ethics and Professional Conduct 
[1*, c1s6–c1s9] [3*, c8] [4*, c1s2] [5*, c33]

[6*]

Codes of ethics and professional conduct com-
prise the values and behavior that an engineer’s
professional practice and decisions should
embody.

The professional community establishes codes
of ethics and professional conduct. They exist
in the context of, and are adjusted to agree with,
societal norms and local laws. Therefore, codes
of ethics and professional conduct present guid-
ance in the face of conflicting imperatives.

Once established, codes of ethics and profes-
sional conduct are enforced by the profession,
as represented by professional societies or by a
statutory body.

Violations may be acts of commission, such
as concealing inadequate work, disclosing con-
fidential information, falsifying information, or
misrepresenting one’s abilities. They may also
occur through omission, including failure to dis-
close risks or to provide important information,
failure to give proper credit or to acknowledge
references, and failure to represent client inter-
ests. Violations of codes of ethics and profes-
sional conduct may result in penalties and pos-
sible expulsion from professional status.

A code of ethics and professional conduct for
software engineering was approved by the ACM
Council and the IEEE CS Board of Governors in
1999 [6*]. According to the short version of this
code:

Software engineers shall commit them-
selves to making the analysis, specifica-
tion, design, development, testing and
maintenance of software a beneficial and
respected profession. In accordance with
their commitment to the health, safety and
welfare of the public, software engineers
shall adhere to the eight principles con-
cerning the public, client and employer,
product, judgment, management, profes-
sion, colleagues, and self, respectively.

Since standards and codes of ethics and pro-
fessional conduct may be introduced, modified,
or replaced at any time, individual software engi-
neers bear the responsibility for their own con-
tinuing study to stay current in their professional
practice.

1.3. Nature and Role of Professional Societies
[1*, c1s1–c1s2] [4*, c1s2] [5*, c35s1]

Professional societies are comprised of a mix
of practitioners and academics. These societies
serve to define, advance, and regulate their cor-
responding professions. Professional societies
help to establish professional standards as well
as codes of ethics and professional conduct. For
this reason, they also engage in related activities,
which include

• establishing and promulgating a body of gen-
erally accepted knowledge;

• accrediting, certifying, and licensing;
• dispensing disciplinary actions;
• advancing the profession through confer-

ences, training, and publications.

Participation in professional societies assists
the individual engineer in maintaining and sharp-
ening their professional knowledge and relevancy
and in expanding and maintaining their profes-
sional network.

1.4. Nature and Role of Software Engineering 
Standards 

[1*, c5s3.2, c10s2.1] [5*, c32s6] [7*, c1s2]

Software engineering standards cover a remark-
able variety of topics. They provide guidelines for
the practice of software engineering and processes
to be used during development, maintenance, and
support of software. By establishing a consensual
body of knowledge and experience, software engi-
neering standards establish a basis upon which fur-
ther guidelines may be developed. Appendix B of
this Guide provides guidance on IEEE and ISO/
IEC software engineering standards that support
the knowledge areas of this Guide.

The benefits of software engineering standards
are many and include improving software quality,

Software Engineering Professional Practice 11-5

helping avoid errors, protecting both software
producers and users, increasing professional dis-
cipline, and helping technology transition.

1.5. Economic Impact of Software
[3*, c10s8] [4*, c1s1.1] [8*, c1]

Software has economic effects at the individual,
business, and societal levels. Software “success”
may be determined by the suitability of a product
for a recognized problem as well as by its effec-
tiveness when applied to that problem.

At the individual level, an engineer’s continu-
ing employment may depend on their ability
and willingness to interpret and execute tasks
in meeting customers’ or employers’ needs and
expectations. The customer or employer’s finan-
cial situation may in turn be positively or nega-
tively affected by the purchase of software.

At the business level, software properly applied
to a problem can eliminate months of work
and translate to elevated profits or more effec-
tive organizations. Moreover, organizations that
acquire or provide successful software may be a
boon to the society in which they operate by pro-
viding both employment and improved services.
However, the development or acquisition costs of
software can also equate to those of any major
acquisition.

At the societal level, direct impacts of software
success or failure include or exclude accidents,
interruptions, and loss of service. Indirect impacts
include the success or failure of the organization
that acquired or produced the software, increased
or decreased societal productivity, harmonious
or disruptive social order, and even the saving or
loss of property and life.

1.6. Employment Contracts
[1*, c7]

Software engineering services may be provided
under a variety of client-engineer relationships.
The software engineering work may be solic-
ited as company-to-customer supplier, engineer-
to-customer consultancy, direct hire, or even
volunteering. In all of these situations, the cus-
tomer and supplier agree that a product or ser-
vice will be provided in return for some sort of

consideration. Here, we are most concerned with
the engineer-to-customer arrangement and its
attendant agreements or contracts, whether they
are of the direct-hire or consultant variety, and
the issues they typically address.

A common concern in software engineering
contracts is confidentiality. Employers derive
commercial advantage from intellectual property,
so they strive to protect that property from dis-
closure. Therefore, software engineers are often
required to sign non-disclosure (NDA) or intel-
lectual property (IP) agreements as a precondi-
tion to work. These agreements typically apply
to information the software engineer could only
gain through association with the customer. The
terms of these agreements may extend past termi-
nation of the association.

Another concern is IP ownership. Rights to
software engineering assets—products, innova-
tions, inventions, discoveries, and ideas—may
reside with the employer or customer, either under
explicit contract terms or relevant laws, if those
assets are obtained during the term of the soft-
ware engineer’s relationship with that employer
or customer. Contracts differ in the ownership of
assets created using non-employer-owned equip-
ment or information.

Finally, contracts can also specify among
other elements the location at which work is to
be performed; standards to which that work will
be held; the system configuration to be used for
development; limitations of the software engi-
neer’s and employer’s liability; a communication
matrix and/or escalation plan; and administrative
details such as rates, frequency of compensation,
working hours, and working conditions.

1.7. Legal Issues 
[1*, c6, c11] [3*, c5s3–c5s4] [9*, c1s10]

Legal issues surrounding software engineering
professional practice notably include matters
related to standards, trademarks, patents, copy-
rights, trade secrets, professional liability, legal
requirements, trade compliance, and cybercrime.
It is therefore beneficial to possess knowledge of
these issues and their applicability.

Legal issues are jurisdictionally based; soft-
ware engineers must consult attorneys who

11-6 SWEBOK® Guide V3.0

specialize in the type and jurisdiction of any iden-
tified legal issues.

1.7.1. Standards

Software engineering standards establish guide-
lines for generally accepted practices and mini-
mum requirements for products and services pro-
vided by a software engineer. Appendix B of this
Guide provides guidance on software engineer-
ing standards that are applicable to each KA.

Standards are valuable sources of requirements
and assistance during the everyday conduct of
software engineering activities. Adherence to
standards facilitates discipline by enumerating
minimal characteristics of products and practice.
That discipline helps to mitigate subconscious
assumptions or overconfidence in a design. For
these reasons, organizations performing software
engineering activities often include conformance
to standards as part of their organizational poli-
cies. Further, adherence to standards is a major
component of defense from legal action or from
allegations of malpractice.

1.7.2. Trademarks

A trademark relates to any word, name, symbol,
or device that is used in business transactions.
It is used “to indicate the source or origin of the
goods” [2].

Trademark protection protects names, logos,
images, and packaging. However, if a name, image,
or other trademarked asset becomes a generic term,
then trademark protection is nullified.

The World Intellectual Property Organization
(WIPO) is the authority that frames the rules and
regulations on trademarks. WIPO is the United
Nations agency dedicated to the use of intellec-
tual property as a means of stimulating innova-
tion and creativity.

1.7.3. Patents

Patents protect an inventor’s right to manufac-
ture and sell an idea. A patent consists of a set
of exclusive rights granted by a sovereign gov-
ernment to an individual, group of individuals, or
organization for a limited period of time. Patents

are an old form of idea-ownership protection and
date back to the 15th century.

Application for a patent entails careful records
of the process that led to the invention. Patent
attorneys are helpful in writing patent disclosure
claims in a manner most likely to protect the soft-
ware engineer’s rights.

Note that, if inventions are made during the
course of a software engineering contract, owner-
ship may belong to the employer or customer or
be jointly held, rather than belong to the software
engineer.

There are rules concerning what is and is not
patentable. In many countries, software code is
not patentable, although software algorithms may
be. Existing and filed patent applications can be
searched at WIPO.

1.7.4. Copyrights

Most governments in the world give exclusive
rights of an original work to its creator, usually
for a limited time, enacted as a copyright. Copy-
rights protect the way an idea is presented—not
the idea itself. For example, they may protect the
particular wording of an account of an historical
event, whereas the event itself is not protected.
Copyrights are long-term and renewable; they
date back to the 17th century.

1.7.5. Trade Secrets

In many countries, an intellectual asset such as
a formula, algorithm, process, design, method,
pattern, instrument, or compilation of informa-
tion may be considered a “trade secret,” provided
that these assets are not generally known and may
provide a business some economic advantage.
The designation of “trade secret” provides legal
protection if the asset is stolen. This protection
is not subject to a time limit. However, if another
party derives or discovers the same asset legally,
then the asset is no longer protected and the other
party will also possess all rights to use it.

1.7.6. Professional Liability

It is common for software engineers to be con-
cerned with matters of professional liability. As

Software Engineering Professional Practice 11-7

an individual provides services to a client or
employer, it is vital to adhere to standards and
generally accepted practices, thereby protecting
against allegations or proceedings of or related to
malpractice, negligence, or incompetence.

For engineers, including software engineers,
professional liability is related to product liabil-
ity. Under the laws and rules governing in their
jurisdiction, engineers may be held to account
for failing to fully and conscientiously follow
recommended practice; this is known as “negli-
gence.” They may also be subject to laws govern-
ing “strict liability” and either implied or express
warranty, where, by selling the product, the engi-
neer is held to warrant that the product is both
suitable and safe for use. In some countries (for
example, in the US), “privity” (the idea that one
could only sue the person selling the product) is
no longer a defense against liability actions.

Legal suits for liability can be brought under
tort law in the US allowing anyone who is harmed
to recover their loss even if no guarantees were
made. Because it is difficult to measure the suit-
ability or safety of software, failure to take due
care can be used to prove negligence on the part
of software engineers. A defense against such an
allegation is to show that standards and generally
accepted practices were followed in the develop-
ment of the product.

1.7.7. Legal Requirements

Software engineers must operate within the con-
fines of local, national, and international legal
frameworks. Therefore, software engineers must
be aware of legal requirements for

• registration and licensing—including exami-
nation, education, experience, and training
requirements;

• contractual agreements;
• noncontractual legalities, such as those gov-

erning liability;
• Basic information on the international legal

framework can be accessed from the World
Trade Organization (WTO).

1.7.8. Trade Compliance

All software professionals must be aware of
legal restrictions on import, export, or reexport
of goods, services, and technology in the juris-
dictions in which they work. The considerations
include export controls and classification, transfer
of goods, acquisition of necessary governmental
licenses for foreign use of hardware and software,
services and technology by sanctioned nation,
enterprise or individual entities, and import
restrictions and duties. Trade experts should be
consulted for detailed compliance guidance.

1.7.9. Cybercrime

Cybercrime refers to any crime that involves
a computer, computer software, computer net-
works, or embedded software controlling a sys-
tem. The computer or software may have been
used in the commission of a crime or it may have
been the target. This category of crime includes
fraud, unauthorized access, spam, obscene or
offensive content, threats, harassment, theft of
sensitive personal data or trade secrets, and use
of one computer to damage or infiltrate other
networked computers and automated system
controls.

Computer and software users commit fraud by
altering electronic data to facilitate illegal activ-
ity. Forms of unauthorized access include hack-
ing, eavesdropping, and using computer systems
in a way that is concealed from their owners.

Many countries have separate laws to cover
cybercrimes, but it has sometimes been difficult
to prosecute cybercrimes due to a lack of pre-
cisely framed statutes. The software engineer has
a professional obligation to consider the threat of
cybercrime and to understand how the software
system will protect or endanger software and user
information from accidental or malicious access,
use, modification, destruction, or disclosure.

1.8. Documentation 
[1*, c10s5.8] [3*, c1s5] [5*, c32]

Providing clear, thorough, and accurate docu-
mentation is the responsibility of each software
engineer. The adequacy of documentation is

11-8 SWEBOK® Guide V3.0

judged by different criteria based on the needs of
the various stakeholder audiences.

Good documentation complies with accepted
standards and guidelines. In particular, software
engineers should document

• relevant facts,
• significant risks and tradeoffs, and
• warnings of undesirable or dangerous conse-

quences from use or misuse of the software.

Software engineers should avoid

• certifying or approving unacceptable products,
• disclosing confidential information, or
• falsifying facts or data.

In addition, software engineers and their man-
agers should notably provide the following docu-
mentation for use by other elements of the soft-
ware development organization:

• software requirements specifications, soft-
ware design documents, details on the soft-
ware engineering tools used, software test
specifications and results, and details on the
adopted software engineering methods;

• problems encountered during the develop-
ment process.

For external stakeholders (customer, users,
others) software documentation should notably
provide

• information needed to determine if the soft-
ware is likely to meet the customer’s and
users’ needs,

• description of the safe, and unsafe, use of the
software,

• description of the protection of sensitive
information created by or stored using the
software, and

• clear identification of warnings and critical
procedures.

Use of software may include installation, oper-
ation, administration, and performance of other
functions by various groups of users and support
personnel. If the customer will acquire ownership

of the software source code or the right to modify
the code, the software engineer should provide
documentation of the functional specifications,
the software design, the test suite, and the neces-
sary operating environment for the software.

The minimum length of time documents should
be kept is the duration of the software products’
life cycle or the time required by relevant organi-
zational or regulatory requirements.

1.9. Tradeoff Analysis 
[3*, c1s2, c10] [9*, c9s5.10]

Within the practice of software engineering, a
software engineer often has to choose between
alternative problem solutions. The outcome of
these choices is determined by the software engi-
neer’s professional evaluation of the risks, costs,
and benefits of alternatives, in cooperation with
stakeholders. The software engineer’s evaluation
is called “tradeoff analysis.” Tradeoff analysis
notably enables the identification of compet-
ing and complementary software requirements
in order to prioritize the final set of require-
ments defining the software to be constructed
(see Requirements Negotiation in the Software
Requirements KA and Determination and Nego-
tiation of Requirements in the Software Engi-
neering Management KA).

In the case of an ongoing software develop-
ment project that is late or over budget, tradeoff
analysis is often conducted to decide which soft-
ware requirements can be relaxed or dropped
given the effects thereof.

A first step in a tradeoff analysis is establish-
ing design goals (see Engineering Design in the
Engineering Foundations KA) and setting the
relative importance of those goals. This permits
identification of the solution that most nearly
meets those goals; this means that the way the
goals are stated is critically important.

Design goals may include minimization of
monetary cost and maximization of reliability,
performance, or some other criteria on a wide
range of dimensions. However, it is difficult to
formulate a tradeoff analysis of cost against risk,
especially where primary production and second-
ary risk-based costs must be traded against each
other.

Software Engineering Professional Practice 11-9

A software engineer must conduct a tradeoff
analysis in an ethical manner—notably by being
objective and impartial when selecting criteria for
comparison of alternative problem solutions and
when assigning weights or importance to these
criteria. Any conflict of interest must be disclosed
up front.

2. Group Dynamics and Psychology

Engineering work is very often conducted in the
context of teamwork. A software engineer must
be able to interact cooperatively and construc-
tively with others to first determine and then
meet both needs and expectations. Knowledge of
group dynamics and psychology is an asset when
interacting with customers, coworkers, suppliers,
and subordinates to solve software engineering
problems.

2.1. Dynamics of Working in Teams/Groups 
[3*, c1s6] [9*, c1s3.5, c10]

Software engineers must work with others. On
one hand, they work internally in engineering
teams; on the other hand, they work with cus-
tomers, members of the public, regulators, and
other stakeholders. Performing teams—those
that demonstrate consistent quality of work and
progress toward goals—are cohesive and possess
a cooperative, honest, and focused atmosphere.
Individual and team goals are aligned so that the
members naturally commit to and feel ownership
of shared outcomes.

Team members facilitate this atmosphere by
being intellectually honest, making use of group
thinking, admitting ignorance, and acknowledg-
ing mistakes. They share responsibility, rewards,
and workload fairly. They take care to communi-
cate clearly, directly to each other and in docu-
ments, as well as in source code, so that informa-
tion is accessible to everyone. Peer reviews about
work products are framed in a constructive and
nonpersonal way (see Reviews and Audits in the
Software Quality KA). This allows all the mem-
bers to pursue a cycle of continuous improvement
and growth without personal risk. In general,
members of cohesive teams demonstrate respect
for each other and their leader.

One point to emphasize is that software engi-
neers must be able to work in multidisciplinary
environments and in varied application domains.
Since today software is everywhere, from a phone
to a car, software is impacting people’s lives far
beyond the more traditional concept of software
made for information management in a business
environment.

2.2. Individual Cognition
[3*, c1s6.5] [5*, c33]

Engineers desire to solve problems. The ability to
solve problems effectively and efficiently is what
every engineer strives for. However, the limits
and processes of individual cognition affect prob-
lem solving. In software engineering, notably due
to the highly abstract nature of software itself,
individual cognition plays a very prominent role
in problem solving.

In general, an individual’s (in particular, a software
engineer’s) ability to decompose a problem and cre-
atively develop a solution can be inhibited by

• need for more knowledge,
• subconscious assumptions,
• volume of data,
• fear of failure or consequence of failure,
• culture, either application domain or

organizational,
• lack of ability to express the problem,
• perceived working atmosphere, and
• emotional status of the individual.

The impact of these inhibiting factors can be
reduced by cultivating good problem solving
habits that minimize the impact of misleading
assumptions. The ability to focus is vital, as is
intellectual humility: both allow a software engi-
neer to suspend personal considerations and con-
sult with others freely, which is especially impor-
tant when working in teams.

There is a set of basic methods engineers use
to facilitate problem solving (see Problem Solv-
ing Techniques in the Computing Foundations
KA). Breaking down problems and solving them
one piece at a time reduces cognitive overload.
Taking advantage of professional curiosity and
pursuing continuous professional development

11-10 SWEBOK® Guide V3.0

through training and study add skills and knowl-
edge to the software engineer’s portfolio; reading,
networking, and experimenting with new tools,
techniques, and methods are all valid means of
professional development.

2.3. Dealing with Problem Complexity 
[3*, c3s2] [5*, c33]

Many, if not most, software engineering prob-
lems are too complex and difficult to address as
a whole or to be tackled by individual software
engineers. When such circumstances arise, the
usual means to adopt is teamwork and problem
decomposition (see Problem Solving Techniques
in the Computing Foundations KA).

Teams work together to deal with complex and
large problems by sharing burdens and draw-
ing upon each other’s knowledge and creativity.
When software engineers work in teams, differ-
ent views and abilities of the individual engineers
complement each other and help build a solution
that is otherwise difficult to come by. Some spe-
cific teamwork examples to software engineering
are pair programming (see Agile Methods in the
Software Engineering Models and Methods KA)
and code review (see Reviews and Audits in the
Software Quality KA).

2.4. Interacting with Stakeholders
[9*, c2s3.1]

Success of a software engineering endeavor
depends upon positive interactions with stake-
holders. They should provide support, informa-
tion, and feedback at all stages of the software
life cycle process. For example, during the early
stages, it is critical to identify all stakeholders and
discover how the product will affect them, so that
sufficient definition of the stakeholder require-
ments can be properly and completely captured.

During development, stakeholders may pro-
vide feedback on specifications and/or early
versions of the software, change of priority, as
well as clarification of detailed or new software
requirements. Last, during software maintenance
and until the end of product life, stakeholders pro-
vide feedback on evolving or new requirements
as well problem reports so that the software may
be extended and improved.

Therefore, it is vital to maintain open and pro-
ductive communication with stakeholders for the
duration of the software product’s lifetime.

2.5. Dealing with Uncertainty and Ambiguity 
[4*, c24s4, c26s2] [9*, c9s4]

As with engineers of other fields, software engi-
neers must often deal with and resolve uncer-
tainty and ambiguities while providing services
and developing products. The software engineer
must attack and reduce or eliminate any lack of
clarity that is an obstacle to performing work.

Often, uncertainty is simply a reflection of lack
of knowledge. In this case, investigation through
recourse to formal sources such as textbooks and
professional journals, interviews with stakehold-
ers, or consultation with teammates and peers can
overcome it.

When uncertainty or ambiguity cannot be over-
come easily, software engineers or organizations
may choose to regard it as a project risk. In this
case, work estimates or pricing are adjusted to
mitigate the anticipated cost of addressing it (see
Risk Management in the Software Engineering
Management KA).

2.6. Dealing with Multicultural Environments 
[9*, c10s7]

Multicultural environments can have an impact
on the dynamics of a group. This is especially
true when the group is geographically separated
or communication is infrequent, since such sepa-
ration elevates the importance of each contact.
Intercultural communication is even more dif-
ficult if the difference in time zones make oral
communication less frequent.

Multicultural environments are quite prevalent
in software engineering, perhaps more than in
other fields of engineering, due to the strong trend
of international outsourcing and the easy shipment
of software components instantaneously across
the globe. For example, it is rather common for a
software project to be divided into pieces across
national and cultural borders, and it is also quite
common for a software project team to consist of
people from diverse cultural backgrounds.

For a software project to be a success, team
members must achieve a level of tolerance,

Software Engineering Professional Practice 11-11

acknowledging that some rules depend on soci-
etal norms and that not all societies derive the
same solutions and expectations.

This tolerance and accompanying understand-
ing can be facilitated by the support of leadership
and management. More frequent communication,
including face-to-face meetings, can help to miti-
gate geographical and cultural divisions, promote
cohesiveness, and raise productivity. Also, being
able to communicate with teammates in their
native language could be very beneficial.

3. Communication Skills

It is vital that a software engineer communicate
well, both orally and in reading and writing. Suc-
cessful attainment of software requirements and
deadlines depends on developing clear under-
standing between the software engineer and
customers, supervisors, coworkers, and suppli-
ers. Optimal problem solving is made possible
through the ability to investigate, comprehend,
and summarize information. Customer product
acceptance and safe product usage depend on the
provision of relevant training and documentation.
It follows that the software engineer’s own career
success is affected by the ability to consistently
provide oral and written communication effec-
tively and on time.

3.1. Reading, Understanding, and Summarizing 
[5*, c33s3]

Software engineers are able to read and under-
stand technical material. Technical material
includes reference books, manuals, research
papers, and program source code.

Reading is not only a primary way of improv-
ing skills, but also a way of gathering informa-
tion necessary for the completion of engineering
goals. A software engineer sifts through accu-
mulated information, filtering out the pieces that
will be most helpful. Customers may request that
a software engineer summarize the results of
such information gathering for them, simplifying
or explaining it so that they may make the final
choice between competing solutions.

Reading and comprehending source code is
also a component of information gathering and
problem solving. When modifying, extending,

or rewriting software, it is critical to understand
both its implementation directly derived from the
presented code and its design, which must often
be inferred.

3.2. Writing 
[3*, c1s5]

Software engineers are able to produce written
products as required by customer requests or gen-
erally accepted practice. These written products
may include source code, software project plans,
software requirement documents, risk analyses,
software design documents, software test plans,
user manuals, technical reports and evaluations,
justifications, diagrams and charts, and so forth.

Writing clearly and concisely is very important
because often it is the primary method of com-
munication among relevant parties. In all cases,
written software engineering products must be
written so that they are accessible, understand-
able and relevant for their intended audience(s).

3.3. Team and Group Communication 
[3*, c1s6.8] [4*, c22s3] [5*, c27s1]

 [9*, c10s4]

Effective communication among team and group
members is essential to a collaborative software
engineering effort. Stakeholders must be con-
sulted, decisions must be made, and plans must
be generated. The greater the number of team
and group members, the greater the need to
communicate.

The number of communication paths, how-
ever, grows quadratically with the addition of
each team member. Further, team members
are unlikely to communicate with anyone per-
ceived to be removed from them by more than
two degrees (levels). This problem can be more
serious when software engineering endeavors or
organizations are spread across national and con-
tinental borders.

Some communication can be accomplished in
writing. Software documentation is a common
substitute for direct interaction. Email is another
but, although it is useful, it is not always enough;
also, if one sends too many messages, it becomes
difficult to identify the important information.
Increasingly, organizations are using enterprise

11-12 SWEBOK® Guide V3.0

collaboration tools to share information. In addi-
tion, the use of electronic information stores,
accessible to all team members, for organiza-
tional policies, standards, common engineering
procedures, and project-specific information, can
be most beneficial.

Some software engineering teams focus on
face-to-face interaction and promote such inter-
action by office space arrangement. Although
private offices improve individual productivity,
colocating team members in physical or virtual
forms and providing communal work areas is
important to collaborative efforts.

3.4. Presentation Skills 
[3*, c1s5] [4*, c22] [9*, c10s7–c10s8]

Software engineers rely on their presentation
skills during software life cycle processes. For
example, during the software requirements

phase, software engineers may walk customers
and teammates through software requirements
and conduct formal requirements reviews (see
Requirement Reviews in the Software Require-
ments KA). During and after software design,
software construction, and software maintenance,
software engineers lead reviews, product walk-
throughs (see Review and Audits in the Software
Quality KA), and training. All of these require the
ability to present technical information to groups
and solicit ideas or feedback.

The software engineer’s ability to convey
concepts effectively in a presentation therefore
influences product acceptance, management,
and customer support; it also influences the abil-
ity of stakeholders to comprehend and assist in
the product effort. This knowledge needs to be
archived in the form of slides, knowledge write-
up, technical whitepapers, and any other material
utilized for knowledge creation.

Software Engineering Professional Practice 11-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

B
ot

t e
t a

l.
20

00

[1
*]

Vo
la

nd
 2

00
3

[3
*]

So
m

m
er

vi
lle

 2
01

1
[4

*]

M
cC

on
ne

ll
20

04

[5
*]

IE
E

E
-C

S/
A

C
M

 1
99

9
[6

*]

M
oo

re
 2

00
6

[7
*]

To
ck

ey
 2

00
4

[8
*]

Fa
ir

le
y

20
09

[9

*]

1. Professionalism
1.1. Accreditation,
Certification, and
Licensing

c1s4.1,
c1s5.1–
c1s5.4

1.2. Codes of Ethics
and Professional
Conduct

c1s6–
c1s9 c8 c1s2 c33 *

1.3. Nature and
Role of Professional
Societies

c1s1–
c1s2 c1s2 c35s1

1.4. Nature and
Role of Software
Engineering
Standards

c5s3.2,
c10s2.1 c32s6 c1s2

1.5. Economic
Impact of Software c10s8 c1s1.1 c1

1.6. Employment
Contracts c7

1.7. Legal Issues c6, c11 c5s3–
c5s4 c1s10

1.8. Documentation c10s5.8 c1s5 c32
1.9. Tradeoff
Analysis

c1s2,
c10 c9s5.10

2. Group Dynamics
and Psychology

2.1. Dynamics of
Working in Teams/
Groups

c1s6 c1s3.5,
c10

2.2. Individual
Cognition c1s6.5 c33

2.3. 2.3 Dealing with
Problem Complexity c3s2 c33

2.4. Interacting with
Stakeholders c2s3.1

11-14 SWEBOK® Guide V3.0

B
ot

t e
t a

l.
20

00

[1
*]

Vo
la

nd
 2

00
3

[3
*]

So
m

m
er

vi
lle

 2
01

1
[4

*]

M
cC

on
ne

ll
20

04

[5
*]

IE
E

E
-C

S/
A

C
M

 1
99

9
[6

*]

M
oo

re
 2

00
6

[7
*]

To
ck

ey
 2

00
4

[8
*]

Fa
ir

le
y

20
09

[9

*]

2.5. Dealing with
Uncertainty and
Ambiguity

c24s4,
c26s2 c9s4

2.6. Dealing with
Multicultural
Environments

c10s7

3. Communication
Skills

3.1. Reading,
Understanding, and
Summarizing

c33s3

3.2. Writing c1s5
3.3. Team and Group
Communication c1s6.8 c22s3 c27s1 c10s4

3.4. Presentation
Skills c1s5 c22 c10s7–

c10s8

Software Engineering Professional Practice 11-15

FURTHER READINGS

Gerald M. Weinberg, The Psychology of 
Computer Programming [10].

This was the first major book to address program-
ming as an individual and team effort and became
a classic in the field.

Kinney and Lange, P.A., Intellectual Property 
Law for Business Lawyers [11].

This book covers IP laws in the US. It not only
talks about what the IP law is; it also explains
why it looks the way it does.

REFERENCES

[1*] F. Bott et al., Professional Issues in 
Software Engineering, 3rd ed., Taylor &
Francis, 2000.

[2] Merriam-Webster’s Collegiate Dictionary,
11th ed., 2003.

[3*] G. Voland, Engineering by Design, 2nd ed.,
Prentice Hall, 2003.

[4*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[5*] S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

[6*] IEEE CS/ACM Joint Task Force on
Software Engineering Ethics and
Professional Practices, “Software
Engineering Code of Ethics and
Professional Practice (Version 5.2),” 1999;
www.acm.org/serving/se/code.htm.

[7*] J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.

[8*] S. Tockey, Return on Software: Maximizing 
the Return on Your Software Investment,
Addison-Wesley, 2004.

[9*] R.E. Fairley, Managing and Leading 
Software Projects, Wiley-IEEE Computer
Society Press, 2009.

[10] G.M. Weinberg, The Psychology 
of Computer Programming: Silver 
Anniversary Edition, Dorset House, 1998.

[11] Kinney and Lange, P.A., Intellectual 
Property Law for Business Lawyers,
Thomson West, 2013.

http://www.acm.org/serving/se/code.htm

12-1

CHAPTER 12

SOFTWARE ENGINEERING ECONOMICS

ACRONYMS

EVM Earned Value Management
IRR Internal Rate of Return

MARR Minimum Acceptable Rate of
Return

SDLC Software Development Life Cycle
SPLC Software Product Life Cycle
ROI Return on Investment
ROCE Return on Capital Employed
TCO Total Cost of Ownership

INTRODUCTION

Software engineering economics is about mak-
ing decisions related to software engineering in a
business context. The success of a software prod-
uct, service, and solution depends on good busi-
ness management. Yet, in many companies and
organizations, software business relationships to
software development and engineering remain
vague. This knowledge area (KA) provides an
overview on software engineering economics.

Economics is the study of value, costs,
resources, and their relationship in a given context
or situation. In the discipline of software engi-
neering, activities have costs, but the resulting
software itself has economic attributes as well.
Software engineering economics provides a way
to study the attributes of software and software
processes in a systematic way that relates them
to economic measures. These economic measures
can be weighed and analyzed when making deci-
sions that are within the scope of a software orga-
nization and those within the integrated scope of
an entire producing or acquiring business.

Software engineering economics is concerned
with aligning software technical decisions with

the business goals of the organization. In all
types of organizations—be it “for-profit,” “not-
for-profit,” or governmental—this translates into
sustainably staying in business. In “for-profit”
organizations this additionally relates to achiev-
ing a tangible return on the invested capital—
both assets and capital employed. This KA has
been formulated in a way to address all types of
organizations independent of focus, product and
service portfolio, or capital ownership and taxa-
tion restrictions.

Decisions like “Should we use a specific compo-
nent?” may look easy from a technical perspective,
but can have serious implications on the business
viability of a software project and the resulting
product. Often engineers wonder whether such
concerns apply at all, as they are “only engi-
neers.” Economic analysis and decision-making
are important engineering considerations because
engineers are capable of evaluating decisions both
technically and from a business perspective. The
contents of this knowledge area are important top-
ics for software engineers to be aware of even if
they are never actually involved in concrete busi-
ness decisions; they will have a well-rounded view
of business issues and the role technical consid-
erations play in making business decisions. Many
engineering proposals and decisions, such as make
versus buy, have deep intrinsic economic impacts
that should be considered explicitly.

This KA first covers the foundations, key ter-
minology, basic concepts, and common practices
of software engineering economics to indicate
how decision-making in software engineering
includes, or should include a business perspec-
tive. It then provides a life cycle perspective,
highlights risk and uncertainty management, and
shows how economic analysis methods are used.
Some practical considerations finalize the knowl-
edge area.

12-2 SWEBOK® Guide V3.0

Figure 12.1. Breakdown of Topics for the Software Engineering Economics KA

Software Engineering Economics 12-3

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING ECONOMICS

The breakdown of topics for the Software Engi-
neering Economics KA is shown in Figure 12.1.

1. Software Engineering Economics
Fundamentals

1.1. Finance
[1*, c2]

Finance is the branch of economics concerned
with issues such as allocation, management,
acquisition, and investment of resources. Finance
is an element of every organization, including
software engineering organizations.

The field of finance deals with the concepts of
time, money, risk, and how they are interrelated.
It also deals with how money is spent and bud-
geted. Corporate finance is concerned with pro-
viding the funds for an organization’s activities.
Generally, this involves balancing risk and profit-
ability, while attempting to maximize an organi-
zation’s wealth and the value of its stock. This
holds primarily for “for-profit” organizations,
but also applies to “not-for-profit” organizations.
The latter needs finances to ensure sustainability,
while not targeting tangible profit. To do this, an
organization must

• identify organizational goals, time horizons,
risk factors, tax considerations, and financial
constraints;

• identify and implement the appropriate busi-
ness strategy, such as which portfolio and
investment decisions to take, how to manage
cash flow, and where to get the funding;

• measure financial performance, such as
cash flow and ROI (see section 4.3, Return
on Investment), and take corrective actions
in case of deviation from objectives and
strategy.

1.2. Accounting
[1*, c15]

Accounting is part of finance. It allows people
whose money is being used to run an organization

to know the results of their investment: did they
get the profit they were expecting? In “for-profit”
organizations, this relates to the tangible ROI
(see section 4.3, Return on Investment), while in
“not-for-profit” and governmental organizations
as well as “for-profit” organizations, it translates
into sustainably staying in business. The primary
role of accounting is to measure the organiza-
tion’s actual financial performance and to com-
municate financial information about a business
entity to stakeholders, such as shareholders,
financial auditors, and investors. Communication
is generally in the form of financial statements
that show in money terms the economic resources
to be controlled. It is important to select the right
information that is both relevant and reliable to
the user. Information and its timing are partially
governed by risk management and governance
policies. Accounting systems are also a rich
source of historical data for estimating.

1.3. Controlling
[1*, c15]

Controlling is an element of finance and account-
ing. Controlling involves measuring and correct-
ing the performance of finance and accounting.
It ensures that an organization’s objectives and
plans are accomplished. Controlling cost is a spe-
cialized branch of controlling used to detect vari-
ances of actual costs from planned costs.

1.4. Cash Flow
[1*, c3]

Cash flow is the movement of money into or out
of a business, project, or financial product over a
given period. The concepts of cash flow instances
and cash flow streams are used to describe the
business perspective of a proposal. To make a
meaningful business decision about any specific
proposal, that proposal will need to be evaluated
from a business perspective. In a proposal to
develop and launch product X, the payment for
new software licenses is an example of an outgo-
ing cash flow instance. Money would need to be
spent to carry out that proposal. The sales income
from product X in the 11th month after market
launch is an example of an incoming cash flow

12-4 SWEBOK® Guide V3.0

instance. Money would be coming in because of
carrying out the proposal.

The term cash flow stream refers to the set of
cash flow instances over time that are caused by
carrying out some given proposal. The cash flow
stream is, in effect, the complete financial picture
of that proposal. How much money goes out?
When does it go out? How much money comes
in? When does it come in? Simply, if the cash
flow stream for Proposal A is more desirable than
the cash flow stream for Proposal B, then—all
other things being equal—the organization is bet-
ter off carrying out Proposal A than Proposal B.
Thus, the cash flow stream is an important input
for investment decision-making. A cash flow
instance is a specific amount of money flowing
into or out of the organization at a specific time
as a direct result of some activity.

A cash flow diagram is a picture of a cash flow
stream. It gives the reader a quick overview of
the financial picture of the subject organization or
project. Figure 12.2 shows an example of a cash
flow diagram for a proposal.

1.5. Decision-Making Process
[1*, c2, c4]

If we assume that candidate solutions solve a
given technical problem equally well, why should
the organization care which one is chosen? The
answer is that there is usually a large differ-
ence in the costs and incomes from the different

solutions. A commercial, off-the-shelf, object-
request broker product might cost a few thousand
dollars, but the effort to develop a homegrown
service that gives the same functionality could
easily cost several hundred times that amount.

If the candidate solutions all adequately solve
the problem from a technical perspective, then
the selection of the most appropriate alternative
should be based on commercial factors such as
optimizing total cost of ownership (TCO) or
maximizing the short-term return on investment
(ROI). Life cycle costs such as defect correction,
field service, and support duration are also rel-
evant considerations. These costs need to be fac-
tored in when selecting among acceptable tech-
nical approaches, as they are part of the lifetime
ROI (see section 4.3, Return on Investment).

A systematic process for making decisions will
achieve transparency and allow later justifica-
tion. Governance criteria in many organizations
demand selection from at least two alternatives.
A systematic process is shown in Figure 12.3.
It starts with a business challenge at hand and
describes the steps to identify alternative solu-
tions, define selection criteria, evaluate the solu-
tions, implement one selected solution, and moni-
tor the performance of that solution.

Figure 12.3 shows the process as mostly step-
wise and serial. The real process is more fluid.
Sometimes the steps can be done in a different
order and often several of the steps can be done
in parallel. The important thing is to be sure that

Figure 12.2. A Cash Flow Diagram

Software Engineering Economics 12-5

none of the steps are skipped or curtailed. It’s also
important to understand that this same process
applies at all levels of decision making: from a
decision as big as determining whether a software
project should be done at all, to a deciding on an
algorithm or data structure to use in a software
module. The difference is how financially sig-
nificant the decision is and, therefore, how much
effort should be invested in making that deci-
sion. The project-level decision is financially sig-
nificant and probably warrants a relatively high
level of effort to make the decision. Selecting an
algorithm is often much less financially signifi-
cant and warrants a much lower level of effort to
make the decision, even though the same basic
decision-making process is being used.

More often than not, an organization could
carry out more than one proposal if it wanted
to, and usually there are important relationships
among proposals. Maybe Proposal Y can only be
carried out if Proposal X is also carried out. Or
maybe Proposal P cannot be carried out if Pro-
posal Q is carried out, nor could Q be carried out
if P were. Choices are much easier to make when
there are mutually exclusive paths—for example,
either A or B or C or whatever is chosen. In pre-
paring decisions, it is recommended to turn any
given set of proposals, along with their various
interrelationships, into a set of mutually exclu-
sive alternatives. The choice can then be made
among these alternatives.

1.6. Valuation
[1*, c5, c8]

In an abstract sense, the decision-making pro-
cess—be it financial decision making or other—
is about maximizing value. The alternative that
maximizes total value should always be chosen.
A financial basis for value-based comparison is
comparing two or more cash flows. Several bases
of comparison are available, including

• present worth
• future worth
• annual equivalent
• internal rate of return
• (discounted) payback period.

Based on the time-value of money, two or more
cash flows are equivalent only when they equal
the same amount of money at a common point
in time. Comparing cash flows only makes sense
when they are expressed in the same time frame.

Note that value can’t always be expressed in
terms of money. For example, whether an item
is a brand name or not can significantly affect
its perceived value. Relevant values that can’t
be expressed in terms of money still need to be
expressed in similar terms so that they can be
evaluated objectively.

Figure 12.3. The Basic Business Decision-Making Process

12-6 SWEBOK® Guide V3.0

1.7. Inflation
[1*, c13]

Inflation describes long-term trends in prices.
Inflation means that the same things cost more
than they did before. If the planning horizon of
a business decision is longer than a few years, or
if the inflation rate is over a couple of percentage
points annually, it can cause noticeable changes
in the value of a proposal. The present time value
therefore needs to be adjusted for inflation rates
and also for exchange rate fluctuations.

1.8. Depreciation
[1*, c14]

Depreciation involves spreading the cost of a
tangible asset across a number of time periods;
it is used to determine how investments in capi-
talized assets are charged against income over
several years. Depreciation is an important part
of determining after-tax cash flow, which is criti-
cal for accurately addressing profit and taxes. If
a software product is to be sold after the devel-
opment costs are incurred, those costs should be
capitalized and depreciated over subsequent time
periods. The depreciation expense for each time
period is the capitalized cost of developing the
software divided across the number of periods
in which the software will be sold. A software
project proposal may be compared to other soft-
ware and nonsoftware proposals or to alternative
investment options, so it is important to deter-
mine how those other proposals would be depre-
ciated and how profits would be estimated.

1.9. Taxation
[1*, c16, c17]

Governments charge taxes in order to finance
expenses that society needs but that no single orga-
nization would invest in. Companies have to pay
income taxes, which can take a substantial portion
of a corporation’s gross profit. A decision analysis
that does not account for taxation can lead to the
wrong choice. A proposal with a high pretax profit
won’t look nearly as profitable in posttax terms.
Not accounting for taxation can also lead to unre-
alistically high expectations about how profitable a
proposed product might be.

1.10. Time-Value of Money
[1*, c5, c11]

One of the most fundamental concepts in
finance—and therefore, in business decisions—
is that money has time-value: its value changes
over time. A specific amount of money right now
almost always has a different value than the same
amount of money at some other time. This con-
cept has been around since the earliest recorded
human history and is commonly known as time-
value. In order to compare proposals or portfo-
lio elements, they should be normalized in cost,
value, and risk to the net present value. Currency
exchange variations over time need to be taken
into account based on historical data. This is par-
ticularly important in cross-border developments
of all kinds.

1.11. Efficiency
[2*, c1]

Economic efficiency of a process, activity, or
task is the ratio of resources actually consumed to
resources expected to be consumed or desired to
be consumed in accomplishing the process, activ-
ity, or task. Efficiency means “doing things right.”
An efficient behavior, like an effective behavior,
delivers results—but keeps the necessary effort to
a minimum. Factors that may affect efficiency in
software engineering include product complex-
ity, quality requirements, time pressure, process
capability, team distribution, interrupts, feature
churn, tools, and programming language.

1.12. Effectiveness
[2*, c1]

Effectiveness is about having impact. It is the
relationship between achieved objectives to
defined objectives. Effectiveness means “doing
the right things.” Effectiveness looks only at
whether defined objectives are reached—not at
how they are reached.

1.13. Productivity
[2*, c23]

Productivity is the ratio of output over input from
an economic perspective. Output is the value

Software Engineering Economics 12-7

delivered. Input covers all resources (e.g., effort)
spent to generate the output. Productivity com-
bines efficiency and effectiveness from a value-
oriented perspective: maximizing productivity
is about generating highest value with lowest
resource consumption.

2. Life Cycle Economics

2.1. Product
[2*, c22] [3*, c6]

A product is an economic good (or output) that is
created in a process that transforms product fac-
tors (or inputs) to an output. When sold, a prod-
uct is a deliverable that creates both a value and
an experience for its users. A product can be a
combination of systems, solutions, materials,
and services delivered internally (e.g., in-house
IT solution) or externally (e.g., software applica-
tion), either as-is or as a component for another
product (e.g., embedded software).

2.2. Project
[2*, c22] [3*, c1]

A project is “a temporary endeavor undertaken
to create a unique product, service, or result”.1
In software engineering, different project types
are distinguished (e.g., product development,
outsourced services, software maintenance, ser-
vice creation, and so on). During its life cycle, a
software product may require many projects. For
example, during the product conception phase,
a project might be conducted to determine the
customer need and market requirements; during
maintenance, a project might be conducted to
produce a next version of a product.

2.3. Program

A program is “a group of related projects, sub-
programs, and program activities managed in a
coordinated way to obtain benefits not available

1 Project Management Institute, Inc., PMI Lexicon 
of Project Management Terms, 2012, www.pmi.org/
PMBOK-Guide-and-Standards/~/media/Registered/
PMI_Lexicon_Final.ashx.

from managing them individually.”2 Programs
are often used to identify and manage different
deliveries to a single customer or market over a
time horizon of several years.

2.4. Portfolio

Portfolios are “projects, programs, subportfolios,
and operations managed as a group to achieve
strategic objectives.”3 Portfolios are used to group
and then manage simultaneously all assets within
a business line or organization. Looking to an
entire portfolio makes sure that impacts of deci-
sions are considered, such as resource allocation
to a specific project—which means that the same
resources are not available for other projects.

2.5. Product Life Cycle
[2*, c2] [3*, c2]

A software product life cycle (SPLC) includes
all activities needed to define, build, operate,
maintain, and retire a software product or service
and its variants. The SPLC activities of “oper-
ate,” “maintain,” and “retire” typically occur in
a much longer time frame than initial software
development (the software development life
cycle—SDLC—see Software Life Cycle Mod-
els in the Software Engineering Process KA).
Also the operate-maintain-retire activities of an
SPLC typically consume more total effort and
other resources than the SDLC activities (see
Majority of Maintenance Costs in the Software
Maintenance KA). The value contributed by a
software product or associated services can be
objectively determined during the “operate and
maintain” time frame. Software engineering eco-
nomics should be concerned with all SPLC activ-
ities, including the activities after initial product
release.

2.6. Project Life Cycle
[2*, c2] [3*, c2]

Project life cycle activities typically involve five
process groups—Initiating, Planning, Execut-
ing, Monitoring and Controlling, and Closing [4]

2 Ibid.
3 Ibid.

http://www.pmi.org/PMBOK-Guide-and-Standards/~/media/Registered/PMI_Lexicon_Final.ashx
http://www.pmi.org/PMBOK-Guide-and-Standards/~/media/Registered/PMI_Lexicon_Final.ashx
http://www.pmi.org/PMBOK-Guide-and-Standards/~/media/Registered/PMI_Lexicon_Final.ashx

12-8 SWEBOK® Guide V3.0

(see the Software Engineering Management KA).
The activities within a software project life cycle
are often interleaved, overlapped, and iterated
in various ways [3*, c2] [5] (see the Software
Engineering Process KA). For instance, agile
product development within an SPLC involves
multiple iterations that produce increments of
deliverable software. An SPLC should include
risk management and synchronization with dif-
ferent suppliers (if any), while providing audit-
able decision-making information (e.g., comply-
ing with product liability needs or governance
regulations). The software project life cycle and
the software product life cycle are interrelated; an
SPLC may include several SDLCs.

2.7. Proposals
[1*, c3]

Making a business decision begins with the
notion of a proposal. Proposals relate to reaching
a business objective—at the project, product, or
portfolio level. A proposal is a single, separate
option that is being considered, like carrying out
a particular software development project or not.
Another proposal could be to enhance an exist-
ing software component, and still another might
be to redevelop that same software from scratch.
Each proposal represents a unit of choice—either
you can choose to carry out that proposal or you
can choose not to. The whole purpose of business
decision-making is to figure out, given the current
business circumstances, which proposals should
be carried out and which shouldn’t.

2.8. Investment Decisions
[1*, c4]

Investors make investment decisions to spend
money and resources on achieving a target objec-
tive. Investors are either inside (e.g., finance,
board) or outside (e.g., banks) the organization.
The target relates to some economic criteria, such
as achieving a high return on the investment,
strengthening the capabilities of the organization,
or improving the value of the company. Intangi-
ble aspects such as goodwill, culture, and compe-
tences should be considered.

2.9. Planning Horizon
[1*, c11]

When an organization chooses to invest in a par-
ticular proposal, money gets tied up in that pro-
posal—so-called “frozen assets.” The economic
impact of frozen assets tends to start high and
decreases over time. On the other hand, operat-
ing and maintenance costs of elements associated
with the proposal tend to start low but increase
over time. The total cost of the proposal—that
is, owning and operating a product—is the sum
of those two costs. Early on, frozen asset costs
dominate; later, the operating and maintenance
costs dominate. There is a point in time where the
sum of the costs is minimized; this is called the
minimum cost lifetime.

To properly compare a proposal with a four-
year life span to a proposal with a six-year life
span, the economic effects of either cutting the
six-year proposal by two years or investing the
profits from the four-year proposal for another
two years need to be addressed. The planning
horizon, sometimes known as the study period,
is the consistent time frame over which propos-
als are considered. Effects such as software life-
time will need to be factored into establishing a
planning horizon. Once the planning horizon is
established, several techniques are available for
putting proposals with different life spans into
that planning horizon.

2.10. Price and Pricing
[1*, c13]

A price is what is paid in exchange for a good or
service. Price is a fundamental aspect of financial
modeling and is one of the four Ps of the marketing
mix. The other three Ps are product, promotion,
and place. Price is the only revenue-generating ele-
ment amongst the four Ps; the rest are costs.

Pricing is an element of finance and marketing.
It is the process of determining what a company
will receive in exchange for its products. Pricing
factors include manufacturing cost, market place-
ment, competition, market condition, and quality
of product. Pricing applies prices to products and
services based on factors such as fixed amount,
quantity break, promotion or sales campaign,

Software Engineering Economics 12-9

specific vendor quote, shipment or invoice date,
combination of multiple orders, service offerings,
and many others. The needs of the consumer can
be converted into demand only if the consumer
has the willingness and capacity to buy the prod-
uct. Thus, pricing is very important in marketing.
Pricing is initially done during the project initia-
tion phase and is a part of “go” decision making.

2.11. Cost and Costing
[1*, c15]

A cost is the value of money that has been used up
to produce something and, hence, is not available
for use anymore. In economics, a cost is an alter-
native that is given up as a result of a decision.

A sunk cost is the expenses before a certain
time, typically used to abstract decisions from
expenses in the past, which can cause emotional
hurdles in looking forward. From a traditional
economics point of view, sunk costs should not
be considered in decision making. Opportunity
cost is the cost of an alternative that must be for-
gone in order to pursue another alternative.

Costing is part of finance and product manage-
ment. It is the process to determine the cost based
on expenses (e.g., production, software engineer-
ing, distribution, rework) and on the target cost
to be competitive and successful in a market.
The target cost can be below the actual estimated
cost. The planning and controlling of these costs
(called cost management) is important and should
always be included in costing.

An important concept in costing is the total cost
of ownership (TCO). This holds especially for
software, because there are many not-so-obvious
costs related to SPLC activities after initial prod-
uct development. TCO for a software product is
defined as the total cost for acquiring, activating,
and keeping that product running. These costs
can be grouped as direct and indirect costs. TCO
is an accounting method that is crucial in making
sound economic decisions.

2.12. Performance Measurement
[3*, c7, c8]

Performance measurement is the process whereby
an organization establishes and measures the

parameters used to determine whether programs,
investments, and acquisitions are achieving the
desired results. It is used to evaluate whether
performance objectives are actually achieved; to
control budgets, resources, progress, and deci-
sions; and to improve performance.

2.13. Earned Value Management
[3*, c8]

Earned value management (EVM) is a project
management technique for measuring progress
based on created value. At a given moment, the
results achieved to date in a project are com-
pared with the projected budget and the planned
schedule progress for that date. Progress relates
already-consumed resources and achieved
results at a given point in time with the respec-
tive planned values for the same date. It helps
to identify possible performance problems at an
early stage. A key principle in EVM is tracking
cost and schedule variances via comparison of
planned versus actual schedule and budget versus
actual cost. EVM tracking gives much earlier vis-
ibility to deviations and thus permits corrections
earlier than classic cost and schedule tracking that
only looks at delivered documents and products.

2.14. Termination Decisions
[1*, c11, c12] [2*, c9]

Termination means to end a project or product.
Termination can be preplanned for the end of a
long product lifetime (e.g., when foreseeing that a
product will reach its lifetime) or can come rather
spontaneously during product development
(e.g., when project performance targets are not
achieved). In both cases, the decision should be
carefully prepared, considering always the alter-
natives of continuing versus terminating. Costs of
different alternatives must be estimated—cover-
ing topics such as replacement, information col-
lection, suppliers, alternatives, assets, and utiliz-
ing resources for other opportunities. Sunk costs
should not be considered in such decision making
because they have been spent and will not reap-
pear as a value.

12-10 SWEBOK® Guide V3.0

2.15. Replacement and Retirement Decisions 
[1*, c12] [2*, c9]

A replacement decision is made when an organi-
zation already has a particular asset and they are
considering replacing it with something else; for
example, deciding between maintaining and sup-
porting a legacy software product or redeveloping
it from the ground up. Replacement decisions use
the same business decision process as described
above, but there are additional challenges: sunk
cost and salvage value. Retirement decisions are
also about getting out of an activity altogether,
such as when a software company considers not
selling a software product anymore or a hardware
manufacturer considers not building and selling a
particular model of computer any longer. Retire-
ment decision can be influenced by lock-in fac-
tors such as technology dependency and high exit
costs.

3. Risk and Uncertainty

3.1. Goals, Estimates, and Plans
[3*, c6]

Goals in software engineering economics are
mostly business goals (or business objectives).

A business goal relates business needs (such as
increasing profitability) to investing resources
(such as starting a project or launching a prod-
uct with a given budget, content, and timing).
Goals apply to operational planning (for instance,
to reach a certain milestone at a given date or to
extend software testing by some time to achieve a
desired quality level—see Key Issues in the Soft-
ware Testing KA) and to the strategic level (such
as reaching a certain profitability or market share
in a stated time period).

An estimate is a well-founded evaluation of
resources and time that will be needed to achieve
stated goals (see Effort, Schedule, and Cost Esti-
mation in the Software Engineering Management
KA and Maintenance Cost Estimation in the Soft-
ware Maintenance KA). A software estimate is
used to determine whether the project goals can
be achieved within the constraints on schedule,
budget, features, and quality attributes. Estimates
are typically internally generated and are not
necessarily visible externally. Estimates should
not be driven exclusively by the project goals
because this could make an estimate overly opti-
mistic. Estimation is a periodic activity; estimates
should be continually revised during a project.

A plan describes the activities and milestones
that are necessary in order to reach the goals of

Figure 12.4. Goals, Estimates, and Plans

Software Engineering Economics 12-11

a project (see Software Project Planning in the
Software Engineering Management KA). The
plan should be in line with the goal and the esti-
mate, which is not necessarily easy and obvi-
ous—such as when a software project with given
requirements would take longer than the target
date foreseen by the client. In such cases, plans
demand a review of initial goals as well as esti-
mates and the underlying uncertainties and inac-
curacies. Creative solutions with the underlying
rationale of achieving a win-win position are
applied to resolve conflicts.

To be of value, planning should involve con-
sideration of the project constraints and commit-
ments to stakeholders. Figure 12.4 shows how
goals are initially defined. Estimates are done
based on the initial goals. The plan tries to match
the goals and the estimates. This is an iterative
process, because an initial estimate typically does
not meet the initial goals.

3.2. Estimation Techniques
[3*, c6]

Estimations are used to analyze and forecast the
resources or time necessary to implement require-
ments (see Effort, Schedule, and Cost Estimation
in the Software Engineering Management KA
and Maintenance Cost Estimation in the Software
Maintenance KA). Five families of estimation
techniques exist:

• Expert judgment
• Analogy
• Estimation by parts
• Parametric methods
• Statistical methods.

No single estimation technique is perfect, so
using multiple estimation technique is useful.
Convergence among the estimates produced by
different techniques indicates that the estimates
are probably accurate. Spread among the esti-
mates indicates that certain factors might have
been overlooked. Finding the factors that caused
the spread and then reestimating again to pro-
duce results that converge could lead to a better
estimate.

3.3. Addressing Uncertainty
[3*, c6]

Because of the many unknown factors during
project initiation and planning, estimates are
inherently uncertain; that uncertainty should be
addressed in business decisions. Techniques for
addressing uncertainty include

• consider ranges of estimates
• analyze sensitivity to changes of assumptions
• delay final decisions.

3.4. Prioritization
[3*, c6]

Prioritization involves ranking alternatives based
on common criteria to deliver the best possible
value. In software engineering projects, software
requirements are often prioritized in order to
deliver the most value to the client within con-
straints of schedule, budget, resources, and tech-
nology, or to provide for building product incre-
ments, where the first increments provide the
highest value to the customer (see Requirements
Classification and Requirements Negotiation in
the Software Requirements KA and Software
Life Cycle Models in the Software Engineering
Process KA).

3.5. Decisions under Risk
[1*, c24] [3*, c9]

Decisions under risk techniques are used when
the decision maker can assign probabilities to the
different possible outcomes (see Risk Manage-
ment in the Software Engineering Management
KA). The specific techniques include

• expected value decision making
• expectation variance and decision making
• Monte Carlo analysis
• decision trees
• expected value of perfect information.

12-12 SWEBOK® Guide V3.0

3.6. Decisions under Uncertainty
[1*, c25] [3*, c9]

Decisions under uncertainty techniques are used
when the decision maker cannot assign probabili-
ties to the different possible outcomes because
needed information is not available (see Risk
Management in the Software Engineering Man-
agement KA). Specific techniques include

• Laplace Rule
• Maximin Rule
• Maximax Rule
• Hurwicz Rule
• Minimax Regret Rule.

4. Economic Analysis Methods

4.1. For-Profit Decision Analysis
[1*, c10]

Figure 12.5 describes a process for identifying
the best alternative from a set of mutually exclu-
sive alternatives. Decision criteria depend on the
business objectives and typically include ROI
(see section 4.3, Return on Investment) or Return
on Capital Employed (ROCE) (see section 4.4,
Return on Capital Employed).

For-profit decision techniques don’t apply for
government and nonprofit organizations. In these
cases, organizations have different goals—which
means that a different set of decision techniques
are needed, such as cost-benefit or cost-effective-
ness analysis.

Figure 12.5. The for-profit decision-making process

Software Engineering Economics 12-13

4.2. Minimum Acceptable Rate of Return
[1*, c10]

The minimum acceptable rate of return (MARR)
is the lowest internal rate of return the organi-
zation would consider to be a good investment.
Generally speaking, it wouldn’t be smart to invest
in an activity with a return of 10% when there’s
another activity that’s known to return 20%.
The MARR is a statement that an organization
is confident it can achieve at least that rate of
return. The MARR represents the organization’s
opportunity cost for investments. By choosing
to invest in some activity, the organization is
explicitly deciding to not invest that same money
somewhere else. If the organization is already
confident it can get some known rate of return,
other alternatives should be chosen only if their
rate of return is at least that high. A simple way
to account for that opportunity cost is to use the
MARR as the interest rate in business decisions.
An alternative’s present worth evaluated at the
MARR shows how much more or less (in pres-
ent-day cash terms) that alternative is worth than
investing at the MARR.

4.3. Return on Investment
[1*, c10]

Return on investment (ROI) is a measure of the
profitability of a company or business unit. It
is defined as the ratio of money gained or lost
(whether realized or unrealized) on an investment
relative to the amount of money invested. The
purpose of ROI varies and includes, for instance,
providing a rationale for future investments and
acquisition decisions.

4.4. Return on Capital Employed

The return on capital employed (ROCE) is a mea-
sure of the profitability of a company or business
unit. It is defined as the ratio of a gross profit
before taxes and interest (EBIT) to the total assets
minus current liabilities. It describes the return on
the used capital.

4.5. Cost-Benefit Analysis
[1*, c18]

Cost-benefit analysis is one of the most widely
used methods for evaluating individual propos-
als. Any proposal with a benefit-cost ratio of less
than 1.0 can usually be rejected without further
analysis because it would cost more than the ben-
efit. Proposals with a higher ratio need to con-
sider the associated risk of an investment and
compare the benefits with the option of investing
the money at a guaranteed interest rate (see sec-
tion 4.2, Minimum Acceptable Rate of Return).

4.6. Cost-Effectiveness Analysis
[1*, c18]

Cost-effectiveness analysis is similar to cost-
benefit analysis. There are two versions of cost-
effectiveness analysis: the fixed-cost version
maximizes the benefit given some upper bound
on cost; the fixed-effectiveness version minimizes
the cost needed to achieve a fixed goal.

4.7. Break-Even Analysis
[1*, c19]

Break-even analysis identifies the point where
the costs of developing a product and the revenue
to be generated are equal. Such an analysis can
be used to choose between different proposals at
different estimated costs and revenue. Given esti-
mated costs and revenue of two or more propos-
als, break-even analysis helps in choosing among
them.

4.8. Business Case
[1*, c3]

The business case is the consolidated information
summarizing and explaining a business proposal
from different perspectives for a decision maker
(cost, benefit, risk, and so on). It is often used
to assess the potential value of a product, which
can be used as a basis in the investment decision-
making process. As opposed to a mere profit-
loss calculation, the business case is a “case” of
plans and analyses that is owned by the product

12-14 SWEBOK® Guide V3.0

manager and used in support of achieving the
business objectives.

4.9. Multiple Attribute Evaluation
[1*, c26]

The topics discussed so far are used to make deci-
sions based on a single decision criterion: money.
The alternative with the best present worth, the
best ROI, and so forth is the one selected. Aside
from technical feasibility, money is almost
always the most important decision criterion, but
it’s not always the only one. Quite often there are
other criteria, other “attributes,” that need to be
considered, and those attributes can’t be cast in
terms of money. Multiple attribute decision tech-
niques allow other, nonfinancial criteria to be fac-
tored into the decision.

There are two families of multiple attribute
decision techniques that differ in how they use
the attributes in the decision. One family is the
“compensatory,” or single-dimensioned, tech-
niques. This family collapses all of the attributes
onto a single figure of merit. The family is called
compensatory because, for any given alternative,
a lower score in one attribute can be compensated
by—or traded off against—a higher score in other
attributes. The compensatory techniques include

• nondimensional scaling
• additive weighting
• analytic hierarchy process.

In contrast, the other family is the “noncom-
pensatory,” or fully dimensioned, techniques.
This family does not allow tradeoffs among the
attributes. Each attribute is treated as a separate
entity in the decision process. The noncompensa-
tory techniques include

• dominance
• satisficing
• lexicography.

4.10. Optimization Analysis
[1*, c20]

The typical use of optimization analysis is to
study a cost function over a range of values to

find the point where overall performance is best.
Software’s classic space-time tradeoff is an
example of optimization; an algorithm that runs
faster will often use more memory. Optimization
balances the value of the faster runtime against
the cost of the additional memory.

Real options analysis can be used to quantify
the value of project choices, including the value
of delaying a decision. Such options are difficult
to compute with precision. However, awareness
that choices have a monetary value provides
insight in the timing of decisions such as increas-
ing project staff or lengthening time to market to
improve quality.

5. Practical Considerations

5.1. The “Good Enough” Principle
[1*, c21]

Often software engineering projects and products
are not precise about the targets that should be
achieved. Software requirements are stated, but
the marginal value of adding a bit more function-
ality cannot be measured. The result could be late
delivery or too-high cost. The “good enough”
principle relates marginal value to marginal cost
and provides guidance to determine criteria when
a deliverable is “good enough” to be delivered.
These criteria depend on business objectives and
on prioritization of different alternatives, such as
ranking software requirements, measurable qual-
ity attributes, or relating schedule to product con-
tent and cost.

The RACE principle (reduce accidents and
control essence) is a popular rule towards good
enough software. Accidents imply unnecessary
overheads such as gold-plating and rework due
to late defect removal or too many requirements
changes. Essence is what customers pay for. Soft-
ware engineering economics provides the mech-
anisms to define criteria that determine when a
deliverable is “good enough” to be delivered.
It also highlights that both words are relevant:
“good” and “enough.” Insufficient quality or
insufficient quantity is not good enough.

Agile methods are examples of “good enough”
that try to optimize value by reducing the over-
head of delayed rework and the gold plating that

Software Engineering Economics 12-15

results from adding features that have low mar-
ginal value for the users (see Agile Methods in
the Software Engineering Models and Methods
KA and Software Life Cycle Models in the Soft-
ware Engineering Process KA). In agile meth-
ods, detailed planning and lengthy development
phases are replaced by incremental planning and
frequent delivery of small increments of a deliv-
erable product that is tested and evaluated by user
representatives.

5.2. Friction-Free Economy

Economic friction is everything that keeps mar-
kets from having perfect competition. It involves
distance, cost of delivery, restrictive regulations,
and/or imperfect information. In high-friction
markets, customers don’t have many suppliers
from which to choose. Having been in a business
for a while or owning a store in a good location
determines the economic position. It’s hard for
new competitors to start business and compete.
The marketplace moves slowly and predictably.
Friction-free markets are just the reverse. New
competitors emerge and customers are quick to
respond. The marketplace is anything but predict-
able. Theoretically, software and IT are friction-
free. New companies can easily create products
and often do so at a much lower cost than estab-
lished companies, since they need not consider
any legacies. Marketing and sales can be done
via the Internet and social networks, and basi-
cally free distribution mechanisms can enable a
ramp up to a global business. Software engineer-
ing economics aims to provide foundations to
judge how a software business performs and how
friction-free a market actually is. For instance,
competition among software app developers is
inhibited when apps must be sold through an app
store and comply with that store’s rules.

5.3. Ecosystems

An ecosystem is an environment consisting of all
the mutually dependent stakeholders, business
units, and companies working in a particular area.

In a typical ecosystem, there are producers and
consumers, where the consumers add value to
the consumed resources. Note that a consumer is
not the end user but an organization that uses the
product to enhance it. A software ecosystem is,
for instance, a supplier of an application working
with companies doing the installation and sup-
port in different regions. Neither one could exist
without the other. Ecosystems can be permanent
or temporary. Software engineering economics
provides the mechanisms to evaluate alternatives
in establishing or extending an ecosystem—for
instance, assessing whether to work with a spe-
cific distributor or have the distribution done by a
company doing service in an area.

5.4. Offshoring and Outsourcing

Offshoring means executing a business activity
beyond sales and marketing outside the home
country of an enterprise. Enterprises typically
either have their offshoring branches in low-
cost countries or they ask specialized companies
abroad to execute the respective activity. Offshor-
ing should therefore not be confused with out-
sourcing. Offshoring within a company is called
captive offshoring. Outsourcing is the result-ori-
ented relationship with a supplier who executes
business activities for an enterprise when, tra-
ditionally, those activities were executed inside
the enterprise. Outsourcing is site-independent.
The supplier can reside in the neighborhood of
the enterprise or offshore (outsourced offshor-
ing). Software engineering economics provides
the basic criteria and business tools to evaluate
different sourcing mechanisms and control their
performance. For instance, using an outsourcing
supplier for software development and mainte-
nance might reduce the cost per hour of software
development, but increase the number of hours
and capital expenses due to an increased need for
monitoring and communication. (For more infor-
mation on offshoring and outsourcing, see “Out-
sourcing” in Management Issues in the Software
Maintenance KA.)

12-16 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

To
ck

ey
 2

00
5

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

Fa
ir

le
y

20
09

[3

*]

1. Software Engineering Economics
Fundamentals

1.1. Finance c2
1.2. Accounting c15
1.3. Controlling c15
1.4. Cash Flow c3
1.5. Decision-Making Process c2, c4
1.6. Valuation c5, c8
1.7. Inflation c13
1.8. Depreciation c14
1.9. Taxation c16, c17
1.10. Time-Value of Money c5, c11
1.11. Efficiency c1
1.12. Effectiveness c1
1.13. Productivity c23

2. Life Cycle Economics
2.1. Product c22 c6
2.2. Project c22 c1
2.3. Program
2.4. Portfolio
2.5. Product Life Cycle c2 c2
2.6. Project Life Cycle c2 c2
2.7. Proposals c3
2.8. Investment Decisions c4
2.9. Planning Horizon c11
2.10. Price and Pricing c13
2.11. Cost and Costing c15
2.12. Performance Measurement c7, c8
2.13. Earned Value Management c8
2.14. Termination Decisions c11, c12 c9
2.15. Replacement and Retirement Decisions c12 c9

Software Engineering Economics 12-17

To
ck

ey
 2

00
5

[1
*]

So
m

m
er

vi
lle

 2
01

1
[2

*]

Fa
ir

le
y

20
09

[3

*]

3. Risk and Uncertainty
3.1. Goals, Estimates, and Plans c6
3.2. Estimation Techniques c6
3.3. Addressing Uncertainty c6
3.4. Prioritization c6
3.5. Decisions under Risk c24 c9
3.6. Decisions under Uncertainty c25 c9

4. Economic Analysis Methods
4.1. For-Profit Decision Analysis c10
4.2. Minimum Acceptable Rate of Return c10
4.3. Return on Investment c10
4.4. Return on Capital Employed
4.5. Cost-Benefit Analysis c18
4.6. Cost-Effectiveness Analysis c18
4.7. Break-Even Analysis c19
4.8. Business Case c3
4.9. Multiple Attribute Evaluation c26
4.10. Optimization Analysis c20

5. Practical Considerations
5.1. The “Good Enough” Principle c21
5.2. Friction-Free Economy
5.3. Ecosystems
5.4. Offshoring and Outsourcing

12-18 SWEBOK® Guide V3.0

FURTHER READINGS

A Guide to the Project Management Body of 
Knowledge (PMBOK® Guide) [4].

The PMBOK®  Guide provides guidelines for
managing individual projects and defines project
management related concepts. It also describes
the project management life cycle and its related
processes, as well as the project life cycle. It is
a globally recognized guide for the project man-
agement profession.

Software Extension to the Guide to the Project 
Management Body of Knowledge (SWX) [5].

SWX provides adaptations and extensions to the
generic practices of project management docu-
mented in the PMBOK®  Guide for managing
software projects. The primary contribution of
this extension to the PMBOK® Guide is descrip-
tion of processes that are applicable for managing
adaptive life cycle software projects.

B.W. Boehm, Software Engineering Economics 
[6].

This book is the classic reading on software
engineering economics. It provides an overview
of business thinking in software engineering.
Although the examples and figures are dated, it
still is worth reading.

C. Ebert and R. Dumke, Software Measurement 
[7].

This book provides an overview on quantita-
tive methods in software engineering, starting
with measurement theory and proceeding to
performance management and business decision
making.

D.J. Reifer, Making the Software Business Case: 
Improvement by the Numbers [8].

This book is a classic reading on making a busi-
ness case in the software and IT businesses. Many
useful examples illustrate how the business case
is formulated and quantified.

REFERENCES

[1*] S. Tockey, Return on Software: Maximizing 
the Return on Your Software Investment,
Addison-Wesley, 2004.

[2*] J.H. Allen et al., Software Security 
Engineering: A Guide for Project 
Managers, Addison-Wesley, 2008.

[3*] R.E. Fairley, Managing and Leading 
Software Projects, Wiley-IEEE Computer
Society Press, 2009.

[4] Project Management Institute, A Guide 
to the Project Management Body of 
Knowledge (PMBOK(R) Guide), 5th ed.,
Project Management Institute, 2013.

[5] Project Management Institute and IEEE
Computer Society, Software Extension 
to the PMBOK® Guide Fifth Edition, ed:
Project Management Institute, 2013.

[6] B.W. Boehm, Software Engineering 
Economics, Prentice-Hall, 1981.

[7] C. Ebert and R. Dumke, Software 
Measurement, Springer, 2007.

[8] D.J. Reifer, Making the Software Business 
Case: Improvement by the Numbers,
Addison Wesley, 2002.

13-1

CHAPTER 13

COMPUTING FOUNDATIONS

ACRONYMS

AOP Aspect-Oriented Programming
ALU Arithmetic and Logic Unit

API Application Programming
Interface

ATM Asynchronous Transfer Mode
B/S Browser-Server

CERT Computer Emergency Response
Team

COTS Commercial Off-The-Shelf
CRUD Create, Read, Update, Delete
C/S Client-Server
CS Computer Science
DBMS Database Management System
FPU Float Point Unit
I/O Input and Output
ISA Instruction Set Architecture

ISO International Organization for
Standardization

ISP Internet Service Provider
LAN Local Area Network
MUX Multiplexer
NIC Network Interface Card
OOP Object-Oriented Programming
OS Operating System
OSI Open Systems Interconnection
PC Personal Computer
PDA Personal Digital Assistant
PPP Point-to-Point Protocol
RFID Radio Frequency Identification
RAM Random Access Memory
ROM Read Only Memory

SCSI Small Computer System Interface
SQL Structured Query Language
TCP Transport Control Protocol
UDP User Datagram Protocol
VPN Virtual Private Network
WAN Wide Area Network

INTRODUCTION

The scope of the Computing Foundations knowl-
edge area (KA) encompasses the development
and operational environment in which software
evolves and executes. Because no software can
exist in a vacuum or run without a computer, the
core of such an environment is the computer and
its various components. Knowledge about the
computer and its underlying principles of hard-
ware and software serves as a framework on
which software engineering is anchored. Thus, all
software engineers must have good understand-
ing of the Computing Foundations KA.

It is generally accepted that software engi-
neering builds on top of computer science. For
example, “Software Engineering 2004: Cur-
riculum Guidelines for Undergraduate Degree
Programs in Software Engineering” [1] clearly
states, “One particularly important aspect is that
software engineering builds on computer science
and mathematics” (italics added).

Steve Tockey wrote in his book Return  on 
Software:

Both computer science and software engi-
neering deal with computers, computing,
and software. The science of computing, as
a body of knowledge, is at the core of both.

13-2 SWEBOK® Guide V3.0

… Software engineering is concerned with
the application of computers, computing,
and software to practical purposes, specifi-
cally the design, construction, and opera-
tion of efficient and economical software
systems.

Thus, at the core of software engineering is an
understanding of computer science.

While few people will deny the role computer
science plays in the development of software
engineering both as a discipline and as a body of
knowledge, the importance of computer science
to software engineering cannot be overempha-
sized; thus, this Computing Foundations KA is
being written.

The majority of topics discussed in the Com-
puting Foundations KA are also topics of discus-
sion in basic courses given in computer science
undergraduate and graduate programs. Such
courses include programming, data structure,
algorithms, computer organization, operating
systems, compilers, databases, networking, dis-
tributed systems, and so forth. Thus, when break-
ing down topics, it can be tempting to decompose
the Computing Foundations KA according to
these often-found divisions in relevant courses.

However, a purely course-based division of
topics suffers serious drawbacks. For one, not
all courses in computer science are related or
equally important to software engineering. Thus,
some topics that would otherwise be covered in a
computer science course are not covered in this

KA. For example, computer graphics—while an
important course in a computer science degree
program—is not included in this KA.

Second, some topics discussed in this guide-
line do not exist as standalone courses in under-
graduate or graduate computer science programs.
Consequently, such topics may not be adequately
covered in a purely course-based breakdown. For
example, abstraction is a topic incorporated into
several different computer science courses; it is
unclear which course abstraction should belong
to in a course-based breakdown of topics.

The Computing Foundations KA is divided into
seventeen different topics. A topic’s direct useful-
ness to software engineers is the criterion used for
selecting topics for inclusion in this KA (see Figure
13.1). The advantage of this topic-based breakdown
is its foundation on the belief that Computing Foun-
dations—if it is to be grasped firmly—must be con-
sidered as a collection of logically connected topics
undergirding software engineering in general and
software construction in particular.

The Computing Foundations KA is related
closely to the Software Design, Software Con-
struction, Software Testing, Software Main-
tenance, Software Quality, and Mathematical
Foundations KAs.

BREAKDOWN OF TOPICS FOR
COMPUTING FOUNDATIONS

The breakdown of topics for the Computing
Foundations KA is shown in Figure 13.1.

Figure 13.1. Breakdown of Topics for the Computing Foundations KA

Computing Foundations 13-3

1. Problem Solving Techniques
[2*, s3.2, c4] [3*, c5]

The concepts, notions, and terminology introduced
here form an underlying basis for understanding
the role and scope of problem solving techniques.

1.1. Definition of Problem Solving

Problem solving refers to the thinking and activi-
ties conducted to answer or derive a solution to
a problem. There are many ways to approach a
problem, and each way employs different tools
and uses different processes. These different
ways of approaching problems gradually expand
and define themselves and finally give rise to dif-
ferent disciplines. For example, software engi-
neering focuses on solving problems using com-
puters and software.

While different problems warrant different
solutions and may require different tools and
processes, the methodology and techniques used
in solving problems do follow some guidelines
and can often be generalized as problem solving
techniques. For example, a general guideline for
solving a generic engineering problem is to use
the three-step process given below [2*].

• Formulate the real problem.
• Analyze the problem.
• Design a solution search strategy.

1.2. Formulating the Real Problem

Gerard Voland writes, “It is important to recog-
nize that a specific problem should be formulated
if one is to develop a specific solution” [2*].
This formulation is called the problem statement,
which explicitly specifies what both the problem
and the desired outcome are.

Although there is no universal way of stat-
ing a problem, in general a problem should be
expressed in such a way as to facilitate the devel-
opment of solutions. Some general techniques
to help one formulate the real problem include
statement-restatement, determining the source
and the cause, revising the statement, analyzing
present and desired state, and using the fresh eye
approach.

1.3. Analyze the Problem

Once the problem statement is available, the next
step is to analyze the problem statement or situ-
ation to help structure our search for a solution.
Four types of analysis include situation analysis,
in which the most urgent or critical aspects of a
situation are identified first; problem analysis, in
which the cause of the problem must be deter-
mined; decision analysis, in which the action(s)
needed to correct the problem or eliminate its
cause must be determined; and potential problem 
analysis, in which the action(s) needed to prevent
any reoccurrences of the problem or the develop-
ment of new problems must be determined.

1.4. Design a Solution Search Strategy

Once the problem analysis is complete, we can
focus on structuring a search strategy to find the
solution. In order to find the “best” solution (here,
“best” could mean different things to different
people, such as faster, cheaper, more usable, dif-
ferent capabilities, etc.), we need to eliminate
paths that do not lead to viable solutions, design
tasks in a way that provides the most guidance in
searching for a solution, and use various attributes
of the final solution state to guide our choices in
the problem solving process.

1.5. Problem Solving Using Programs

The uniqueness of computer software gives prob-
lem solving a flavor that is distinct from general
engineering problem solving. To solve a problem
using computers, we must answer the following
questions.

• How do we figure out what to tell the com-
puter to do?

• How do we convert the problem statement
into an algorithm?

• How do we convert the algorithm into
machine instructions?

The first task in solving a problem using a com-
puter is to determine what to tell the computer to
do. There may be many ways to tell the story, but
all should take the perspective of a computer such

13-4 SWEBOK® Guide V3.0

that the computer can eventually solve the prob-
lem. In general, a problem should be expressed
in such a way as to facilitate the development of
algorithms and data structures for solving it.

The result of the first task is a problem state-
ment. The next step is to convert the problem state-
ment into algorithms that solve the problem. Once
an algorithm is found, the final step converts the
algorithm into machine instructions that form the
final solution: software that solves the problem.

Abstractly speaking, problem solving using a
computer can be considered as a process of prob-
lem transformation—in other words, the step-by-
step transformation of a problem statement into
a problem solution. To the discipline of software
engineering, the ultimate objective of problem
solving is to transform a problem expressed in
natural language into electrons running around
a circuit. In general, this transformation can be
broken into three phases:

a) Development of algorithms from the prob-
lem statement.

b) Application of algorithms to the problem.
c) Transformation of algorithms to program

code.

The conversion of a problem statement into
algorithms and algorithms into program codes
usually follows a “stepwise refinement” (a.k.a.
systematic decomposition) in which we start
with a problem statement, rewrite it as a task,
and recursively decompose the task into a few
simpler subtasks until the task is so simple that
solutions to it are straightforward. There are three
basic ways of decomposing: sequential, condi-
tional, and iterative.

2. Abstraction
[3*, s5.2–5.4]

Abstraction is an indispensible technique associ-
ated with problem solving. It refers to both the
process and result of generalization by reducing
the information of a concept, a problem, or an
observable phenomenon so that one can focus
on the “big picture.” One of the most important
skills in any engineering undertaking is framing
the levels of abstraction appropriately.

“Through abstraction,” according to Voland,
“we view the problem and its possible solution
paths from a higher level of conceptual under-
standing. As a result, we may become better pre-
pared to recognize possible relationships between
different aspects of the problem and thereby gen-
erate more creative design solutions” [2*]. This
is particularly true in computer science in general
(such as hardware vs. software) and in software
engineering in particular (data structure vs. data
flow, and so forth).

2.1. Levels of Abstraction

When abstracting, we concentrate on one “level”
of the big picture at a time with confidence that
we can then connect effectively with levels above
and below. Although we focus on one level,
abstraction does not mean knowing nothing about
the neighboring levels. Abstraction levels do not
necessarily correspond to discrete components
in reality or in the problem domain, but to well-
defined standard interfaces such as programming
APIs. The advantages that standard interfaces
provide include portability, easier software/hard-
ware integration and wider usage.

2.2. Encapsulation

Encapsulation is a mechanism used to imple-
ment abstraction. When we are dealing with one
level of abstraction, the information concerning
the levels below and above that level is encapsu-
lated. This information can be the concept, prob-
lem, or observable phenomenon; or it may be the
permissible operations on these relevant entities.
Encapsulation usually comes with some degree
of information hiding in which some or all of
the underlying details are hidden from the level
above the interface provided by the abstraction.
To an object, information hiding means we don’t
need to know the details of how the object is rep-
resented or how the operations on those objects
are implemented.

2.3. Hierarchy

When we use abstraction in our problem formula-
tion and solution, we may use different abstractions

Computing Foundations 13-5

at different times—in other words, we work on dif-
ferent levels of abstraction as the situation calls.
Most of the time, these different levels of abstrac-
tion are organized in a hierarchy. There are many
ways to structure a particular hierarchy and the
criteria used in determining the specific content of
each layer in the hierarchy varies depending on the
individuals performing the work.

Sometimes, a hierarchy of abstraction is sequen-
tial, which means that each layer has one and only
one predecessor (lower) layer and one and only
one successor (upper) layer—except the upmost
layer (which has no successor) and the bottommost
layer (which has no predecessor). Sometimes,
however, the hierarchy is organized in a tree-like
structure, which means each layer can have more
than one predecessor layer but only one successor
layer. Occasionally, a hierarchy can have a many-
to-many structure, in which each layer can have
multiple predecessors and successors. At no time,
shall there be any loop in a hierarchy.

A hierarchy often forms naturally in task decom-
position. Often, a task analysis can be decomposed
in a hierarchical fashion, starting with the larger
tasks and goals of the organization and breaking
each of them down into smaller subtasks that can
again be further subdivided This continuous divi-
sion of tasks into smaller ones would produce a
hierarchical structure of tasks-subtasks.

2.4. Alternate Abstractions

Sometimes it is useful to have multiple alternate
abstractions for the same problem so that one can
keep different perspectives in mind. For exam-
ple, we can have a class diagram, a state chart,
and a sequence diagram for the same software
at the same level of abstraction. These alternate
abstractions do not form a hierarchy but rather
complement each other in helping understanding
the problem and its solution. Though beneficial, it
is as times difficult to keep alternate abstractions
in sync.

3. Programming Fundamentals
[3*, c6–19]

Programming is composed of the methodologies
or activities for creating computer programs that

perform a desired function. It is an indispensible
part in software construction. In general, pro-
gramming can be considered as the process of
designing, writing, testing, debugging, and main-
taining the source code. This source code is writ-
ten in a programming language.

The process of writing source code often
requires expertise in many different subject
areas—including knowledge of the application
domain, appropriate data structures, special-
ized algorithms, various language constructs,
good programming techniques, and software
engineering.

3.1. The Programming Process

Programming involves design, writing, testing,
debugging, and maintenance. Design is the con-
ception or invention of a scheme for turning a
customer requirement for computer software into
operational software. It is the activity that links
application requirements to coding and debug-
ging. Writing is the actual coding of the design
in an appropriate programming language. Testing
is the activity to verify that the code one writes
actually does what it is supposed to do. Debug-
ging is the activity to find and fix bugs (faults) in
the source code (or design). Maintenance is the
activity to update, correct, and enhance existing
programs. Each of these activities is a huge topic
and often warrants the explanation of an entire
KA in the SWEBOK Guide and many books.

3.2. Programming Paradigms

Programming is highly creative and thus some-
what personal. Different people often write dif-
ferent programs for the same requirements. This
diversity of programming causes much difficulty
in the construction and maintenance of large
complex software. Various programming para-
digms have been developed over the years to put
some standardization into this highly creative and
personal activity. When one programs, he or she
can use one of several programming paradigms to
write the code. The major types of programming
paradigms are discussed below.
Unstructured  Programming:  In unstructured

programming, a programmer follows his/her

13-6 SWEBOK® Guide V3.0

hunch to write the code in whatever way he/she
likes as long as the function is operational. Often,
the practice is to write code to fulfill a specific
utility without regard to anything else. Programs
written this way exhibit no particular structure—
thus the name “unstructured programming.”
Unstructured programming is also sometimes
called ad hoc programming.
Structured/Procedural/  Imperative  Program-

ming: A hallmark of structured programming is
the use of well-defined control structures, includ-
ing procedures (and/or functions) with each pro-
cedure (or function) performing a specific task.
Interfaces exist between procedures to facilitate
correct and smooth calling operations of the pro-
grams. Under structured programming, program-
mers often follow established protocols and rules
of thumb when writing code. These protocols
and rules can be numerous and cover almost the
entire scope of programming—ranging from the
simplest issue (such as how to name variables,
functions, procedures, and so forth) to more com-
plex issues (such as how to structure an interface,
how to handle exceptions, and so forth).
Object-Oriented  Programming: While proce-

dural programming organizes programs around
procedures, object-oriented programming (OOP)
organize a program around objects, which are
abstract data structures that combine both data
and methods used to access or manipulate the
data. The primary features of OOP are that objects
representing various abstract and concrete entities
are created and these objects interact with each
other to collectively fulfill the desired functions.
Aspect-Oriented  Programming:  Aspect-ori-

ented programming (AOP) is a programming
paradigm that is built on top of OOP. AOP aims
to isolate secondary or supporting functions from
the main program’s business logic by focusing
on the cross sections (concerns) of the objects.
The primary motivation for AOP is to resolve
the object tangling and scattering associated with
OOP, in which the interactions among objects
become very complex. The essence of AOP is
the greatly emphasized separation of concerns,
which separates noncore functional concerns or
logic into various aspects.
Functional  Programming: Though less popu-

lar, functional programming is as viable as
the other paradigms in solving programming

problems. In functional programming, all com-
putations are treated as the evaluation of math-
ematical functions. In contrast to the imperative
programming that emphasizes changes in state,
functional programming emphasizes the applica-
tion of functions, avoids state and mutable data,
and provides referential transparency.

4. Programming Language Basics
[4*, c6]

Using computers to solve problems involves
programming—which is writing and organiz-
ing instructions telling the computer what to do
at each step. Programs must be written in some
programming language with which and through
which we describe necessary computations. In
other words, we use the facilities provided by a
programming language to describe problems,
develop algorithms, and reason about problem
solutions. To write any program, one must under-
stand at least one programming language.

4.1. Programming Language Overview

A programming language is designed to express
computations that can be performed by a com-
puter. In a practical sense, a programming lan-
guage is a notation for writing programs and thus
should be able to express most data structures and
algorithms. Some, but not all, people restrict the
term “programming language” to those languages
that can express all possible algorithms.

Not all languages have the same importance
and popularity. The most popular ones are often
defined by a specification document established
by a well-known and respected organization. For
example, the C programming language is speci-
fied by an ISO standard named ISO/IEC 9899.
Other languages, such as Perl and Python, do not
enjoy such treatment and often have a dominant
implementation that is used as a reference.

4.2. Syntax and Semantics of Programming 
Languages

Just like natural languages, many programming
languages have some form of written specifica-
tion of their syntax (form) and semantics (mean-
ing). Such specifications include, for example,

Computing Foundations 13-7

specific requirements for the definition of vari-
ables and constants (in other words, declara-
tion and types) and format requirements for the
instructions themselves.

In general, a programming language supports
such constructs as variables, data types, con-
stants, literals, assignment statements, control
statements, procedures, functions, and comments.
The syntax and semantics of each construct must
be clearly specified.

4.3. Low-Level Programming Languages

Programming language can be classified into two
classes: low-level languages and high-level lan-
guages. Low-level languages can be understood
by a computer with no or minimal assistance and
typically include machine languages and assem-
bly languages. A machine language uses ones
and zeros to represent instructions and variables,
and is directly understandable by a computer. An
assembly language contains the same instructions
as a machine language but the instructions and
variables have symbolic names that are easier for
humans to remember.

Assembly languages cannot be directly under-
stood by a computer and must be translated into a
machine language by a utility program called an
assembler. There often exists a correspondence
between the instructions of an assembly language
and a machine language, and the translation from
assembly code to machine code is straightfor-
ward. For example, “add r1, r2, r3” is an assem-
bly instruction for adding the content of register
r2 and r3 and storing the sum into register r1. This
instruction can be easily translated into machine
code “0001 0001 0010 0011.” (Assume the oper-
ation code for addition is 0001, see Figure 13.2).

add r1, r2, r3
0001 0001 0010 0011

Figure 13.2. Assembly-to-Binary Translations

One common trait shared by these two types
of language is their close association with the
specifics of a type of computer or instruction set
architecture (ISA).

4.4. High-Level Programming Languages

A high-level programming language has a strong
abstraction from the details of the computer’s
ISA. In comparison to low-level programming
languages, it often uses natural-language ele-
ments and is thus much easier for humans to
understand. Such languages allow symbolic nam-
ing of variables, provide expressiveness, and
enable abstraction of the underlying hardware.
For example, while each microprocessor has its
own ISA, code written in a high-level program-
ming language is usually portable between many
different hardware platforms. For these reasons,
most programmers use and most software are
written in high-level programming languages.
Examples of high-level programming languages
include C, C++, C#, and Java.

4.5. Declarative vs. Imperative Programming 
Languages

Most programming languages (high-level or low-
level) allow programmers to specify the indi-
vidual instructions that a computer is to execute.
Such programming languages are called impera-
tive programming languages because one has to
specify every step clearly to the computer. But
some programming languages allow program-
mers to only describe the function to be per-
formed without specifying the exact instruction
sequences to be executed. Such programming
languages are called declarative programming
languages. Declarative languages are high-level
languages. The actual implementation of the
computation written in such a language is hidden
from the programmers and thus is not a concern
for them.

The key point to note is that declarative pro-
gramming only describes what the program
should accomplish without describing how to
accomplish it. For this reason, many people
believe declarative programming facilitates
easier software development. Declarative pro-
gramming languages include Lisp (also a func-
tional programming language) and Prolog, while
imperative programming languages include C,
C++, and JAVA.

13-8 SWEBOK® Guide V3.0

5. Debugging Tools and Techniques
[3*, c23]

Once a program is coded and compiled (compila-
tion will be discussed in section 10), the next step
is debugging, which is a methodical process of
finding and reducing the number of bugs or faults
in a program. The purpose of debugging is to find
out why a program doesn’t work or produces a
wrong result or output. Except for very simple
programs, debugging is always necessary.

5.1. Types of Errors

When a program does not work, it is often because
the program contains bugs or errors that can be
either syntactic errors, logical errors, or data errors.
Logical errors and data errors are also known as
two categories of “faults” in software engineering
terminology (see topic 1.1, Testing-Related Ter-
minology, in the Software Testing KA).
Syntax  errors are simply any error that pre-

vents the translator (compiler/interpreter) from
successfully parsing the statement. Every state-
ment in a program must be parse-able before its
meaning can be understood and interpreted (and,
therefore, executed). In high-level programming
languages, syntax errors are caught during the
compilation or translation from the high-level
language into machine code. For example, in the
C/C++ programming language, the statement
“123=constant;” contains a syntax error that will
be caught by the compiler during compilation.
Logic errors are semantic errors that result in

incorrect computations or program behaviors.
Your program is legal, but wrong! So the results
do not match the problem statement or user expec-
tations. For example, in the C/C++ programming
language, the inline function “int f(int x) {return
f(x-1);}” for computing factorial x! is legal but
logically incorrect. This type of error cannot be
caught by a compiler during compilation and is
often discovered through tracing the execution of
the program (Modern static checkers do identify
some of these errors. However, the point remains
that these are not machine checkable in general).
Data errors are input errors that result either in

input data that is different from what the program
expects or in the processing of wrong data.

5.2. Debugging Techniques

Debugging involves many activities and can be
static, dynamic, or postmortem. Static  debug-
ging usually takes the form of code review, while
dynamic  debugging usually takes the form of
tracing and is closely associated with testing.
Postmortem  debugging is the act of debugging
the core dump (memory dump) of a process. Core
dumps are often generated after a process has ter-
minated due to an unhandled exception. All three
techniques are used at various stages of program
development.

The main activity of dynamic debugging is
tracing, which is executing the program one piece
at a time, examining the contents of registers and
memory, in order to examine the results at each
step. There are three ways to trace a program.

• Single-stepping:  execute one instruction at
a time to make sure each instruction is exe-
cuted correctly. This method is tedious but
useful in verifying each step of a program.

• Breakpoints: tell the program to stop execut-
ing when it reaches a specific instruction.
This technique lets one quickly execute
selected code sequences to get a high-level
overview of the execution behavior.

• Watch points: tell the program to stop when a
register or memory location changes or when
it equals to a specific value. This technique
is useful when one doesn’t know where or
when a value is changed and when this value
change likely causes the error.

5.3. Debugging Tools

Debugging can be complex, difficult, and tedious.
Like programming, debugging is also highly cre-
ative (sometimes more creative than program-
ming). Thus some help from tools is in order. For
dynamic debugging, debuggers are widely used
and enable the programmer to monitor the execu-
tion of a program, stop the execution, restart the
execution, set breakpoints, change values in mem-
ory, and even, in some cases, go back in time.

For static debugging, there are many static 
code  analysis  tools, which look for a specific
set of known problems within the source code.

Computing Foundations 13-9

Both commercial and free tools exist in various
languages. These tools can be extremely useful
when checking very large source trees, where it is
impractical to do code walkthroughs. The UNIX
lint program is an early example.

6. Data Structure and Representation
[5*, s2.1–2.6]

Programs work on data. But data must be
expressed and organized within computers before
being processed by programs. This organization
and expression of data for programs’ use is the
subject of data structure and representation. Sim-
ply put, a data structure tries to store and organize
data in a computer in such a way that the data can
be used efficiently. There are many types of data
structures and each type of structure is suitable
for some kinds of applications. For example, B/
B+ trees are well suited for implementing mas-
sive file systems and databases.

6.1. Data Structure Overview

Data structures are computer representations of
data. Data structures are used in almost every pro-
gram. In a sense, no meaningful program can be
constructed without the use of some sort of data
structure. Some design methods and program-
ming languages even organize an entire software
system around data structures. Fundamentally,
data structures are abstractions defined on a col-
lection of data and its associated operations.

Often, data structures are designed for improv-
ing program or algorithm efficiency. Examples of
such data structures include stacks, queues, and
heaps. At other times, data structures are used for
conceptual unity (abstract data type), such as the
name and address of a person. Often, a data struc-
ture can determine whether a program runs in a
few seconds or in a few hours or even a few days.

From the perspective of physical and logi-
cal ordering, a data structure is either linear or
nonlinear. Other perspectives give rise to dif-
ferent classifications that include homogeneous
vs. heterogeneous, static vs. dynamic, persistent
vs. transient, external vs. internal, primitive vs.
aggregate, recursive vs. nonrecursive; passive vs.
active; and stateful vs. stateless structures.

6.2. Types of Data Structure

As mentioned above, different perspectives can
be used to classify data structures. However, the
predominant perspective used in classification
centers on physical and logical ordering between
data items. This classification divides data struc-
tures into linear and nonlinear structures. Linear
structures organize data items in a single dimen-
sion in which each data entry has one (physical
or logical) predecessor and one successor with
the exception of the first and last entry. The first
entry has no predecessor and the last entry has
no successor. Nonlinear structures organize data
items in two or more dimensions, in which case
one entry can have multiple predecessors and
successors. Examples of linear structures include
lists, stacks, and queues. Examples of nonlinear
structures include heaps, hash tables, and trees
(such as binary trees, balance trees, B-trees, and
so forth).

Another type of data structure that is often
encountered in programming is the compound
structure. A compound data structure builds on
top of other (more primitive) data structures and,
in some way, can be viewed as the same structure
as the underlying structure. Examples of com-
pound structures include sets, graphs, and parti-
tions. For example, a partition can be viewed as
a set of sets.

6.3. Operations on Data Structures

All data structures support some operations that
produce a specific structure and ordering, or
retrieve relevant data from the structure, store data
into the structure, or delete data from the structure.
Basic operations supported by all data structures
include create, read, update, and delete (CRUD).

• Create: Insert a new data entry into the
structure.

• Read: Retrieve a data entry from the structure.
• Update: Modify an existing data entry.
• Delete: Remove a data entry from the

structure.

Some data structures also support additional
operations:

13-10 SWEBOK® Guide V3.0

• Find a particular element in the structure.
• Sort all elements according to some ordering.
• Traverse all elements in some specific order.
• Reorganize or rebalance the structure.

Different structures support different opera-
tions with different efficiencies. The difference
between operation efficiency can be significant.
For example, it is easy to retrieve the last item
inserted into a stack, but finding a particular ele-
ment within a stack is rather slow and tedious.

7. Algorithms and Complexity
[5*, s1.1–1.3, s3.3–3.6, s4.1–4.8, s5.1–5.7,

s6.1–6.3, s7.1–7.6, s11.1, s12.1]

Programs are not random pieces of code: they are
meticulously written to perform user-expected
actions. The guide one uses to compose programs
are algorithms, which organize various functions
into a series of steps and take into consideration
the application domain, the solution strategy, and
the data structures being used. An algorithm can
be very simple or very complex.

7.1. Overview of Algorithms

Abstractly speaking, algorithms guide the opera-
tions of computers and consist of a sequence of
actions composed to solve a problem. Alternative
definitions include but are not limited to:

• An algorithm is any well-defined computa-
tional procedure that takes some value or set
of values as input and produces some value
or set of values as output.

• An algorithm is a sequence of computational
steps that transform the input into the output.

• An algorithm is a tool for solving a well-
specified computation problem.

Of course, different definitions are favored
by different people. Though there is no univer-
sally accepted definition, some agreement exists
that an algorithm needs to be correct, finite (in
other words, terminate eventually or one must be
able to write it in a finite number of steps), and
unambiguous.

7.2. Attributes of Algorithms

The attributes of algorithms are many and often
include modularity, correctness, maintainabil-
ity, functionality, robustness, user-friendliness
(i.e. easy to be understood by people), program-
mer time, simplicity, and extensibility. A com-
monly emphasized attribute is “performance”
or “efficiency” by which we mean both time
and resource-usage efficiency while generally
emphasizing the time axis. To some degree, effi-
ciency determines if an algorithm is feasible or
impractical. For example, an algorithm that takes
one hundred years to terminate is virtually use-
less and is even considered incorrect.

7.3. Algorithmic Analysis

Analysis  of  algorithms is the theoretical study
of computer-program performance and resource
usage; to some extent it determines the goodness
of an algorithm. Such analysis usually abstracts
away the particular details of a specific computer
and focuses on the asymptotic, machine-indepen-
dent analysis.

There are three basic types of analysis. In
worst-case  analysis, one determines the maxi-
mum time or resources required by the algorithm
on any input of size n. In average-case analysis,
one determines the expected time or resources
required by the algorithm over all inputs of size
n; in performing average-case analysis, one often
needs to make assumptions on the statistical dis-
tribution of inputs. The third type of analysis is
the best-case analysis, in which one determines
the minimum time or resources required by the
algorithm on any input of size n. Among the
three types of analysis, average-case analysis is
the most relevant but also the most difficult to
perform.

Besides the basic analysis methods, there are
also the amortized analysis, in which one deter-
mines the maximum time required by an algo-
rithm over a sequence of operations; and the
competitive  analysis, in which one determines
the relative performance merit of an algorithm
against the optimal algorithm (which may not
be known) in the same category (for the same
operations).

Computing Foundations 13-11

7.4. Algorithmic Design Strategies

The design of algorithms generally follows one
of the following strategies: brute force, divide
and conquer, dynamic programming, and greedy
selection. The brute  force  strategy is actually a
no-strategy. It exhaustively tries every possible
way to tackle a problem. If a problem has a solu-
tion, this strategy is guaranteed to find it; however,
the time expense may be too high. The divide and 
conquer strategy  improves on the brute force
strategy by dividing a big problem into smaller,
homogeneous problems. It solves the big prob-
lem by recursively solving the smaller problems
and combing the solutions to the smaller prob-
lems to form the solution to the big problem. The
underlying assumption for divide and conquer is
that smaller problems are easier to solve.

The dynamic programming strategy improves
on the divide and conquer strategy by recogniz-
ing that some of the sub-problems produced by
division may be the same and thus avoids solving
the same problems again and again. This elimina-
tion of redundant subproblems can dramatically
improve efficiency.

The greedy selection strategy further improves
on dynamic programming by recognizing that
not all of the sub-problems contribute to the solu-
tion of the big problem. By eliminating all but
one sub-problem, the greedy selection strategy
achieves the highest efficiency among all algo-
rithm design strategies. Sometimes the use of
randomization can improve on the greedy selec-
tion strategy by eliminating the complexity in
determining the greedy choice through coin flip-
ping or randomization.

7.5. Algorithmic Analysis Strategies

The analysis strategies of algorithms include
basic  counting  analysis, in which one actually
counts the number of steps an algorithm takes to
complete its task; asymptotic analysis, in which
one only considers the order of magnitude of
the number of steps an algorithm takes to com-
plete its task; probabilistic  analysis, in which
one makes use of probabilities in analyzing the
average performance of an algorithm; amor-
tized analysis, in which one uses the methods of

aggregation, potential, and accounting to ana-
lyze the worst performance of an algorithm on a
sequence of operations; and competitive analysis,
in which one uses methods such as potential and
accounting to analyze the relative performance of
an algorithm to the optimal algorithm.

For complex problems and algorithms, one
may need to use a combination of the aforemen-
tioned analysis strategies.

8. Basic Concept of a System
[6*, c10]

Ian Sommerville writes, “a system is a purposeful
collection of interrelated components that work
together to achieve some objective” [6*]. A sys-
tem can be very simple and include only a few
components, like an ink pen, or rather complex,
like an aircraft. Depending on whether humans
are part of the system, systems can be divided
into technical computer-based systems and socio-
technical systems. A technical computer-based
system functions without human involvement,
such as televisions, mobile phones, thermostat,
and some software; a sociotechnical system
will not function without human involvement.
Examples of such system include manned space
vehicles, chips embedded inside a human, and so
forth.

8.1. Emergent System Properties

A system is more than simply the sum of its parts.
Thus, the properties of a system are not simply the
sum of the properties of its components. Instead,
a system often exhibits properties that are proper-
ties of the system as a whole. These properties are
called emergent properties because they develop
only after the integration of constituent parts in
the system. Emergent system properties can be
either functional or nonfunctional. Functional
properties describe the things that a system does.
For example, an aircraft’s functional properties
include flotation on air, carrying people or cargo,
and use as a weapon of mass destruction. Non-
functional properties describe how the system
behaves in its operational environment. These
can include such qualities as consistency, capac-
ity, weight, security, etc.

13-12 SWEBOK® Guide V3.0

8.2. Systems Engineering

“Systems engineering is the interdisciplinary
approach governing the total technical and mana-
gerial effort required to transform a set of cus-
tomer needs, expectations, and constraints into
a solution and to support that solution through-
out its life.” [7]. The life cycle stages of systems
engineering vary depending on the system being
built but, in general, include system requirements
definition, system design, sub-system develop-
ment, system integration, system testing, sys-
tem installation, system evolution, and system
decommissioning.

Many practical guidelines have been produced
in the past to aid people in performing the activi-
ties of each phase. For example, system design
can be broken into smaller tasks of identification
of subsystems, assignment of system require-
ments to subsystems, specification of subsystem
functionality, definition of sub-system interfaces,
and so forth.

8.3. Overview of a Computer System

Among all the systems, one that is obviously rel-
evant to the software engineering community is
the computer system. A computer is a machine
that executes programs or software. It consists of
a purposeful collection of mechanical, electrical,

and electronic components with each component
performing a preset function. Jointly, these com-
ponents are able to execute the instructions that
are given by the program.

Abstractly speaking, a computer receives some
input, stores and manipulates some data, and
provides some output. The most distinct feature
of a computer is its ability to store and execute
sequences of instructions called programs. An
interesting phenomenon concerning the computer
is the universal equivalence in functionality.
According to Turing, all computers with a certain
minimum capability are equivalent in their abil-
ity to perform computation tasks. In other words,
given enough time and memory, all computers—
ranging from a netbook to a supercomputer—are
capable of computing exactly the same things,
irrespective of speed, size, cost, or anything else.

Most computer systems have a structure that
is known as the “von Neumann model,” which
consists of five components: a memory for storing
instructions and data, a central  processing  unit 
for performing arithmetic and logical operations,
a control  unit for sequencing and interpreting
instructions, input for getting external informa-
tion into the memory, and output for producing
results for the user. The basic components of a
computer system based on the von Neumann
model are depicted in Figure 13.3.

Figure 13.3. Basic Components of a Computer System Based on the von Neumann Model

Computing Foundations 13-13

9. Computer Organization
[8*, c1–c4]

From the perspective of a computer, a wide
semantic gap exists between its intended behav-
ior and the workings of the underlying electronic
devices that actually do the work within the com-
puter. This gap is bridged through computer orga-
nization, which meshes various electrical, elec-
tronic, and mechanical devices into one device
that forms a computer. The objects that computer
organization deals with are the devices, connec-
tions, and controls. The abstraction built in com-
puter organization is the computer.

9.1. Computer Organization Overview

A computer generally consists of a CPU, mem-
ory, input devices, and output devices. Abstractly
speaking, the organization of a computer can be
divided into four levels (Figure 13.4). The macro 
architecture level is the formal specification of all
the functions a particular machine can carry out
and is known as the instruction set architecture
(ISA). The micro architecture level is the imple-
mentation of the ISA in a specific CPU—in other
words, the way in which the ISA’s specifications
are actually carried out. The logic circuits level
is the level where each functional component
of the micro architecture is built up of circuits
that make decisions based on simple rules. The
devices level is the level where, finally, each logic
circuit is actually built of electronic devices such
as complementary metal-oxide semiconductors
(CMOS), n-channel metal oxide semiconductors
(NMOS), or gallium arsenide (GaAs) transistors,
and so forth.

Macro Architecture Level (ISA)
Micro Architecture Level

Logic Circuits Level
Devices Level

Figure 13.4. Machine Architecture Levels

Each level provides an abstraction to the level
above and is dependent on the level below. To a
programmer, the most important abstraction is

the ISA, which specifies such things as the native
data types, instructions, registers, addressing
modes, the memory architecture, interrupt and
exception handling, and the I/Os. Overall, the
ISA specifies the ability of a computer and what
can be done on the computer with programming.

9.2. Digital Systems

At the lowest level, computations are carried out
by the electrical and electronic devices within a
computer. The computer uses circuits and mem-
ory to hold charges that represents the presence
or absence of voltage. The presence of voltage
is equal to a 1 while the absence of voltage is a
zero. On disk the polarity of the voltage is repre-
sented by 0s and 1s that in turn represents the data
stored. Everything—including instruction and
data—is expressed or encoded using digital zeros
and ones. In this sense, a computer becomes a
digital system. For example, decimal value 6 can
be encoded as 110, the addition instruction may
be encoded as 0001, and so forth. The component
of the computer such as the control unit, ALU,
memory and I/O use the information to compute
the instructions.

9.3. Digital Logic

Obviously, logics are needed to manipulate data
and to control the operation of computers. This
logic, which is behind a computer’s proper func-
tion, is called digital logic because it deals with
the operations of digital zeros and ones. Digital
logic specifies the rules both for building various
digital devices from the simplest elements (such
as transistors) and for governing the operation of
digital devices. For example, digital logic spells
out what the value will be if a zero and one is
ANDed, ORed, or exclusively ORed together. It
also specifies how to build decoders, multiplex-
ers (MUX), memory, and adders that are used to
assemble the computer.

9.4. Computer Expression of Data

As mentioned before, a computer expresses data
with electrical signals or digital zeros and ones.
Since there are only two different digits used in

13-14 SWEBOK® Guide V3.0

data expression, such a system is called a binary 
expression system. Due to the inherent nature of
a binary system, the maximum numerical value
expressible by an n-bits binary code is 2n − 1.
Specifically, binary number anan−1…a1a0 corre-
sponds to an × 2n + an−1 × 2n−1 + … + a1 × 21 +
a0 × 20. Thus, the numerical value of the binary
expression of 1011 is 1 × 8 + 0 × 4 + 1 × 2 + 1
× 1 = 11. To express a nonnumerical value, we
need to decide the number of zeros and ones to
use and the order in which those zeros and ones
are arranged.

Of course, there are different ways to do the
encoding, and this gives rise to different data
expression schemes and subschemes. For example,
integers can be expressed in the form of unsigned,
one’s complement, or two’s complement. For
characters, there are ASCII, Unicode, and IBM’s
EBCDIC standards. For floating point numbers,
there are IEEE-754 FP 1, 2, and 3 standards.

9.5. The Central Processing Unit (CPU)

The central processing unit is the place where
instructions (or programs) are actually executed.
The execution usually takes several steps, includ-
ing fetching the program instruction, decoding
the instruction, fetching operands, performing
arithmetic and logical operations on the oper-
ands, and storing the result. The main compo-
nents of a CPU consist of registers where instruc-
tions and data are often read from and written to,
the arithmetic and logic unit (ALU) that performs
the actual arithmetic (such as addition, subtrac-
tion, multiplication, and division) and logic (such
as AND, OR, shift, and so forth) operations, the
control unit that is responsible for producing
proper signals to control the operations, and vari-
ous (data, address, and control) buses that link the
components together and transport data to and
from these components.

9.6. Memory System Organization

Memory is the storage unit of a computer. It con-
cerns the assembling of a large-scale memory
system from smaller and single-digit storage
units. The main topics covered by memory sys-
tem architecture include the following:

• Memory cells and chips
• Memory boards and modules
• Memory hierarchy and cache
• Memory as a subsystem of the computer.

Memory cells and chips deal with single-digital
storage and the assembling of single-digit units
into one-dimensional memory arrays as well
as the assembling of one-dimensional storage
arrays into multi-dimensional storage memory
chips. Memory boards and modules concern the
assembling of memory chips into memory sys-
tems, with the focus being on the organization,
operation, and management of the individual
chips in the system. Memory hierarchy and cache
are used to support efficient memory operations.
Memory as a sub-system deals with the interface
between the memory system and other parts of
the computer.

9.7. Input and Output (I/O)

A computer is useless without I/O. Common
input devices include the keyboard and mouse;
common output devices include the disk, the
screen, the printer, and speakers. Different I/O
devices operate at different data rates and reli-
abilities. How computers connect and manage
various input and output devices to facilitate the
interaction between computers and humans (or
other computers) is the focus of topics in I/O.
The main issues that must be resolved in input
and output are the ways I/O can and should be
performed.

In general, I/O is performed at both hard-
ware and software levels. Hardware I/O can be
performed in any of three ways. Dedicated  I/O
dedicates the CPU to the actual input and output
operations during I/O; memory-mapped I/O treats
I/O operations as memory operations; and hybrid 
I/O combines dedicated I/O and memory-mapped
I/O into a single holistic I/O operation mode.

Coincidentally, software I/O can also be per-
formed in one of three ways. Programmed  I/O
lets the CPU wait while the I/O device is doing
I/O; interrupt-driven I/O lets the CPU’s handling
of I/O be driven by the I/O device; and direct 
memory access (DMA) lets I/O be handled by a
secondary CPU embedded in a DMA device (or

Computing Foundations 13-15

channel). (Except during the initial setup, the
main CPU is not disturbed during a DMA I/O
operation.)

Regardless of the types of I/O scheme being
used, the main issues involved in I/O include I/O 
addressing (which deals with the issue of how to
identify the I/O device for a specific I/O opera-
tion), synchronization (which deals with the issue
of how to make the CPU and I/O device work
in harmony during I/O), and error detection and 
correction (which deals with the occurrence of
transmission errors).

10. Compiler Basics
[4*, s6.4] [8*, s8.4]

10.1. Compiler/Interpreter Overview

Programmers usually write programs in high
level language code, which the CPU cannot exe-
cute; so this source code has to be converted into
machine code to be understood by a computer.
Due to the differences between different ISAs,
the translation must be done for each ISA or spe-
cific machine language under consideration.

The translation is usually performed by a piece
of software called a compiler or an interpreter.
This process of translation from a high-level lan-
guage to a machine language is called compila-
tion, or, sometimes, interpretation.

10.2. Interpretation and Compilation

There are two ways to translate a program writ-
ten in a higher-level language into machine code:
interpretation and compilation. Interpretation 
translates the source code one statement at a time
into machine language, executes it on the spot,
and then goes back for another statement. Both
the high-level-language source code and the inter-
preter are required every time the program is run.
Compilation translates the high-level-language

source code into an entire machine-language pro-
gram (an executable image) by a program called a
compiler. After compilation, only the executable
image is needed to run the program. Most appli-
cation software is sold in this form.

While both compilation and interpretation con-
vert high level language code into machine code,

there are some important differences between the
two methods. First, a compiler makes the conver-
sion just once, while an interpreter typically con-
verts it every time a program is executed. Second,
interpreting code is slower than running the com-
piled code, because the interpreter must analyze
each statement in the program when it is executed
and then perform the desired action, whereas the
compiled code just performs the action within
a fixed context determined by the compilation.
Third, access to variables is also slower in an
interpreter because the mapping of identifiers to
storage locations must be done repeatedly at run-
time rather than at compile time.

The primary tasks of a compiler may include
preprocessing, lexical analysis, parsing, semantic
analysis, code generation, and code optimiza-
tion. Program faults caused by incorrect compiler
behavior can be very difficult to track down. For
this reason, compiler implementers invest a lot of
time ensuring the correctness of their software.

10.3. The Compilation Process

Compilation is a complex task. Most compilers
divide the compilation process into many phases.
A typical breakdown is as follows:

• Lexical Analysis
• Syntax Analysis or Parsing
• Semantic Analysis
• Code Generation

Lexical  analysis partitions the input text (the
source code), which is a sequence of characters,
into separate comments, which are to be ignored
in subsequent actions, and basic symbols, which 
have  lexical  meanings.  These basic symbols
must correspond to some terminal symbols of
the grammar of the particular programming lan-
guage. Here terminal symbols refer to the ele-
mentary symbols (or tokens) in the grammar that
cannot be changed.
Syntax analysis is based on the results of the

lexical analysis and discovers the structure in the
program and determines whether or not a text
conforms to an expected format. Is  this a  textu-
ally correct C++ program? or Is  this entry  tex-
tually correct? are typical questions that can be

13-16 SWEBOK® Guide V3.0

answered by syntax analysis. Syntax analysis
determines if the source code of a program is cor-
rect and converts it into a more structured rep-
resentation (parse tree) for semantic analysis or
transformation.
Semantic  analysis adds semantic information

to the parse tree built during the syntax analysis
and builds the symbol table. It performs vari-
ous semantic checks that include type checking,
object binding (associating variable and function
references with their definitions), and definite
assignment (requiring all local variables to be
initialized before use). If mistakes are found, the
semantically incorrect program statements are
rejected and flagged as errors.

Once semantic analysis is complete, the phase
of code  generation begins and transforms the
intermediate code produced in the previous
phases into the native machine language of the
computer under consideration. This involves
resource and storage decisions—such as deciding
which variables to fit into registers and memory
and the selection and scheduling of appropriate
machine instructions, along with their associated
addressing modes.

It is often possible to combine multiple phases
into one pass over the code in a compiler imple-
mentation. Some compilers also have a prepro-
cessing phase at the beginning or after the lexical
analysis that does necessary housekeeping work,
such as processing the program instructions for
the compiler (directives). Some compilers pro-
vide an optional optimization phase at the end of
the entire compilation to optimize the code (such
as the rearrangement of instruction sequence)
for efficiency and other desirable objectives
requested by the users.

11. Operating Systems Basics
[4*, c3]

Every system of meaningful complexity needs
to be managed. A computer, as a rather complex
electrical-mechanical system, needs its own man-
ager for managing the resources and activities
occurring on it. That manager is called an operat-
ing system (OS).

11.1. Operating Systems Overview

Operating systems is a collection of software and
firmware, that controls the execution of computer
programs and provides such services as computer
resource allocation, job control, input/output con-
trol, and file management in a computer system.
Conceptually, an operating system is a computer
program that manages the hardware resources
and makes it easier to use by applications by pre-
senting nice abstractions. This nice abstraction
is often called the virtual machine and includes
such things as processes, virtual memory, and
file systems. An OS hides the complexity of the
underlying hardware and is found on all modern
computers.

The principal roles played by OSs are manage-
ment and illusion. Management refers to the OS’s
management (allocation and recovery) of physi-
cal resources among multiple competing users/
applications/tasks. Illusion refers to the nice
abstractions the OS provides.

11.2. Tasks of an Operating System

The tasks of an operating system differ signifi-
cantly depending on the machine and time of its
invention. However, modern operating systems
have come to agreement as to the tasks that must
be performed by an OS. These tasks include CPU
management, memory management, disk man-
agement (file system), I/O device management,
and security and protection. Each OS task man-
ages one type of physical resource.

Specifically, CPU management deals with the
allocation and releases of the CPU among com-
peting programs (called processes/threads in OS
jargon), including the operating system itself. The
main abstraction provided by CPU management is
the process/thread model. Memory management
deals with the allocation and release of memory
space among competing processes, and the main
abstraction provided by memory management
is virtual memory. Disk management deals with
the sharing of magnetic or optical or solid state
disks among multiple programs/users and its main
abstraction is the file system. I/O device manage-
ment deals with the allocation and releases of
various I/O devices among competing processes.

Computing Foundations 13-17

Security and protection deal with the protection of
computer resources from illegal use.

11.3. Operating System Abstractions

The arsenal of OSs is abstraction. Corresponding
to the five physical tasks, OSs use five abstrac-
tions: process/thread, virtual memory, file sys-
tems, input/output, and protection domains. The
overall OS abstraction is the virtual machine.

For each task area of OS, there is both a physi-
cal reality and a conceptual abstraction. The phys-
ical reality refers to the hardware resource under
management; the conceptual abstraction refers
to the interface the OS presents to the users/pro-
grams above. For example, in the thread model
of the OS, the physical reality is the CPU and the
abstraction is multiple CPUs. Thus, a user doesn’t
have to worry about sharing the CPU with others
when working on the abstraction provided by an
OS. In the virtual memory abstraction of an OS,
the physical reality is the physical RAM or ROM
(whatever), the abstraction is multiple unlim-
ited memory space. Thus, a user doesn’t have to
worry about sharing physical memory with others
or about limited physical memory size.

Abstractions may be virtual or transparent;
in this context virtual applies to something that
appears to be there, but isn’t (like usable memory
beyond physical), whereas transparent applies
to something that is there, but appears not to be
there (like fetching memory contents from disk or
physical memory).

11.4. Operating Systems Classification

Different operating systems can have different
functionality implementation. In the early days
of the computer era, operating systems were rela-
tively simple. As time goes on, the complexity
and sophistication of operating systems increases
significantly. From a historical perspective, an
operating system can be classified as one of the
following.

• Batching OS: organizes and processes work
in batches. Examples of such OSs include
IBM’s FMS, IBSYS, and University of
Michigan’s UMES.

• Multiprogrammed  batching  OS: adds mul-
titask capability into earlier simple batching
OSs. An example of such an OS is IBM’s
OS/360.

• Time-sharing OS: adds multi-task and inter-
active capabilities into the OS. Examples of
such OSs include UNIX, Linux, and NT.

• Real-time  OS: adds timing predictabil-
ity into the OS by scheduling individual
tasks according to each task’s completion
deadlines. Examples of such OS include
VxWorks (WindRiver) and DART (EMC).

• Distributed OS: adds the capability of man-
aging a network of computers into the OS.

• Embedded OS: has limited functionality and
is used for embedded systems such as cars
and PDAs. Examples of such OSs include
Palm OS, Windows CE, and TOPPER.

Alternatively, an OS can be classified by its
applicable target machine/environment into the
following.

• Mainframe OS: runs on the mainframe com-
puters and include OS/360, OS/390, AS/400,
MVS, and VM.

• Server OS: runs on workstations or servers
and includes such systems as UNIX, Win-
dows, Linux, and VMS.

• Multicomputer  OS: runs on multiple com-
puters and include such examples as Novell
Netware.

• Personal  computers  OS: runs on personal
computers and include such examples as
DOS, Windows, Mac OS, and Linux.

• Mobile device OS: runs on personal devices
such as cell phones, IPAD and include such
examples of iOS, Android, Symbian, etc.

12. Database Basics and Data Management
[4*, c9]

A database consists of an organized collection of
data for one or more uses. In a sense, a database is
a generalization and expansion of data structures.
But the difference is that a database is usually
external to individual programs and permanent in
existence compared to data structures. Databases
are used when the data volume is large or logical

13-18 SWEBOK® Guide V3.0

relations between data items are important. The
factors considered in database design include per-
formance, concurrency, integrity, and recovery
from hardware failures.

12.1. Entity and Schema

The things a database tries to model and store are
called entities. Entities can be real-world objects
such as persons, cars, houses, and so forth, or they
may be abstract concepts such as persons, salary,
names, and so forth. An entity can be primitive
such as a name or composite such as an employee
that consists of a name, identification number,
salary, address, and so forth.

The single most important concept in a database
is the schema, which is a description of the entire
database structure from which all other database
activities are built. A schema defines the relation-
ships between the various entities that compose a
database. For example, a schema for a company
payroll system would consist of such things as
employee ID, name, salary rate, address, and so
forth. Database software maintains the database
according to the schema.

Another important concept in database is the
database model that describes the type of rela-
tionship among various entities. The commonly
used models include relational, network, and
object models.

12.2. Database Management Systems (DBMS)

Database Management System (DBMS) compo-
nents include database applications for the stor-
age of structured and unstructured data and the
required database management functions needed
to view, collect, store, and retrieve data from the
databases. A DBMS controls the creation, main-
tenance, and use of the database and is usually
categorized according to the database model it
supports—such as the relational, network, or
object model. For example, a relational database
management system (RDBMS) implements fea-
tures of the relational model. An object database
management system (ODBMS) implements fea-
tures of the object model.

12.3. Database Query Language

Users/applications interact with a database
through a database query language, which is a spe-
cialized programming language tailored to data-
base use. The database model tends to determine
the query languages that are available to access
the database. One commonly used query lan-
guage for the relational database is the structured
query language, more commonly abbreviated as
SQL. A common query language for object data-
bases is the object query language (abbreviated as
OQL). There are three components of SQL: Data
Definition Language (DDL), Data Manipulation
Language (DML), and Data Control Language
(DCL). An example of an DML query may look
like the following:

SELECT Component_No, Quantity
FROM COMPONENT
WHERE Item_No = 100

The above query selects all the Component_No
and its corresponding quantity from a database
table called COMPONENT, where the Item_No
equals to 100.

12.4. Tasks of DBMS Packages

A DBMS system provides the following
capabilities:

• Database development is used to define and
organize the content, relationships, and struc-
ture of the data needed to build a database.

• Database interrogation is used for accessing
the data in a database for information retrieval
and report generation. End users can selec-
tively retrieve and display information and
produce printed reports. This is the operation
that most users know about databases.

• Database Maintenance is used to add, delete,
update, and correct the data in a database.

• Application Development is used to develop
prototypes of data entry screens, queries,
forms, reports, tables, and labels for a proto-
typed application. It also refers to the use of
4th Generation Language or application gen-
erators to develop or generate program code.

Computing Foundations 13-19

12.5. Data Management

A database must manage the data stored in it.
This management includes both organization and
storage.

The organization of the actual data in a database
depends on the database model. In a relational
model, data are organized as tables with different
tables representing different entities or relations
among a set of entities. The storage of data deals
with the storage of these database tables on disks.
The common ways for achieving this is to use files.
Sequential, indexed, and hash files are all used in
this purpose with different file structures providing
different access performance and convenience.

12.6. Data Mining

One often has to know what to look for before
querying a database. This type of “pinpointing”
access does not make full use of the vast amount
of information stored in the database, and in fact
reduces the database into a collection of discrete
records. To take full advantage of a database, one
can perform statistical analysis and pattern dis-
covery on the content of a database using a tech-
nique called data mining. Such operations can be
used to support a number of business activities
that include, but are not limited to, marketing,
fraud detection, and trend analysis.

Numerous ways for performing data mining
have been invented in the past decade and include
such common techniques as class description,
class discrimination, cluster analysis, association
analysis, and outlier analysis.

13. Network Communication Basics
[8*, c12]

A computer network connects a collection of
computers and allows users of different comput-
ers to share resources with other users. A network
facilitates the communications between all the
connected computers and may give the illusion
of a single, omnipresent computer. Every com-
puter or device connected to a network is called
a network node.

A number of computing paradigms have emerged
to benefit from the functions and capabilities

provided by computer networks. These paradigms
include distributed computing, grid computing,
Internet computing, and cloud computing.

13.1. Types of Network

Computer networks are not all the same and
may be classified according to a wide variety of
characteristics, including the network’s connec-
tion method, wired technologies, wireless tech-
nologies, scale, network topology, functions, and
speed. But the classification that is familiar to
most is based on the scale of networking.

• Personal Area Network/Home Network  is a
computer network used for communication
among computer(s) and different informa-
tion technological devices close to one per-
son. The devices connected to such a net-
work may include PCs, faxes, PDAs, and
TVs. This is the base on which the Internet
of Things is built.

• Local  Area Network (LAN) connects com-
puters and devices in a limited geographical
area, such as a school campus, computer lab-
oratory, office building, or closely positioned
group of buildings.

• Campus Network is a computer network made
up of an interconnection of local area networks
(LANs) within a limited geographical area.

• Wide  area  network (WAN) is a computer
network that covers a large geographic area,
such as a city or country or even across inter-
continental distances. A WAN limited to a
city is sometimes called a Metropolitan Area
Network.

• Internet is the global network that connects
computers located in many (perhaps all)
countries.

Other classifications may divide networks into
control networks, storage networks, virtual pri-
vate networks (VPN), wireless networks, point-
to-point networks, and Internet of Things.

13.2. Basic Network Components

All networks are made up of the same basic hard-
ware components, including computers, network

13-20 SWEBOK® Guide V3.0

interface cards (NICs), bridges, hubs, switches,
and routers. All these components are called nodes
in the jargon of networking. Each component per-
forms a distinctive function that is essential for
the packaging, connection, transmission, amplifi-
cation, controlling, unpacking, and interpretation
of the data. For example, a repeater amplifies the
signals, a switch performs many-to-many connec-
tions, a hub performs one-to-many connections,
an interface card is attached to the computer and
performs data packing and transmission, a bridge
connects one network with another, and a router is
a computer itself and performs data analysis and
flow control to regulate the data from the network.

The functions performed by various network
components correspond to the functions specified
by one or more levels of the seven-layer Open
Systems Interconnect (OSI) networking model,
which is discussed below.

13.3. Networking Protocols and Standards

Computers communicate with each other using
protocols, which specify the format and regula-
tions used to pack and un-pack data. To facilitate
easier communication and better structure, net-
work protocols are divided into different layers
with each layer dealing with one aspect of the
communication. For example, the physical lay-
ers deal with the physical connection between
the parties that are to communicate, the data link
layer deals with the raw data transmission and
flow control, and the network layer deals with the
packing and un-packing of data into a particular
format that is understandable by the relevant par-
ties. The most commonly used OSI networking
model organizes network protocols into seven
layers, as depicted in Figure 13.5.

One thing to note is that not all network proto-
cols implement all layers of the OSI model. For
example, the TCP/IP protocol implements neither
the presentation layer nor the session layer.

There can be more than one protocol for each
layer. For example, UDP and TCP both work on
the transport layer above IP’s network layer, pro-
viding best-effort, unreliable transport (UDP) vs.
reliable transport function (TCP). Physical layer
protocols include token ring, Ethernet, fast Ether-
net, gigabit Ethernet, and wireless Ethernet. Data

link layer protocols include frame-relay, asyn-
chronous transfer mode (ATM), and Point-to-
Point Protocol (PPP). Application layer protocols
include Fibre channel, Small Computer System
Interface (SCSI), and Bluetooth. For each layer
or even each individual protocol, there may be
standards established by national or international
organizations to guide the design and develop-
ment of the corresponding protocols.

Application Layer
Presentation Layer

Session Layer
Transport Layer
Network Layer
Data link Layer
Physical Layer

Figure 13.5. The Seven-Layer OSI Networking Model

13.4. The Internet 

The Internet is a global system of interconnected
governmental, academic, corporate, public, and
private computer networks. In the public domain
access to the internet is through organizations
known as internet service providers (ISP). The
ISP maintains one or more switching centers
called a point of presence, which actually con-
nects the users to the Internet.

13.5. Internet of Things

The Internet of Things refers to the networking
of everyday objects—such as cars, cell phones,
PDAs, TVs, refrigerators, and even buildings—
using wired or wireless networking technologies.
The function and purpose of Internet  of  Things
is to interconnect all things to facilitate autono-
mous and better living. Technologies used in the
Internet of Things include RFID, wireless and
wired networking, sensor technology, and much
software of course. As the paradigm of Internet
of Things is still taking shape, much work is
needed for Internet of Things to gain wide spread
acceptance.

Computing Foundations 13-21

13.6. Virtual Private Network (VPN) 

A virtual private network is a preplanned virtual
connection between nodes in a LAN/WAN or on
the internet. It allows the network administrator
to separate network traffic into user groups that
have a common affinity for each other such as
all users in the same organization, or workgroup.
This circuit type may improve performance
and security between nodes and allows for eas-
ier maintenance of circuits when troubleshooting.

14. Parallel and Distributed Computing
[8*, c9]

Parallel computing is a computing paradigm that
emerges with the development of multi-func-
tional units within a computer. The main objec-
tive of parallel computing is to execute several
tasks simultaneously on different functional units
and thus improve throughput or response or both.
Distributed computing, on the other hand, is a
computing paradigm that emerges with the devel-
opment of computer networks. Its main objective
is to either make use of multiple computers in the
network to accomplish things otherwise not pos-
sible within a single computer or improve com-
putation efficiency by harnessing the power of
multiple computers.

14.1. Parallel and Distributed Computing 
Overview

Traditionally, parallel computing investigates
ways to maximize concurrency (the simultaneous
execution of multiple tasks) within the bound-
ary of a computer. Distributed computing studies
distributed systems, which consists of multiple
autonomous computers that communicate through
a computer network. Alternatively, distributed
computing can also refer to the use of distributed
systems to solve computational or transactional
problems. In the former definition, distributed
computing investigates the protocols, mecha-
nisms, and strategies that provide the foundation
for distributed computation; in the latter definition,
distributed computing studies the ways of dividing
a problem into many tasks and assigning such tasks
to various computers involved in the computation.

Fundamentally, distributed computing is
another form of parallel computing, albeit on a
grander scale. In distributed computing, the func-
tional units are not ALU, FPU, or separate cores,
but individual computers. For this reason, some
people regard distributed computing as being the
same as parallel computing. Because both distrib-
uted and parallel computing involve some form
of concurrency, they are both also called concur-
rent computing.

14.2. Difference between Parallel and Distrib-
uted Computing

Though parallel and distributed computing resem-
ble each other on the surface, there is a subtle but
real distinction between them: parallel comput-
ing does not necessarily refer to the execution of
programs on different computers— instead, they
can be run on different processors within a single
computer. In fact, consensus among computing
professionals limits the scope of parallel comput-
ing to the case where a shared memory is used by
all processors involved in the computing, while
distributed computing refers to computations
where private memory exists for each processor
involved in the computations.

Another subtle difference between parallel and
distributed computing is that parallel computing
necessitates concurrent execution of several tasks
while distributed computing does not have this
necessity.

Based on the above discussion, it is possible
to classify concurrent systems as being “parallel”
or “distributed” based on the existence or nonex-
istence of shared memory among all the proces-
sor: parallel computing deals with computations
within a single computer; distributed computing
deals with computations within a set of comput-
ers. According to this view, multicore computing
is a form of parallel computing.

14.3. Parallel and Distributed Computing 
Models

Since multiple computers/processors/cores are
involved in distributed/parallel computing, some
coordination among the involved parties is nec-
essary to ensure correct behavior of the system.

13-22 SWEBOK® Guide V3.0

Different ways of coordination give rise to differ-
ent computing models. The most common mod-
els in this regard are the shared memory (paral-
lel) model and the message-passing (distributed)
model.

In a shared memory (parallel) model, all com-
puters have access to a shared central memory
where local caches are used to speed up the
processing power. These caches use a protocol
to insure the localized data is fresh and up to
date, typically the MESI protocol. The algorithm
designer chooses the program for execution by
each computer. Access to the central memory can
be synchronous or asynchronous, and must be
coordinated such that coherency is maintained.
Different access models have been invented for
such a purpose.

In a message-passing  (distributed) model, all
computers run some programs that collectively
achieve some purpose. The system must work
correctly regardless of the structure of the net-
work. This model can be further classified into
client-server (C/S), browser-server (B/S), and
n-tier models. In the C/S model, the server pro-
vides services and the client requests services
from the server. In the B/S model, the server pro-
vides services and the client is the browser. In the
n-tier model, each tier (i.e. layer) provides ser-
vices to the tier immediately above it and requests
services from the tier immediately below it. In
fact, the n-tier model can be seen as a chain of
client-server models. Often, the tiers between the
bottommost tier and the topmost tier are called
middleware, which is a distinct subject of study
in its own right.

14.4. Main Issues in Distributed Computing

Coordination among all the components in a dis-
tributed computing environment is often complex
and time-consuming. As the number of cores/
CPUs/computers increases, the complexity of
distributed computing also increases. Among
the many issues faced, memory coherency and
consensus among all computers are the most dif-
ficult ones. Many computation paradigms have
been invented to solve these problems and are
the main discussion issues in distributed/parallel
computing.

15. Basic User Human Factors
[3*, c8] [9*, c5]

Software is developed to meet human desires or
needs. Thus, all software design and develop-
ment must take into consideration human-user
factors such as how people use software, how
people view software, and what humans expect
from software. There are numerous factors in the
human-machine interaction, and ISO 9241 docu-
ment series define all the detailed standards of
such interactions.[10] But the basic human-user
factors considered here include input/output, the
handling of error messages, and the robustness of
the software in general.

15.1. Input and Output

Input and output are the interfaces between users
and software. Software is useless without input
and output. Humans design software to process
some input and produce desirable output. All
software engineers must consider input and out-
put as an integral part of the software product
they engineer or develop. Issues considered for
input include (but are not limited to):

• What input is required?
• How is the input passed from users to

computers?
• What is the most convenient way for users to

enter input?
• What format does the computer require of

the input data?

The designer should request the minimum
data from human input, only when the data is not
already stored in the system. The designer should
format and edit the data at the time of entry to
reduce errors arising from incorrect or malicious
data entry.

For output, we need to consider what the users
wish to see:

• In what format would users like to see
output?

• What is the most pleasing way to display
output?

Computing Foundations 13-23

If the party interacting with the software isn’t
human but another software or computer or con-
trol system, then we need to consider the input/
output type and format that the software should
produce to ensure proper data exchange between
systems.

There are many rules of thumb for developers
to follow to produce good input/output for a soft-
ware. These rules of thumb include simple and
natural dialogue, speaking users’ language, mini-
mizing user memory load, consistency, minimal
surprise, conformance to standards (whether
agreed to or not: e.g., automobiles have a stan-
dard interface for accelerator, brake, steering).

15.2. Error Messages

It is understandable that most software con-
tains faults and fails from time to time. But
users should be notified if there is anything that
impedes the smooth execution of the program.
Nothing is more frustrating than an unexpected
termination or behavioral deviation of software
without any warning or explanation. To be user
friendly, the software should report all error con-
ditions to the users or upper-level applications
so that some measure can be taken to rectify the
situation or to exit gracefully. There are several
guidelines that define what constitutes a good
error message: error messages should be clear, to
the point, and timely.

First, error messages should clearly explain
what is happening so that users know what is
going on in the software. Second, error mes-
sages should pinpoint the cause of the error, if at
all possible, so that proper actions can be taken.
Third, error messages should be displayed right
when the error condition occurs. According to
Jakob Nielsen, “Good error messages should be
expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest
a solution” [9*]. Fourth, error messages should
not overload the users with too much informa-
tion and cause them to ignore the messages all
together.

However, messages relating to security access
errors should not provide extra information that
would help unauthorized persons break in.

15.3. Software Robustness

Software robustness refers to the ability of soft-
ware to tolerate erroneous inputs. Software is said
to be robust if it continues to function even when
erroneous inputs are given. Thus, it is unaccept-
able for software to simply crash when encoun-
tering an input problem as this may cause unex-
pected consequences, such as the loss of valuable
data. Software that exhibits such behavior is con-
sidered to lack robustness.

Nielsen gives a simpler description of software
robustness: “The software should have a low
error rate, so that users make few errors during
the use of the system and so that if they do make
errors they can easily recover from them. Further,
catastrophic errors must not occur” [9*].

There are many ways to evaluate the robust-
ness of software and just as many ways to make
software more robust. For example, to improve
robustness, one should always check the validity
of the inputs and return values before progress-
ing further; one should always throw an excep-
tion when something unexpected occurs, and
one should never quit a program without first
giving users/applications a chance to correct the
condition.

16. Basic Developer Human Factors
[3*, c31–32]

Developer human factors refer to the consider-
ations of human factors taken when developing
software. Software is developed by humans, read
by humans, and maintained by humans. If any-
thing is wrong, humans are responsible for cor-
recting those wrongs. Thus, it is essential to write
software in a way that is easily understandable
by humans or, at the very least, by other software
developers. A program that is easy to read and
understand exhibits readability.

The means to ensure that software meet this
objective are numerous and range from proper
architecture at the macro level to the particular
coding style and variable usage at the micro level.
But the two prominent factors are structure (or
program layouts) and comments (documentation).

13-24 SWEBOK® Guide V3.0

16.1. Structure 

Well-structured programs are easier to understand
and modify. If a program is poorly structured, then
no amount of explanation or comments is sufficient
to make it understandable. The ways to organize a
program are numerous and range from the proper
use of white space, indentation, and parentheses to
nice arrangements of groupings, blank lines, and
braces. Whatever style one chooses, it should be
consistent across the entire program.

16.2. Comments

To most people, programming is coding. These
people do not realize that programming also
includes writing comments and that comments are
an integral part of programming. True, comments
are not used by the computer and certainly do not
constitute final instructions for the computer, but
they improve the readability of the programs by
explaining the meaning and logic of the statements
or sections of code. It should be remembered that
programs are not only meant for computers, they
are also read, written, and modified by humans.

The types of comments include repeat of the
code, explanation of the code, marker of the
code, summary of the code, description of the
code’s intent, and information that cannot possi-
bly be expressed by the code itself. Some com-
ments are good, some are not. The good ones
are those that explain the intent of the code and
justify why this code looks the way it does. The
bad ones are repeat of the code and stating irrel-
evant information. The best comments are self-
documenting code. If the code is written in such a
clear and precise manner that its meaning is self-
proclaimed, then no comment is needed. But this
is easier said than done. Most programs are not
self-explanatory and are often hard to read and
understand if no comments are given.

Here are some general guidelines for writing
good comments:

• Comments should be consistent across the
entire program.

• Each function should be associated with
comments that explain the purpose of the
function and its role in the overall program.

• Within a function, comments should be
given for each logical section of coding to
explain the meaning and purpose (intention)
of the section.

• Comments should stipulate what freedom
does (or does not) the maintaining program-
mers have with respect to making changes to
that code.

• Comments are seldom required for indi-
vidual statements. If a statement needs com-
ments, one should reconsider the statement.

17. Secure Software Development and
Maintenance

[11*, c29]

Due to increasing malicious activities targeted
at computer systems, security has become a sig-
nificant issue in the development of software. In
addition to the usual correctness and reliability,
software developers must also pay attention to
the security of the software they develop. Secure
software development builds security in software
by following a set of established and/or recom-
mended rules and practices in software develop-
ment. Secure software maintenance complements
secure software development by ensuring the no
security problems are introduced during software
maintenance.

A generally accepted view concerning software
security is that it is much better to design security
into software than to patch it in after software is
developed. To design security into software, one
must take into consideration every stage of the soft-
ware development lifecycle. In particular, secure
software development involves software require-
ments security, software design security, software
construction  security,  and software testing  secu-
rity. In addition, security must also be taken into
consideration when performing software mainte-
nance as security faults and loopholes can be and
often are introduced during maintenance.

17.1. Software Requirements Security

Software requirements security deals with the
clarification and specification of security policy
and objectives into software requirements, which

Computing Foundations 13-25

lays the foundation for security considerations in
the software development. Factors to consider
in this phase include software requirements and
threats/risks. The former refers to the specific
functions that are required for the sake of secu-
rity; the latter refers to the possible ways that the
security of software is threatened.

17.2. Software Design Security

Software Design security deals with the design
of software modules that fit together to meet
the security objectives specified in the security
requirements. This step clarifies the details of
security considerations and develops the specific
steps for implementation. Factors considered
may include frameworks and access modes that
set up the overall security monitoring/enforce-
ment strategies, as well as the individual policy
enforcement mechanisms.

17.3. Software Construction Security

Software construction security concerns the ques-
tion of how to write actual programming code for
specific situations such that security considerations
are taken care of. The term “Software Construction
Security” could mean different things for different
people. It can mean the way a specific function is
coded, such that the coding itself is secure, or it can
mean the coding of security into software.

Most people entangle the two together without
distinction. One reason for such entanglement is
that it is not clear how one can make sure that a
specific coding is secure. For example, in C pro-
gramming language, the expression of i<<1 (shift
the binary representation of i’s value to the left by
one bit) and 2*i (multiply the value of variable i
by constant 2) mean the same thing semantically,
but do they have the same security ramification?
The answer could be different for different com-
binations of ISAs and compilers. Due to this lack
of understanding, software construction secu-
rity—in its current state of existence—mostly
refers to the second aspect mentioned above: the
coding of security into software.

Coding of security into software can be
achieved by following recommended rules. A few
such rules follow:

• Structure the process so that all sections
requiring extra privileges are modules. The
modules should be as small as possible and
should perform only those tasks that require
those privileges.

• Ensure that any assumptions in the program
are validated. If this is not possible, docu-
ment them for the installers and maintainers
so they know the assumptions that attackers
will try to invalidate.

• Ensure that the program does not share
objects in memory with any other program.

• The error status of every function must be
checked. Do not try to recover unless neither
the cause of the error nor its effects affect
any security considerations. The program
should restore the state of the software to
the state it had before the process began, and
then terminate.

17.4. Software Testing Security

Software testing security determines that soft-
ware protects data and maintains security speci-
fication as given. For more information, please
refer to the Software Testing KA.

17.5. Build Security into Software Engineering 
Process

Software is only as secure as its development
process goes. To ensure the security of software,
security must be built into the software engineer-
ing process. One trend that emerges in this regard
is the Secure Development Lifecycle (SDL) con-
cept, which is a classical spiral model that takes
a holistic view of security from the perspective
of software lifecycle and ensures that security is
inherent in software design and development, not
an afterthought later in production. The SDL pro-
cess is claimed to reduce software maintenance
costs and increase reliability of software concern-
ing software security related faults.

17.6. Software Security Guidelines

Although there are no bulletproof ways for secure
software development, some general guidelines
do exist that can be used to aid such effort. These

13-26 SWEBOK® Guide V3.0

guidelines span every phase of the software
development lifecycle. Some reputable guide-
lines are published by the Computer Emergency
Response Team (CERT) and below are its top
10 software security practices (the details can be
found in [12]:

1. Validate input.
2. Heed compiler warnings.
3. Architect and design for security policies.
4. Keep it simple.
5. Default deny.
6. Adhere to the principle of least privilege.
7. Sanitize data sent to other software.
8. Practice defense in depth.
9. Use effective quality assurance techniques.
10. Adopt a software construction security
standard.

Computing Foundations 13-27

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Vo
la

nd
 2

00
3

[2
*]

M
cC

on
ne

ll
20

04

[3
*]

B
ro

ok
sh

ea
r

20
08

[4

*]

H
or

ow
itz

 e
t a

l.
20

07

[5
*]

So
m

m
er

vi
lle

 2
01

1
[6

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[8
*]

N
ie

ls
en

 1
99

3
[9

*]

B
is

ho
p

20
02

[1

1*
]

1. Problem Solving
Techniques

s3.2,
s4.2

1.1. Definition of
Problem Solving s3.2

1.2. Formulating the
Real Problem s3.2

1.3. Analyze the
Problem s3.2

1.4. Design a
Solution Search
Strategy

s4.2

1.5. Problem Solving
Using Programs c5

2. Abstraction s5.2–
5.4

2.1. Levels of
Abstraction

s5.2–
5.3

2.2. Encapsulation s5.3
2.3. Hierarchy s5.2

3. Programming
Fundamentals c6–19

3.1. The
Programming
Process

c6–c19

3.2. Programming
Paradigms c6–c19

3.3. Defensive
Programming c8

4. Programming
Language Basics c6

4.1. Programming
Language Overview s6.1

4.2. Syntax and
Semantics of
Programming
Language

s6.2

13-28 SWEBOK® Guide V3.0

Vo
la

nd
 2

00
3

[2
*]

M
cC

on
ne

ll
20

04

[3
*]

B
ro

ok
sh

ea
r

20
08

[4

*]

H
or

ow
itz

 e
t a

l.
20

07

[5
*]

So
m

m
er

vi
lle

 2
01

1
[6

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[8
*]

N
ie

ls
en

 1
99

3
[9

*]

B
is

ho
p

20
02

[1

1*
]

4.3. Low Level
Programming
Language

s6.5–
6.7

4.4. High Level
Programing
Language

s6.5–
6.7

4.5. Declarative
vs. Imperative
Programming
Language

s6.5–
6.7

5. Debugging Tools
and Techniques c23

5.1. Types of Errors s23.1
5.2. Debugging
Techniques: s23.2

5.3. Debugging
Tools s23.5

6. Data Structure and
Representation

s2.1–
2.6

6.1. Data Structure
Overview

s2.1–
2.6

6.2. Types of Data
Structure

s2.1–
2.6

6.3. Operations on
Data Structures

s2.1–
2.6

7. Algorithms and
Complexity

s1.1–
1.3,

s3.3–
3.6,

s4.1–
4.8,

s5.1–
5.7,

s6.1–
6.3,
s7.1–
7.6,

s11.1,
s12.1

Computing Foundations 13-29

Vo
la

nd
 2

00
3

[2
*]

M
cC

on
ne

ll
20

04

[3
*]

B
ro

ok
sh

ea
r

20
08

[4

*]

H
or

ow
itz

 e
t a

l.
20

07

[5
*]

So
m

m
er

vi
lle

 2
01

1
[6

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[8
*]

N
ie

ls
en

 1
99

3
[9

*]

B
is

ho
p

20
02

[1

1*
]

7.1. Overview of
Algorithms s1.1–1.2

7.2. Attributes of
Algorithms s1.3

7.3. Algorithmic
Analysis s1.3

7.4. Algorithmic
Design Strategies

s3.3–
3.6,

s4.1–
4.8,

s5.1–
5.7,

s6.1–
6.3,
s7.1–
7.6,

s11.1,
s12.1

7.5. Algorithmic
Analysis Strategies

s3.3–
3.6,

s4.1–
4.8,

s5.1–
5.7,

s6.1–
6.3,
s7.1–
7.6,

s11.1,
s12.1

8. Basic Concept of a
System c10

8.1. Emergent
System Properties s10.1

8.2. System
Engineering s10.2

8.3. Overview of a
Computer System

13-30 SWEBOK® Guide V3.0

Vo
la

nd
 2

00
3

[2
*]

M
cC

on
ne

ll
20

04

[3
*]

B
ro

ok
sh

ea
r

20
08

[4

*]

H
or

ow
itz

 e
t a

l.
20

07

[5
*]

So
m

m
er

vi
lle

 2
01

1
[6

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[8
*]

N
ie

ls
en

 1
99

3
[9

*]

B
is

ho
p

20
02

[1

1*
]

9. Computer
Organization c1–4

9.1. Computer
Organization
Overview

s1.1–1.2

9.2. Digital Systems c3
9.3. Digital Logic c3
9.4. Computer
Expression of Data c2

9.5. The Central
Processing Unit
(CPU)

s4.1–
4.2

9.6. Memory System
Organization s4.6

9.7. Input and Output
(I/O) s4.5

10. Compiler Basics s6.4 s8.4
10.1. Compiler
Overview s8.4

10.2. Interpretation
and Compilation s8.4

10.3. The
Compilation Process s6.4 s8.4

11. Operating
Systems Basics c3

11.1. Operating
Systems Overview s3.2

11.2. Tasks of
Operating System s3.3

11.3. Operating
System Abstractions s3.2

11.4. Operating
Systems
Classification

s3.1

Computing Foundations 13-31

Vo
la

nd
 2

00
3

[2
*]

M
cC

on
ne

ll
20

04

[3
*]

B
ro

ok
sh

ea
r

20
08

[4

*]

H
or

ow
itz

 e
t a

l.
20

07

[5
*]

So
m

m
er

vi
lle

 2
01

1
[6

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[8
*]

N
ie

ls
en

 1
99

3
[9

*]

B
is

ho
p

20
02

[1

1*
]

12. Database
Basics and Data
Management

c9

12.1. Entity and
Schema s9.1

12.2. Database
Management
Systems (DBMS)

s9.1

12.3. Database
Query Language s9.2

12.4. Tasks of
DBMS Packages s9.2

12.5. Data
Management s9.5

12.6. Data Mining s9.6
13. Network
Communication
Basics

c12

13.1. Types of
Network

s12.2–
12.3

13.2. Basic Network
Components s12.6

13.3. Networking
Protocols and
Standards

s12.4–
12.5

13.4. The Internet
13.5. Internet of
Things s12.8

13.6. Virtual Private
Network

14. Parallel and
Distributed
Computing

c9

14.1. Parallel
and Distributed
Computing
Overview

s9.4.1–
9.4.3

13-32 SWEBOK® Guide V3.0

Vo
la

nd
 2

00
3

[2
*]

M
cC

on
ne

ll
20

04

[3
*]

B
ro

ok
sh

ea
r

20
08

[4

*]

H
or

ow
itz

 e
t a

l.
20

07

[5
*]

So
m

m
er

vi
lle

 2
01

1
[6

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[8
*]

N
ie

ls
en

 1
99

3
[9

*]

B
is

ho
p

20
02

[1

1*
]

14.2. Differences
between Parallel
and Distributed
Computing

s9.4.4–
9.4.5

14.3. Parallel
and Distributed
Computing Models

s9.4.4–
9.4.5

14.4. Main Issues
in Distributed
Computing

15. Basic User
Human Factors c8 c5

15.1. Input and
Output

s5.1,
s5.3

15.2. Error Messages s5.2,
s5.8

15.3. Software
Robustness

s5.5–
5.6

16. Basic Developer
Human Factors c31–32

16.1. Structure c31
16.2. Comments c32

17. Secure Software
Development and
Maintenance

c29

17.1. Two Aspects of
Secure Coding s29.1

17.2. Coding
Security into
Software

s29.4

17.3. Requirement
Security s29.2

17.4. Design
Security s29.3

17.5. Implementation
Security s29.5

Computing Foundations 13-33

REFERENCES

[1] Joint Task Force on Computing Curricula,
IEEE Computer Society and Association
for Computing Machinery, Software 
Engineering 2004: Curriculum Guidelines 
for Undergraduate Degree Programs in 
Software Engineering, 2004; http://sites.
computer.org/ccse/SE2004Volume.pdf.

[2*] G. Voland, Engineering by Design, 2nd ed.,
Prentice Hall, 2003.

[3*] S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

[4*] J.G. Brookshear, Computer Science: An 
Overview, 10th ed., Addison-Wesley, 2008.

[5*] E. Horowitz et al., Computer Algorithms,
2nd ed., Silicon Press, 2007.

[6*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[7] ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[8*] L. Null and J. Lobur, The Essentials of 
Computer Organization and Architecture,
2nd ed., Jones and Bartlett Publishers,
2006.

[9*] J. Nielsen, Usability Engineering, Morgan
Kaufmann, 1993.

[10] ISO 9241-420:2011 Ergonomics of Human-
System Interaction, ISO, 2011.

[11*] M. Bishop, Computer Security: Art and 
Science, Addison-Wesley, 2002.

[12] R.C. Seacord, The CERT C Secure Coding 
Standard, Addison-Wesley Professional,
2008.

http://sites.computer.org/ccse/SE2004Volume.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf

14-1

CHAPTER 14

MATHEMATICAL FOUNDATIONS

INTRODUCTION

Software professionals live with programs. In a
very simple language, one can program only for
something that follows a well-understood, non-
ambiguous logic. The Mathematical Foundations
knowledge area (KA) helps software engineers
comprehend this logic, which in turn is translated
into programming language code. The mathemat-
ics that is the primary focus in this KA is quite
different from typical arithmetic, where numbers
are dealt with and discussed. Logic and reason-
ing are the essence of mathematics that a software
engineer must address.

Mathematics, in a sense, is the study of formal
systems. The word “formal” is associated with
preciseness, so there cannot be any ambiguous or
erroneous interpretation of the fact. Mathemat-
ics is therefore the study of any and all certain
truths about any concept. This concept can be
about numbers as well as about symbols, images,
sounds, video—almost anything. In short, not
only numbers and numeric equations are sub-
ject to preciseness. On the contrary, a software
engineer needs to have a precise abstraction on a
diverse application domain.

The SWEBOK Guide’s Mathematical Founda-
tions KA covers basic techniques to identify a set
of rules for reasoning in the context of the system
under study. Anything that one can deduce fol-
lowing these rules is an absolute certainty within
the context of that system. In this KA, techniques
that can represent and take forward the reasoning
and judgment of a software engineer in a precise
(and therefore mathematical) manner are defined
and discussed. The language and methods of logic
that are discussed here allow us to describe math-
ematical proofs to infer conclusively the absolute
truth of certain concepts beyond the numbers. In

short, you can write a program for a problem only
if it follows some logic. The objective of this KA
is to help you develop the skill to identify and
describe such logic. The emphasis is on helping
you understand the basic concepts rather than on
challenging your arithmetic abilities.

BREAKDOWN OF TOPICS FOR
MATHEMATICAL FOUNDATIONS

The breakdown of topics for the Mathematical
Foundations KA is shown in Figure 14.1.

1. Set, Relations, Functions
[1*, c2]

Set. A set is a collection of objects, called elements
of the set. A set can be represented by listing its
elements between braces, e.g., S = {1, 2, 3}.

The symbol ∈ is used to express that an ele-
ment belongs to a set, or—in other words—is a
member of the set. Its negation is represented by
∉, e.g., 1 ∈ S, but 4 ∉ S.

In a more compact representation of set using
set builder notation, {x | P(x)} is the set of all x
such that P(x) for any proposition P(x) over any
universe of discourse. Examples for some impor-
tant sets include the following:

N = {0, 1, 2, 3, …} = the set of nonnegative
integers.

Z = {…, −3, −2, −1, 0, 1, 2, 3, …} = the set of
integers.

Finite and Infinite Set. A set with a finite num-
ber of elements is called a finite set. Conversely,
any set that does not have a finite number of ele-
ments in it is an infinite set. The set of all natural
numbers, for example, is an infinite set.

14-2 SWEBOK® Guide V3.0

Cardinality. The cardinality of a finite set S is
the number of elements in S. This is represented
|S|, e.g., if S = {1, 2, 3}, then |S| = 3.
Universal Set. In general S = {x ∈ U | p(x)},

where U is the universe of discourse in which
the predicate P(x) must be interpreted. The “uni-
verse of discourse” for a given predicate is often
referred to as the universal set. Alternately, one
may define universal set as the set of all elements.
Set Equality. Two sets are equal if and only if

they have the same elements, i.e.:

X = Y ≡ ∀p (p ∈ X ↔ p ∈ Y).

Subset. X is a subset of set Y, or X is contained
in Y, if all elements of X are included in Y. This is
denoted by X ⊆ Y. In other words, X ⊆ Y if and
only if ∀p (p ∈ X → p ∈ Y).

For example, if X = {1, 2, 3} and Y = {1, 2, 3,
4, 5}, then X ⊆ Y.

If X is not a subset of Y, it is denoted as X Y.
Proper Subset. X is a proper subset of Y (denoted

by X ⊂ Y) if X is a subset of Y but not equal to Y,
i.e., there is some element in Y that is not in X.

In other words, X ⊂ Y if (X ⊆ Y) ∧ (X ≠ Y).
For example, if X = {1, 2, 3}, Y = {1, 2, 3,

4}, and Z = {1, 2, 3}, then X ⊂ Y, but X is not a
proper subset of Z. Sets X and Z are equal sets.

If X is not a proper subset of Y, it is denoted
as X ⊄ Y.

Superset. If X is a subset of Y, then Y is called
a superset of X. This is denoted by Y ⊇ X, i.e., Y
⊇ X if and only if X ⊆ Y.

For example, if X = {1, 2, 3} and Y = {1, 2, 3,
4, 5}, then Y ⊇ X.

Empty Set. A set with no elements is called an
empty  set. An empty set, denoted by ∅, is also
referred to as a null or void set.
Power Set. The set of all subsets of a set X is

called the power  set of X. It is represented as
℘(X).

For example, if X = {a, b, c}, then ℘(X) = {∅,
{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. If
|X| = n, then |℘(X)| = 2n.
Venn Diagrams. Venn diagrams are graphic rep-

resentations of sets as enclosed areas in the plane.
For example, in Figure 14.2, the rectangle rep-

resents the universal set and the shaded region
represents a set X.

Figure 14.2. Venn Diagram for Set X

1.1. Set Operations

Intersection. The intersection of two sets X and
Y, denoted by X ∩ Y, is the set of common ele-
ments in both X and Y.

In other words, X ∩ Y = {p | (p ∈ X) ∧ (p ∈ Y)}.
As, for example, {1, 2, 3} ∩ {3, 4, 6} = {3}
If X ∩ Y = f, then the two sets X and Y are said

to be a disjoint pair of sets.

Figure 14.1. Breakdown of Topics for the Mathematical Foundations KA

Mathematical Foundations 14-3

A Venn diagram for set intersection is shown in
Figure 14.3. The common portion of the two sets
represents the set intersection.

Figure 14.3. Intersection of Sets X and Y

Union. The union of two sets X and Y, denoted
by X ∪ Y, is the set of all elements either in X, or
in Y, or in both.

In other words, X ∪ Y = {p | (p ∈ X) ∨ (p ∈ Y)}.
As, for example, {1, 2, 3} ∪ {3, 4, 6} = {1, 2,

3, 4, 6}.

Figure 14.4. Union of Sets X and Y

It may be noted that |X ∪ Y| = |X| + |Y| − |X
∩ Y|.

A Venn diagram illustrating the union of two
sets is represented by the shaded region in Figure
14.4.
Complement. The set of elements in the univer-

sal set that do not belong to a given set X is called
its complement set X'.

In other words, X' ={p | (p ∈ U) ∧ (p ∉ X)}.

Figure 14.5. Venn Diagram for Complement Set of X

The shaded portion of the Venn diagram in Fig-
ure 14.5 represents the complement set of X.
Set Difference or Relative Complement. The set

of elements that belong to set X but not to set Y
builds the set difference of Y from X. This is rep-
resented by X − Y.

In other words, X − Y = {p | (p ∈ X) ∧ (p ∉ Y)}.
As, for example, {1, 2, 3} − {3, 4, 6} = {1, 2}.
It may be proved that X − Y = X ∩ Y’.
Set difference X – Y is illustrated by the shaded

region in Figure 14.6 using a Venn diagram.

Figure 14.6. Venn Diagram for X − Y

Cartesian Product. An ordinary pair {p, q} is
a set with two elements. In a set, the order of the
elements is irrelevant, so {p, q} = {q, p}.

In an ordered pair (p, q), the order of occur-
rences of the elements is relevant. Thus, (p, q) ≠
(q, p) unless p = q. In general (p, q) = (s, t) if and
only if p = s and q = t.

Given two sets X and Y, their Cartesian product
X × Y is the set of all ordered pairs (p, q) such that
p ∈ X and q ∈ Y.

In other words, X × Y = {(p, q) | (p ∈ X) ∧ (q
∈ Y)}.

As for example, {a, b} × {1, 2} = {(a, 1), (a, 2),
(b, 1), (b, 2)}

1.2. Properties of Set

Some of the important properties and laws of sets
are mentioned below.

1. Associative Laws:
X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z
X ∩ (Y ∩ Z) = (X ∩ Y) ∩ Z

14-4 SWEBOK® Guide V3.0

2. Commutative Laws:
X ∪ Y = Y ∪ X X ∩ Y = Y ∩ X

3. Distributive Laws:
X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z)
X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z)

4. Identity Laws:
X ∪ ∅ = X X ∩ U = X

5. Complement Laws:
X ∪ X' = U X ∩ X' = ∅

6. Idempotent Laws:
X ∪ X = X X ∩ X = X

7. Bound Laws:
X ∪ U = U X ∩ ∅ = ∅

8. Absorption Laws:
X ∪ (X ∩ Y) = X X ∩ (X ∪ Y) = X

9. De Morgan’s Laws:
(X ∪ Y)' = X' ∩ Y' (X ∩ Y)' = X' ∪ Y'

1.3. Relation and Function

A relation is an association between two sets of
information. For example, let’s consider a set
of residents of a city and their phone numbers.
The pairing of names with corresponding phone
numbers is a relation. This pairing is ordered for
the entire relation. In the example being consid-
ered, for each pair, either the name comes first
followed by the phone number or the reverse.
The set from which the first element is drawn is
called the domain set and the other set is called
the range set. The domain is what you start with
and the range is what you end up with.

A function is a well-behaved relation. A rela-
tion R(X, Y) is well behaved if the function maps
every element of the domain set X to a single ele-
ment of the range set Y. Let’s consider domain set
X as a set of persons and let range set Y store their
phone numbers. Assuming that a person may have
more than one phone number, the relation being
considered is not a function. However, if we draw
a relation between names of residents and their
date of births with the name set as domain, then

this becomes a well-behaved relation and hence a
function. This means that, while all functions are
relations, not all relations are functions. In case
of a function given an x, one gets one and exactly
one y for each ordered pair (x, y).

For example, let’s consider the following two
relations.

A: {(3, –9), (5, 8), (7, –6), (3, 9), (6, 3)}.
B: {(5, 8), (7, 8), (3, 8), (6, 8)}.

Are these functions as well?
In case of relation A, the domain is all the

x-values, i.e., {3, 5, 6, 7}, and the range is all the
y-values, i.e., {–9, –6, 3, 8, 9}.

Relation A is not a function, as there are two
different range values, –9 and 9, for the same
x-value of 3.

In case of relation B, the domain is same as that
for A, i.e., {3, 5, 6, 7}. However, the range is a
single element {8}. This qualifies as an example
of a function even if all the x-values are mapped
to the same y-value. Here, each x-value is distinct
and hence the function is well behaved. Relation
B may be represented by the equation y = 8.

The characteristic of a function may be verified
using a vertical line test, which is stated below:
Given the graph of a relation, if one can draw 

a vertical line that crosses the graph in more than 
one place, then the relation is not a function. 

Figure 14.7. Vertical Line Test for Function

In this example, both lines L1 and L2 cut the
graph for the relation thrice. This signifies that
for the same x-value, there are three different
y-values for each of case. Thus, the relation is not
a function.

Mathematical Foundations 14-5

2. Basic Logic
[1*, c1]

2.1. Propositional Logic

A proposition is a statement that is either true
or false, but not both. Let’s consider declarative
sentences for which it is meaningful to assign
either of the two status values: true or false. Some
examples of propositions are given below.

1. The sun is a star
2. Elephants are mammals.
3. 2 + 3 = 5.

However, a + 3 = b is not a proposition, as it is
neither true nor false. It depends on the values of
the variables a and b.
The Law of Excluded Middle: For every propo-

sition p, either p is true or p is false.
The Law of Contradiction: For every proposi-

tion p, it is not the case that p is both true and false.
Propositional logic is the area of logic that

deals with propositions. A truth table displays
the relationships between the truth values of
propositions.

A Boolean variable is one whose value is either
true or false. Computer bit operations correspond
to logical operations of Boolean variables.

The basic logical operators including negation
(¬ p), conjunction (p ∧ q), disjunction (p ∨ q),
exclusive or (p ⊕ q), and implication (p → q) are
to be studied. Compound propositions may be
formed using various logical operators.

A compound proposition that is always true is a
tautology. A compound proposition that is always
false is a contradiction. A compound proposition
that is neither a tautology nor a contradiction is a
contingency.

Compound propositions that always have the
same truth value are called logically equivalent
(denoted by ≡). Some of the common equiva-
lences are:

Identity laws:
p ∧ T ≡ p p ∨ F ≡ p

Domination laws:
p ∨ T ≡ T p ∧ F ≡ F

Idempotent laws:
p ∨ p ≡ p p ∧ p ≡ p

Double negation law:
¬ (¬ p) ≡ p

Commutative laws:
p ∨ q ≡ q ∨ p p ∧ q ≡ q ∧ p

Associative laws:
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Distributive laws:
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

De Morgan’s laws:
¬ (p ∧ q) ≡ ¬ p ∨ ¬ q ¬ (p ∨ q) ≡ ¬ p ∧ ¬ q

2.2. Predicate Logic 

A predicate is a verb phrase template that
describes a property of objects or a relationship
among objects represented by the variables. For
example, in the sentence, The flower  is  red, the
template is  red is a predicate. It describes the
property of a flower. The same predicate may be
used in other sentences too.

Predicates are often given a name, e.g., “Red”
or simply “R” can be used to represent the predi-
cate is red. Assuming R as the name for the predi-
cate is red, sentences that assert an object is of the
color red can be represented as R(x), where x rep-
resents an arbitrary object. R(x) reads as x is red.

Quantifiers allow statements about entire col-
lections of objects rather than having to enumer-
ate the objects by name.

The Universal quantifier ∀x asserts that a sen-
tence is true for all values of variable x.

For example, ∀x Tiger(x) → Mammal(x)
means all tigers are mammals.

The Existential quantifier ∃x asserts that a sen-
tence is true for at least one value of variable x.

For example, ∃x Tiger(x) → Man-eater(x) means
there exists at least one tiger that is a man-eater.

Thus, while universal quantification uses
implication, the existential quantification natu-
rally uses conjunction.

14-6 SWEBOK® Guide V3.0

A variable x that is introduced into a logical
expression by a quantifier is bound to the closest
enclosing quantifier.

A variable is said to be a free variable if it is not
bound to a quantifier.

Similarly, in a block-structured programming
language, a variable in a logical expression refers
to the closest quantifier within whose scope it
appears.

For example, in ∃x (Cat(x) ∧ ∀x (Black(x))), x
in Black(x) is universally quantified. The expres-
sion implies that cats exist and everything is
black.

Propositional logic falls short in representing
many assertions that are used in computer sci-
ence and mathematics. It also fails to compare
equivalence and some other types of relationship
between propositions.

For example, the assertion a  is  greater  than 
1 is not a proposition because one cannot infer
whether it is true or false without knowing the
value of a. Thus, propositional logic cannot deal
with such sentences. However, such assertions
appear quite often in mathematics and we want
to infer on those assertions. Also, the pattern
involved in the following two logical equiva-
lences cannot be captured by propositional
logic: “Not all men are smokers” and “Some men 
don’t  smoke.” Each of these two propositions
is treated independently in propositional logic.
There is no mechanism in propositional logic to
find out whether or not the two are equivalent to
one another. Hence, in propositional logic, each
equivalent proposition is treated individually
rather than dealing with a general formula that
covers all equivalences collectively.

Predicate logic is supposed to be a more pow-
erful logic that addresses these issues. In a sense,
predicate logic (also known as first-order logic
or predicate calculus) is an extension of propo-
sitional logic to formulas involving terms and
predicates.

3. Proof Techniques
[1*, c1]

A proof is an argument that rigorously establishes
the truth of a statement. Proofs can themselves be
represented formally as discrete structures.

Statements used in a proof include axioms
and postulates that are essentially the underlying
assumptions about mathematical structures, the
hypotheses of the theorem to be proved, and pre-
viously proved theorems.

A theorem is a statement that can be shown to
be true.

A lemma is a simple theorem used in the proof
of other theorems.

A corollary is a proposition that can be estab-
lished directly from a theorem that has been
proved.

A conjecture is a statement whose truth value
is unknown.

When a conjecture’s proof is found, the conjec-
ture becomes a theorem. Many times conjectures
are shown to be false and, hence, are not theorems.

3.1. Methods of Proving Theorems

Direct Proof. Direct proof is a technique to estab-
lish that the implication p → q is true by showing
that q must be true when p is true.

For example, to show that if n is odd then n2−1
is even, suppose n is odd, i.e., n = 2k + 1 for some
integer k:

∴ n2 = (2k + 1)2 = 4k2 + 4k + 1.

As the first two terms of the Right Hand Side
(RHS) are even numbers irrespective of the value
of k, the Left Hand Side (LHS) (i.e., n2) is an odd
number. Therefore, n2−1 is even.
Proof by Contradiction. A proposition p is true

by contradiction if proved based on the truth of
the implication ¬ p → q where q is a contradiction.

For example, to show that the sum of 2x + 1
and 2y − 1 is even, assume that the sum of 2x + 1
and 2y − 1is odd. In other words, 2(x + y), which
is a multiple of 2, is odd. This is a contradiction.
Hence, the sum of 2x + 1 and 2y − 1 is even.

An inference rule is a pattern establishing that
if a set of premises are all true, then it can be
deduced that a certain conclusion statement is
true. The reference rules of addition, simplifica-
tion, and conjunction need to be studied.
Proof by Induction. Proof by induction is done

in two phases. First, the proposition is estab-
lished to be true for a base case—typically for the

Mathematical Foundations 14-7

positive integer 1. In the second phase, it is estab-
lished that if the proposition holds for an arbitrary
positive integer k, then it must also hold for the
next greater integer, k + 1. In other words, proof
by induction is based on the rule of inference that
tells us that the truth of an infinite sequence of
propositions P(n), ∀n ∈ [1 … ∞] is established
if P(1) is true, and secondly, ∀k ∈ [2 ... n] if P(k)
→ P(k + 1).

It may be noted here that, for a proof by math-
ematical induction, it is not assumed that P(k) is
true for all positive integers k. Proving a theo-
rem or proposition only requires us to establish
that if it is assumed P(k) is true for any arbitrary
positive integer k, then P(k + 1) is also true. The
correctness of mathematical induction as a valid
proof technique is beyond discussion of the cur-
rent text. Let us prove the following proposition
using induction.

Proposition: The sum of the first n positive odd 
integers P(n) is n2.

Basis Step: The proposition is true for n = 1 as
P(1) = 12 = 1. The basis step is complete.

Inductive Step: The induction hypothesis (IH)
is that the proposition is true for n = k, k being an
arbitrary positive integer k.

∴ 1 + 3 + 5+ … + (2k − 1) = k2

Now, it’s to be shown that P(k) → P(k + 1).

P(k + 1) = 1 + 3 + 5+ … +(2k − 1) + (2k + 1)
 = P(k) + (2k + 1)
 = k2 + (2k + 1) [using IH]
 = k2 + 2k + 1
 = (k + 1)2

Thus, it is shown that if the proposition is true
for n = k, then it is also true for n = k + 1.

The basis step together with the inductive step of
the proof show that P(1) is true and the conditional
statement P(k) → P(k + 1) is true for all positive
integers k. Hence, the proposition is proved.

4. Basics of Counting
[1*c6]

The sum rule states that if a task t1 can be done
in n1 ways and a second task t2 can be done in

n2 ways, and if these tasks cannot be done at the
same time, then there are n1+ n2 ways to do either
task.

• If A and B are disjoint sets, then |A ∪ B|=|A|
+ |B|.

• In general if A1, A2, …. , An are disjoint
sets, then |A1 ∪ A2 ∪ … ∪ An| = |A1| + |A2|
+ … + |An|.

For example, if there are 200 athletes doing
sprint events and 30 athletes who participate in
the long jump event, then how many ways are
there to pick one athlete who is either a sprinter
or a long jumper?

Using the sum rule, the answer would be 200
+ 30 = 230.

The product rule states that if a task t1 can be
done in n1 ways and a second task t2 can be done
in n2 ways after the first task has been done, then
there are n1 * n2 ways to do the procedure.

• If A and B are disjoint sets, then |A × B| =
|A| * |B|.

• In general if A1, A2, …, An are disjoint sets,
then |A1 × A2 × … × An| = |A1| * |A2| * ….
* |An|.

For example, if there are 200 athletes doing
sprint events and 30 athletes who participate in
the long jump event, then how many ways are
there to pick two athletes so that one is a sprinter
and the other is a long jumper?

Using the product rule, the answer would be
200 * 30 = 6000.

The principle of inclusion-exclusion states that
if a task t1 can be done in n1 ways and a second
task t2 can be done in n2 ways at the same time
with t1, then to find the total number of ways the
two tasks can be done, subtract the number of
ways to do both tasks from n1 + n2.

• If A and B are not disjoint, |A ∪ B| = |A| +
|B| − |A ∩ B|.

In other words, the principle of inclusion-
exclusion aims to ensure that the objects in the
intersection of two sets are not counted more than
once.

14-8 SWEBOK® Guide V3.0

Recursion is the general term for the practice
of defining an object in terms of itself. There are
recursive algorithms, recursively defined func-
tions, relations, sets, etc.

A recursive function is a function that calls
itself. For example, we define f(n) = 3 * f(n − 1)
for all n ∈ N and n ≠ 0 and f(0) = 5.

An algorithm is recursive if it solves a problem
by reducing it to an instance of the same problem
with a smaller input.

A phenomenon is said to be random if individ-
ual outcomes are uncertain but the long-term pat-
tern of many individual outcomes is predictable.

The probability of any outcome for a ran-
dom phenomenon is the proportion of times the
outcome would occur in a very long series of
repetitions.

The probability P(A) of any event A satisfies 0
≤ P(A) ≤ 1. Any probability is a number between
0 and 1. If S is the sample space in a probabil-
ity model, the P(S) = 1. All possible outcomes
together must have probability of 1.

Two events A and B are disjoint if they have
no outcomes in common and so can never occur
together. If A and B are two disjoint events, P(A
or B) = P(A) + P(B). This is known as the addi-
tion rule for disjoint events.

If two events have no outcomes in common,
the probability that one or the other occurs is the
sum of their individual probabilities.

Permutation is an arrangement of objects in
which the order matters without repetition. One
can choose r objects in a particular order from a
total of n objects by using nPr ways, where, npr =
n! / (n − r)!. Various notations like nPr and P(n, r)
are used to represent the number of permutations
of a set of n objects taken r at a time.

Combination is a selection of objects in which
the order does not matter without repetition. This
is different from a permutation because the order
does not matter. If the order is only changed (and
not the members) then no new combination is
formed. One can choose r objects in any order
from a total of n objects by using nCr ways, where,
nCr = n! / [r! * (n − r)!].

5. Graphs and Trees
[1*, c10, c11]

5.1. Graphs 

A graph G = (V, E) where V is the set of vertices
(nodes) and E is the set of edges. Edges are also
referred to as arcs or links.

Figure 14.8. Example of a Graph

F is a function that maps the set of edges E to
a set of ordered or unordered pairs of elements V.
For example, in Figure 14.8, G = (V, E) where V
= {A, B, C}, E = {e1, e2, e3}, and F = {(e1, (A,
C)), (e2, (C, B)), (e3, (B, A))}.

The graph in Figure 14.8 is a simple graph that
consists of a set of vertices or nodes and a set of
edges connecting unordered pairs.

The edges in simple graphs are undirected.
Such graphs are also referred to as undirected
graphs.

For example, in Figure 14.8, (e1, (A, C)) may
be replaced by (e1, (C, A)) as the pair between
vertices A and C is unordered. This holds good
for the other two edges too.

In a multigraph, more than one edge may con-
nect the same two vertices. Two or more connect-
ing edges between the same pair of vertices may
reflect multiple associations between the same
two vertices. Such edges are called parallel or
multiple edges.

For example, in Figure 14.9, the edges e3 and
e4 are both between A and B. Figure 14.9 is a
multigraph where edges e3 and e4 are multiple
edges.

Mathematical Foundations 14-9

Figure 14.9. Example of a Multigraph

In a pseudograph, edges connecting a node to
itself are allowed. Such edges are called loops.

Figure 14.10. Example of a Pseudograph

For example, in Figure 14.10, the edge e4 both
starts and ends at B. Figure 14.10 is a pseudo-
graph in which e4 is a loop.

Figure 14.11. Example of a Directed Graph

A directed graph G = (V, E) consists of a set of
vertices V and a set of edges E that are ordered
pairs of elements of V. A directed graph may con-
tain loops.

For example, in Figure 14.11, G = (V, E) where
V = {A, B, C}, E = {e1, e2, e3}, and F = {(e1, (A,
C)), (e2, (B, C)), (e3, (B, A))}.

Figure 14.12. Example of a Weighted Graph

In a weighted graph G = (V, E), each edge has a
weight associated with it. The weight of an edge
typically represents the numeric value associated
with the relationship between the corresponding
two vertices.

For example, in Figure 14.12, the weights for
the edges e1, e2, and e3 are taken to be 76, 93,
and 15 respectively. If the vertices A, B, and C
represent three cities in a state, the weights, for
example, could be the distances in miles between
these cities.

Let G = (V, E) be an undirected graph with
edge set E. Then, for an edge e ∈ E where e = {u,
v}, the following terminologies are often used:

• u, v are said to be adjacent or neighbors or
connected.

• edge e is incident with vertices u and v.
• edge e connects u and v.
• vertices u and v are endpoints for edge e.

If vertex v ∈ V, the set of vertices in the undi-
rected graph G(V, E), then:

• the degree of v, deg(v), is its number of inci-
dent edges, except that any self-loops are
counted twice.

14-10 SWEBOK® Guide V3.0

• a vertex with degree 0 is called an isolated 
vertex.

• a vertex of degree 1 is called a pendant 
vertex.

Let G(V, E) be a directed graph. If e(u, v) is an
edge of G, then the following terminologies are
often used:

• u is adjacent to v, and v is adjacent from u.
• e comes from u and goes to v.
• e connects u to v, or e goes from u to v.
• the initial vertex of e is u.
• the terminal vertex of e is v.

If vertex v is in the set of vertices for the
directed graph G(V, E), then

• in-degree of v, deg−(v), is the number of
edges going to v, i.e., for which v is the ter-
minal vertex.

• out-degree of v, deg+(v), is the number of
edges coming from v, i.e., for which v is the
initial vertex.

• degree of v, deg(v) = deg−(v) + deg+(v), is the
sum of vs in-degree and out-degree.

• a loop at a vertex contributes 1 to both in-
degree and out-degree of this vertex.

It may be noted that, following the definitions
above, the degree of a node is unchanged whether
we consider its edges to be directed or undirected.

In an undirected graph, a path of length n from
u to v is a sequence of n adjacent edges from ver-
tex u to vertex v.

• A path is a circuit if u=v.
• A path traverses the vertices along it.
• A path is simple if it contains no edge more

than once.

A cycle on n vertices Cn for any n ≥ 3 is a sim-
ple graph where V = {v1, v2, …, vn} and E = {{v1,
v2}, {v2, v3}, … , {vn−1, vn}, {vn, v1}}.

For example, Figure 14.13 illustrates two
cycles of length 3 and 4.

Figure 14.13. Example of Cycles C3 and C4

An adjacency list is a table with one row per
vertex, listing its adjacent vertices. The adjacency
listing for a directed graph maintains a listing of
the terminal nodes for each of the vertex in the
graph.

Vertex Adjacency
List

A B, C

B A, B, C

C A, B

Figure 14.14. Adjacency Lists for Graphs in Figures 14.10
and 14.11

For example, Figure 14.14 illustrates the adja-
cency lists for the pseudograph in Figure 14.10
and the directed graph in Figure 14.11. As the
out-degree of vertex C in Figure 14.11 is zero,
there is no entry against C in the adjacency list.

Different representations for a graph—like
adjacency matrix, incidence matrix, and adja-
cency lists—need to be studied.

5.2. Trees 

A tree T(N, E) is a hierarchical data structure of n
= |N| nodes with a specially designated root node
R while the remaining n − 1 nodes form subtrees
under the root node R. The number of edges |E| in
a tree would always be equal to |N| − 1.

The subtree at node X is the subgraph of the
tree consisting of node X and its descendants and
all edges incident to those descendants. As an
alternate to this recursive definition, a tree may
be defined as a connected undirected graph with
no simple circuits.

Mathematical Foundations 14-11

Figure 14.15. Example of a Tree

However, one should remember that a tree is
strictly hierarchical in nature as compared to a
graph, which is flat. In case of a tree, an ordered
pair is built between two nodes as parent and
child. Each child node in a tree is associated
with only one parent node, whereas this restric-
tion becomes meaningless for a graph where no
parent-child association exists.

An undirected graph is a tree if and only if
there is a unique simple path between any two of
its vertices.

Figure 14.15 presents a tree T(N, E) where the
set of nodes N = {A, B, C, D, E, F, G, H, I, J, K}.
The edge set E is {(A, B), (A, C), (A, D), (B, E),
(B, F), (B, G), (C, H), (C, I), (D, J), (D, K)}.

The parent of a nonroot node v is the unique
node u with a directed edge from u to v. Each
node in the tree has a unique parent node except
the root of the tree.

For example, in Figure 14.15, root node A is
the parent node for nodes B, C, and D. Similarly,
B is the parent of E, F, G, and so on. The root
node A does not have any parent.

A node that has children is called an internal
node.

For example, in Figure 14.15, node A or node B
are examples of internal nodes.

The degree of a node in a tree is the same as its
number of children.

For example, in Figure 14.15, root node A and
its child B are both of degree 3. Nodes C and D
have degree 2.

The distance of a node from the root node in
terms of number of hops is called its level. Nodes
in a tree are at different levels. The root node is

at level 0. Alternately, the level of a node X is the
length of the unique path from the root of the tree
to node X.

For example, root node A is at level 0 in Fig-
ure 14.15. Nodes B, C, and D are at level 1. The
remaining nodes in Figure 14.15 are all at level 2.

The height of a tree is the maximum of the lev-
els of nodes in the tree.

For example, in Figure 14.15, the height of the
tree is 2.

A node is called a leaf if it has no children. The
degree of a leaf node is 0.

For example, in Figure 14.15, nodes E through
K are all leaf nodes with degree 0.

The ancestors or predecessors of a nonroot
node X are all the nodes in the path from root to
node X.

For example, in Figure 14.15, nodes A and D
form the set of ancestors for J.

The successors or descendents of a node X are
all the nodes that have X as its ancestor. For a tree
with n nodes, all the remaining n − 1 nodes are
successors of the root node.

For example, in Figure 14.15, node B has suc-
cessors in E, F, and G.
If node X is an ancestor of node Y, then node Y 

is a successor of X.
Two or more nodes sharing the same parent

node are called sibling nodes.
For example, in Figure 14.15, nodes E and G

are siblings. However, nodes E and J, though
from the same level, are not sibling nodes.
Two  sibling  nodes  are  of  the  same  level,  but 

two nodes  in  the same  level are not necessarily 
siblings.

A tree is called an ordered  tree if the rela-
tive position of occurrences of children nodes is
significant.

For example, a family tree is an ordered tree
if, as a rule, the name of an elder sibling appears
always before (i.e., on the left of) the younger
sibling.

In an unordered tree, the relative position of
occurrences between the siblings does not bear
any significance and may be altered arbitrarily.

A binary tree is formed with zero or more nodes
where there is a root node R and all the remaining
nodes form a pair of ordered subtrees under the
root node.

14-12 SWEBOK® Guide V3.0

In a binary tree, no internal node can have more
than two children. However, one must consider
that besides this criterion in terms of the degree
of internal nodes, a binary tree is always ordered.
If the positions of the left and right subtrees for
any node in the tree are swapped, then a new tree
is derived.

Figure 14.16. Examples of Binary Trees

For example, in Figure 14.16, the two binary
trees are different as the positions of occurrences
of the children of A are different in the two trees.

Figure 14.17. Example of a Full Binary Tree

According to [1*], a binary tree is called a full
binary tree if every internal node has exactly two
children.

For example, the binary tree in Figure 14.17
is a full binary tree, as both of the two internal
nodes A and B are of degree 2.

A full binary tree following the definition
above is also referred to as a strictly binary tree.

For example, both binary trees in Figure 14.18
are complete binary trees. The tree in Figure
14.18(a) is a complete as well as a full binary
tree. A complete binary tree has all its levels,
except possibly the last one, filled up to capacity.
In case the last level of a complete binary tree is
not full, nodes occur from the leftmost positions
available.

Figure 14.18. Example of Complete Binary Trees

Interestingly, following the definitions above,
the tree in Figure 14.18(b) is a complete but not
full binary tree as node B has only one child in D.
On the contrary, the tree in Figure 14.17 is a full
—but not complete—binary tree, as the children
of B occur in the tree while the children of C do
not appear in the last level.

A binary tree of height H is balanced if all its
leaf nodes occur at levels H or H − 1.

For example, all three binary trees in Figures
14.17 and 14.18 are balanced binary trees.

There are at most 2H leaves in a binary tree of
height H. In other words, if a binary tree with L
leaves is full and balanced, then its height is H =
⎡log2L⎤.

For example, this statement is true for the
two trees in Figures 14.17 and 14.18(a) as both
trees are full and balanced. However, the expres-
sion above does not match for the tree in Figure
14.18(b) as it is not a full binary tree.

A binary search tree (BST) is a special kind of
binary tree in which each node contains a distinct
key value, and the key value of each node in the
tree is less than every key value in its right subtree
and greater than every key value in its left subtree.

A traversal algorithm is a procedure for sys-
tematically visiting every node of a binary tree.
Tree traversals may be defined recursively.

If T is binary tree with root R and the remain-
ing nodes form an ordered pair of nonnull left
subtree TL and nonnull right subtree TR below R,
then the preorder traversal function PreOrder(T)
is defined as:

PreOrder(T) = R, PreOrder(TL), PreOrder(TR)
… eqn. 1

Mathematical Foundations 14-13

The recursive process of finding the preorder
traversal of the subtrees continues till the sub-
trees are found to be Null. Here, commas have
been used as delimiters for the sake of improved
readability.

The postorder and in-order may be similarly
defined using eqn. 2 and eqn. 3 respectively.

PostOrder(T) = PostOrder(TL), PostOrder(TR),
R … eqn 2

InOrder(T) = InOrder(TL), R, InOrder(TR) …
eqn 3

Figure 14.19. A Binary Search Tree

For example, the tree in Figure 14.19 is a binary
search tree (BST). The preorder, postorder, and
in-order traversal outputs for the BST are given
below in their respective order.

Preorder output: 9, 5, 2, 1, 4, 7, 6, 8, 13, 11,
10, 15

Postorder output: 1, 4, 2, 6, 8, 7, 5, 10, 11, 15,
13, 9

In-order output: 1, 2, 4, 5, 6, 7, 8, 9, 10, 11,
13, 15

Further discussion on trees and their usage has
been included in section 6, Data Structure and Rep-
resentation, of the Computing Foundations KA.

6. Discrete Probability
[1*, c7]

Probability is the mathematical description of
randomness. Basic definition of probability and

randomness has been defined in section 4 of this
KA. Here, let us start with the concepts behind
probability distribution and discrete probability.

A probability model is a mathematical descrip-
tion of a random phenomenon consisting of two
parts: a sample space S and a way of assigning
probabilities to events. The sample space defines
the set of all possible outcomes, whereas an event
is a subset of a sample space representing a pos-
sible outcome or a set of outcomes.

A random variable is a function or rule that
assigns a number to each outcome. Basically, it
is just a symbol that represents the outcome of an
experiment.

For example, let X be the number of heads
when the experiment is flipping a coin n times.
Similarly, let S be the speed of a car as registered
on a radar detector.

The values for a random variable could be dis-
crete or continuous depending on the experiment.

A discrete random variable can hold all pos-
sible outcomes without missing any, although it
might take an infinite amount of time.

A continuous random variable is used to mea-
sure an uncountable number of values even if an
infinite amount of time is given.

For example, if a random variable X represents
an outcome that is a real number between 1 and
100, then X may have an infinite number of val-
ues. One can never list all possible outcomes for
X even if an infinite amount of time is allowed.
Here, X is a continuous random variable. On
the contrary, for the same interval of 1 to 100,
another random variable Y can be used to list all
the integer values in the range. Here, Y is a dis-
crete random variable.

An upper-case letter, say X, will represent
the name of the random variable. Its lower-case
counterpart, x, will represent the value of the ran-
dom variable.

The probability that the random variable X will
equal x is:

P(X = x) or, more simply, P(x).

A probability distribution (density) function is
a table, formula, or graph that describes the val-
ues of a random variable and the probability asso-
ciated with these values.

14-14 SWEBOK® Guide V3.0

Probabilities associated with discrete random
variables have the following properties:

i. 0 ≤ P(x) ≤ 1 for all x
ii. ΣP(x) = 1

A discrete probability distribution can be repre-
sented as a discrete random variable.

X 1 2 3 4 5 6

P(x) 1/6 1/6 1/6 1/6 1/6 1/6

Figure 14.20. A Discrete Probability Function for a Rolling
Die

The mean μ of a probability distribution model
is the sum of the product terms for individual
events and its outcome probability. In other
words, for the possible outcomes x1, x2, … , xn
in a sample space S if pk is the probability of out-
come xk, the mean of this probability would be μ
= x1p1 + x2p2 + … + xnpn.

For example, the mean of the probability den-
sity for the distribution in Figure 14.20 would be

1 * (1/6) + 2 * (1/6) + 3 * (1/6) + 4 * (1/6) + 5
* (1/6) + 6 * (1/6)

= 21 * (1/6) = 3.5

Here, the sample space refers to the set of all
possible outcomes.

The variance s2 of a discrete probability model
is: s2 = (x1 – μ)2p1 + (x2 – μ)2p2 + … + (xk – μ)2pk.
The standard deviations is the square root of the
variance.

For example, for the probability distribution in
Figure 14.20, the variation σ2 would be

s2 = [(1 – 3.5)2 * (1/6) + (2 – 3.5)2 * (1/6) +
(3 – 3.5)2 * (1/6) + (4 – 3.5)2 * (1/6) + (5 –
3.5)2 * (1/6) + (6 – 3.5)2 * (1/6)]

= (6.25 + 2.25 + 0.25 + 0.5 + 2.25 + 6.25) *
(1/6)

= 17.5 * (1/6)
= 2.90

∴ standard deviation s =

These numbers indeed aim to derive the aver-
age value from repeated experiments. This is
based on the single most important phenom-
enon of probability, i.e., the average value from
repeated experiments is likely to be close to the
expected value of one experiment. Moreover,
the average value is more likely to be closer to
the expected value of any one experiment as the
number of experiments increases.

7. Finite State Machines
[1*, c13]

A computer system may be abstracted as a map-
ping from state to state driven by inputs. In other
words, a system may be considered as a transition
function T: S × I → S × O, where S is the set of
states and I, O are the input and output functions.

If the state set S is finite (not infinite), the sys-
tem is called a finite state machine (FSM).

Alternately, a finite state machine (FSM) is a
mathematical abstraction composed of a finite
number of states and transitions between those
states. If the domain S × I is reasonably small,
then one can specify T explicitly using diagrams
similar to a flow graph to illustrate the way logic
flows for different inputs. However, this is prac-
tical only for machines that have a very small
information capacity.

An FSM has a finite internal memory, an input
feature that reads symbols in a sequence and one
at a time, and an output feature.

The operation of an FSM begins from a start
state, goes through transitions depending on input
to different states, and can end in any valid state.
However, only a few of all the states mark a suc-
cessful flow of operation. These are called accept 
states.

The information capacity of an FSM is
C = log |S|. Thus, if we represent a machine having
an information capacity of C bits as an FSM, then
its state transition graph will have |S| = 2C nodes.

A finite state machine is formally defined as M 
= (S, I, O, f, g, s0).

S is the state set;
I is the set of input symbols;
O is the set of output symbols;
f is the state transition function;

http://en.wikipedia.org/wiki/State_%28computer_science%29
http://en.wikipedia.org/wiki/Logic

Mathematical Foundations 14-15

g is the output function;
and s0 is the initial state.

Given an input x ∈ I on state Sk, the FSM
makes a transition to state Sh following state tran-
sition function f and produces an output y ∈ O
using the output function g.

Figure 14.21. Example of an FSM

For example, Figure 14.21 illustrates an FSM
with S0 as the start state and S1 as the final state.
Here, S = {S0, S1, S2}; I = {0, 1}; O = {2, 3}; f(S0,
0) = S2, f(S0, 1) = S1, f(S1, 0) = S2, f(S1, 1) = S2, f(S2,
0) = S2, f(S2, 1) = S0; g(S0, 0) = 3, g(S0, 1) = 2, g(S1,
0) = 3, g(S1, 1) = 2, g(S2, 0) = 2, g(S2, 1) = 3.

Current
State

Input
0 1

S0 S2 S1

S1 S2 S2

S2 S2 S0

(a)

Current
State

Output State
Input Input

0 1 0 1
S0 3 2 S2 S1

S1 3 2 S2 S2

S2 2 3 S2 S0

(b)

Figure 14.22. Tabular Representation of an FSM

The state transition and output values for differ-
ent inputs on different states may be represented
using a state table. The state table for the FSM in
Figure 14.21 is shown in Figure 14.22. Each pair
against an input symbol represents the new state
and the output symbol.

For example, Figures 14.22(a) and 14.22(b) are
two alternate representations of the FSM in Fig-
ure 14.21.

8. Grammars
[1*, c13]

The grammar of a natural language tells us
whether a combination of words makes a valid
sentence. Unlike natural languages, a formal lan-
guage is specified by a well-defined set of rules for
syntaxes. The valid sentences of a formal language
can be described by a grammar with the help of
these rules, referred to as production rules.

A formal language is a set of finite-length
words or strings over some finite alphabet, and
a grammar specifies the rules for formation of
these words or strings. The entire set of words
that are valid for a grammar constitutes the lan-
guage for the grammar. Thus, the grammar G is
any compact, precise mathematical definition of a
language L as opposed to just a raw listing of all
of the language’s legal sentences or examples of
those sentences.

A grammar implies an algorithm that would
generate all legal sentences of the language.
There are different types of grammars.

A phrase-structure or Type-0 grammar G = (V,
T, S, P) is a 4-tuple in which:

• V is the vocabulary, i.e., set of words.
• T ⊆ V is a set of words called terminals.
• S ∈ N is a special word called the start

symbol.
• P is the set of productions rules for substitut-

ing one sentence fragment for another.

There exists another set N = V − T of words
called nonterminals. The nonterminals represent
concepts like noun. Production rules are applied
on strings containing nonterminals until no more
nonterminal symbols are present in the string.
The start symbol S is a nonterminal.

14-16 SWEBOK® Guide V3.0

The language generated by a formal grammar
G, denoted by L(G), is the set of all strings over
the set of alphabets V that can be generated, start-
ing with the start symbol, by applying produc-
tion rules until all the nonterminal symbols are
replaced in the string.

For example, let G = ({S, A, a, b}, {a, b}, S, {S
→ aA, S → b, A → aa}). Here, the set of termi-
nals are N = {S, A}, where S is the start symbol.
The three production rules for the grammar are
given as P1: S → aA; P2: S → b; P3: A → aa.

Applying the production rules in all possible
ways, the following words may be generated
from the start symbol.

S → aA (using P1 on start symbol)
 → aaa (using P3)
S → b (using P2 on start symbol)

Nothing else can be derived for G. Thus, the
language of the grammar G consists of only two
words: L(G) = {aaa, b}.

8.1. Language Recognition 

Formal grammars can be classified according to the
types of productions that are allowed. The Chom-
sky hierarchy (introduced by Noam Chomsky in
1956) describes such a classification scheme.

Figure 14.23. Chomsky Hierarchy of Grammars

As illustrated in Figure 14.23, we infer the fol-
lowing on different types of grammars:

1. Every regular grammar is a context-free
grammar (CFG).

2. Every CFG is a context-sensitive grammar
(CSG).

3. Every CSG is a phrase-structure grammar
(PSG).

Context-Sensitive Grammar: All fragments in
the RHS are either longer than the corresponding
fragments in the LHS or empty, i.e., if b → a, then
|b| < |a| or a = ∅.

A formal language is context-sensitive if a con-
text-sensitive grammar generates it.

Context-Free Grammar: All fragments in the
LHS are of length 1, i.e., if A → a, then |A| = 1
for all A ∈ N.

The term context-free derives from the fact that
A can always be replaced by a, regardless of the
context in which it occurs.

A formal language is context-free if a context-
free grammar generates it. Context-free lan-
guages are the theoretical basis for the syntax of
most programming languages.
Regular Grammar. All fragments in the RHS

are either single terminals or a pair built by a
terminal and a nonterminal; i.e., if A → a, then
either a ∈ T, or a = cD, or a = Dc for c ∈ T, D ∈ N.

If a = cD, then the grammar is called a right
linear grammar. On the other hand, if a = Dc, then
the grammar is called a left linear grammar. Both
the right linear and left linear grammars are regu-
lar or Type-3 grammar.

The language L(G) generated by a regular
grammar G is called a regular language.

A regular expression A is a string (or pattern)
formed from the following six pieces of infor-
mation: a ∈ S, the set of alphabets, e, 0 and the
operations, OR (+), PRODUCT (.), CONCATE-
NATION (*). The language of G, L(G) is equal to
all those strings that match G, L(G) = {x ∈ S*|x
matches G}.

For any a ∈ S, L(a) = a; L(e) = {ε}; L(0) = 0.
+ functions as an or, L(A + B) = L(A) ∪ L(B).
. creates a product structure, L(AB) = L(A) .

L(B).
* denotes concatenation, L(A*) = {x1x2…xn |

xi ∈ L(A) and n ³ 0}

For example, the regular expression (ab)*
matches the set of strings: {e, ab, abab, ababab,
abababab, …}.

Mathematical Foundations 14-17

For example, the regular expression (aa)*
matches the set of strings on one letter a that have
even length.

For example, the regular expression (aaa)* +
(aaaaa)* matches the set of strings of length equal
to a multiple of 3 or 5.

9. Numerical Precision, Accuracy, and Errors
[2*, c2]

The main goal of numerical analysis is to
develop efficient algorithms for computing pre-
cise numerical values of functions, solutions of
algebraic and differential equations, optimization
problems, etc.

A matter of fact is that all digital computers can
only store finite numbers. In other words, there
is no way that a computer can represent an infi-
nitely large number—be it an integer, rational
number, or any real or all complex numbers (see
section 10, Number Theory). So the mathematics
of approximation becomes very critical to handle
all the numbers in the finite range that a computer
can handle.

Each number in a computer is assigned a loca-
tion or word, consisting of a specified number of
binary digits or bits. A k bit word can store a total
of N = 2k different numbers.

For example, a computer that uses 32 bit arith-
metic can store a total of N = 232 ≈ 4.3 × 109 dif-
ferent numbers, while another one that uses 64
bits can handle N’ = 264 ≈ 1.84 × 1019 different
numbers. The question is how to distribute these
N numbers over the real line for maximum effi-
ciency and accuracy in practical computations.

One evident choice is to distribute them evenly,
leading to fixed-point arithmetic. In this system,
the first bit in a word is used to represent a sign
and the remaining bits are treated for integer val-
ues. This allows representation of the integers
from 1 − ½N, i.e., = 1 − 2k−1 to 1. As an approxi-
mating method, this is not good for noninteger
numbers.

Another option is to space the numbers closely
together—say with a uniform gap of 2−n—and so
distribute the total N numbers uniformly over the
interval −2−n−1N < x ≤ 2−n−1N. Real numbers lying
between the gaps are represented by either round-
ing (meaning the closest exact representative)

or chopping (meaning the exact representative
immediately below —or above, if negative—the
number).

Numbers lying beyond the range must be repre-
sented by the largest (or largest negative) number
that can be represented. This becomes a symbol
for overflow. Overflow occurs when a computa-
tion produces a value larger than the maximum
value in the range.

When processing speed is a significant bottle-
neck, the use of the fixed-point representations
is an attractive and faster alternative to the more
cumbersome floating-point arithmetic most com-
monly used in practice.

Let’s define a couple of very important terms:
accuracy and precision as associated with numer-
ical analysis.

Accuracy is the closeness with which a mea-
sured or computed value agrees with the true value.

Precision, on the other hand, is the closeness
with which two or more measured or computed
values for the same physical substance agree with
each other. In other words, precision is the close-
ness with which a number represents an exact
value.

Let x be a real number and let x* be an approxi-
mation. The absolute error in the approximation
x* ≈ x is defined as | x* − x |. The relative error
is defined as the ratio of the absolute error to the
size of x, i.e., |x* − x| / | x |, which assumes x ¹ 0;
otherwise, relative error is not defined.

For example, 1000000 is an approximation to
1000001 with an absolute error of 1 and a relative
error of 10−6, while 10 is an approximation of 11
with an absolute error of 1 and a relative error of
0.1. Typically, relative error is more intuitive and
the preferred determiner of the size of the error.
The present convention is that errors are always
≥ 0, and are = 0 if and only if the approximation
is exact.

An approximation x* has k significant deci-
mal digits if its relative error is < 5 × 10−k−1. This
means that the first k digits of x* following its
first nonzero digit are the same as those of x.

Significant digits are the digits of a number that
are known to be correct. In a measurement, one
uncertain digit is included.

For example, measurement of length with
a ruler of 15.5 mm with ±0.5 mm maximum

14-18 SWEBOK® Guide V3.0

allowable error has 2 significant digits, whereas
a measurement of the same length using a caliper
and recorded as 15.47 mm with ±0.01 mm maxi-
mum allowable error has 3 significant digits.

10. Number Theory
[1*, c4]

Number theory is one of the oldest branches
of pure mathematics and one of the largest. Of
course, it concerns questions about numbers,
usually meaning whole numbers and fractional or
rational numbers. The different types of numbers
include integer, real number, natural number,
complex number, rational number, etc.

10.1. Divisibility 

Let’s start this section with a brief description of
each of the above types of numbers, starting with
the natural numbers.
Natural Numbers. This group of numbers starts

at 1 and continues: 1, 2, 3, 4, 5, and so on. Zero
is not in this group. There are no negative or frac-
tional numbers in the group of natural numbers.
The common mathematical symbol for the set of
all natural numbers is N.
Whole Numbers. This group has all of the natu-

ral numbers in it plus the number 0.
Unfortunately, not everyone accepts the above

definitions of natural and whole numbers. There
seems to be no general agreement about whether
to include 0 in the set of natural numbers.

Many mathematicians consider that, in Europe,
the sequence of natural numbers traditionally
started with 1 (0 was not even considered to be
a number by the Greeks). In the 19th century, set
theoreticians and other mathematicians started
the convention of including 0 in the set of natural
numbers.
Integers. This group has all the whole numbers

in it and their negatives. The common mathemati-
cal symbol for the set of all integers is Z, i.e., Z =
{…, −3, −2, −1, 0, 1, 2, 3, …}.
Rational Numbers. These are any numbers that

can be expressed as a ratio of two integers. The
common symbol for the set of all rational num-
bers is Q.

Rational numbers may be classified into
three types, based on how the decimals act. The

decimals either do not exist, e.g., 15, or, when
decimals do exist, they may terminate, as in 15.6,
or they may repeat with a pattern, as in 1.666...,
(which is 5/3).
Irrational  Numbers. These are numbers that

cannot be expressed as an integer divided by an
integer. These numbers have decimals that never
terminate and never repeat with a pattern, e.g., PI
or √2.
Real Numbers. This group is made up of all the

rational and irrational numbers. The numbers that
are encountered when studying algebra are real
numbers. The common mathematical symbol for
the set of all real numbers is R.
Imaginary Numbers. These are all based on the

imaginary number i. This imaginary number is
equal to the square root of −1. Any real number
multiple of i is an imaginary number, e.g., i, 5i,
3.2i, −2.6i, etc.
Complex  Numbers. A complex number is a

combination of a real number and an imaginary
number in the form a + bi. The real part is a, and
b is called the imaginary part. The common math-
ematical symbol for the set of all complex num-
bers is C.

For example, 2 + 3i, 3−5i, 7.3 + 0i, and 0 + 5i.
Consider the last two examples:
7.3 + 0i is the same as the real number 7.3.

Thus, all real numbers are complex numbers with
zero for the imaginary part.

Similarly, 0 + 5i is just the imaginary number
5i. Thus, all imaginary numbers are complex
numbers with zero for the real part.

Elementary number theory involves divisibility
among integers. Let a, b ∈ Z with a ≠ 0.The expres-
sion a|b, i.e., a divides b if ∃c ∈ Z: b = ac, i.e., there
is an integer c such that c times a equals b.

For example, 3|−12 is true, but 3|7 is false.
If a divides b, then we say that a is a factor of

b or a is a divisor of b, and b is a multiple of a.
b is even if and only if 2|b.
Let a, d ∈ Z with d > 1. Then a mod d denotes

that the remainder r from the division algorithm
with dividend a and divisor d, i.e., the remainder
when a is divided by d. We can compute (a mod 
d) by: a − d * ⎣a/d⎦, where ⎣a/d⎦ represents the
floor of the real number.

Let Z+ = {n ∈ Z | n > 0} and a, b ∈ Z, m ∈ Z+,
then a is congruent to b modulo m, written as a ≡
b (mod m), if and only if m | a−b.

Mathematical Foundations 14-19

Alternately, a is congruent to b modulo m if and
only if (a−b) mod m = 0.

10.2. Prime Number, GCD 

An integer p > 1 is prime if and only if it is not
the product of any two integers greater than 1,
i.e., p is prime if p > 1 ∧ ∃ ¬ a, b ∈ N: a > 1, b >
1, a * b = p.

The only positive factors of a prime p are 1
and p itself. For example, the numbers 2, 13, 29,
61, etc. are prime numbers. Nonprime integers
greater than 1 are called composite numbers. A
composite number may be composed by multi-
plying two integers greater than 1.

There are many interesting applications of
prime numbers; among them are the public-
key cryptography scheme, which involves the
exchange of public keys containing the product
p*q of two random large primes p and q (a private
key) that must be kept secret by a given party.

The greatest common divisor gcd(a, b) of inte-
gers a, b is the greatest integer d that is a divisor
both of a and of b, i.e.,

d = gcd(a, b) for max(d: d|a ∧ d|b)

For example, gcd(24, 36) = 12.
Integers a and b are called relatively prime or

coprime if and only if their GCD is 1.
For example, neither 35 nor 6 are prime, but

they are coprime as these two numbers have no
common factors greater than 1, so their GCD is 1.

A set of integers X = {i1, i2, …} is relatively
prime if all possible pairs ih, ik, h ≠ k drawn from
the set X are relatively prime.

11. Algebraic Structures

This section introduces a few representations
used in higher algebra. An algebraic structure
consists of one or two sets closed under some
operations and satisfying a number of axioms,
including none.

For example, group, monoid, ring, and lattice
are examples of algebraic structures. Each of
these is defined in this section.

11.1. Group

A set S closed under a binary operation • forms a
group if the binary operation satisfies the follow-
ing four criteria:

• Associative: ∀a, b, c ∈ S, the equation (a • b)
• c = a • (b • c) holds.

• Identity: There exists an identity element I ∈
S such that for all a ∈ S, I • a = a • I = a.

• Inverse: Every element a ∈ S, has an inverse
a' ∈ S with respect to the binary operation,
i.e., a • a' = I; for example, the set of integers
Z with respect to the addition operation is a
group. The identity element of the set is 0 for
the addition operation. ∀x ∈ Z, the inverse
of x would be –x, which is also included in Z.

• Closure property: ∀a, b ∈ S, the result of the
operation a • b ∈ S.

• A group that is commutative, i.e., a • b = b • a,
is known as a commutative or Abelian group.

The set of natural numbers N (with the opera-
tion of addition) is not a group, since there is no
inverse for any x > 0 in the set of natural numbers.
Thus, the third rule (of inverse) for our operation
is violated. However, the set of natural number
has some structure.

Sets with an associative operation (the first
condition above) are called semigroups; if they
also have an identity element (the second condi-
tion), then they are called monoids.

Our set of natural numbers under addition is
then an example of a monoid, a structure that
is not quite a group because it is missing the
requirement that every element have an inverse
under the operation.

A monoid is a set S that is closed under a single
associative binary operation • and has an identity
element I ∈ S such that for all a ∈ S, I • a = a • I
= a. A monoid must contain at least one element.

For example, the set of natural numbers N
forms a commutative monoid under addition with
identity element 0. The same set of natural num-
bers N also forms a monoid under multiplication
with identity element 1. The set of positive inte-
gers P forms a commutative monoid under multi-
plication with identity element 1.

It may be noted that, unlike those in a group,
elements of a monoid need not have inverses. A

http://mathworld.wolfram.com/CommutativeMonoid.html
http://mathworld.wolfram.com/Group.html

14-20 SWEBOK® Guide V3.0

monoid can also be thought of as a semigroup
with an identity element.

A subgroup is a group H contained within a
bigger one, G, such that the identity element of
G is contained in H, and whenever h1 and h2 are
in H, then so are h1 • h2 and h1

−1. Thus, the ele-
ments of H, equipped with the group operation on
G restricted to H, indeed form a group.

Given any subset S of a group G, the subgroup
generated by S consists of products of elements
of S and their inverses. It is the smallest subgroup
of G containing S.

For example, let G be the Abelian group whose
elements are G = {0, 2, 4, 6, 1, 3, 5, 7} and whose
group operation is addition modulo 8. This group
has a pair of nontrivial subgroups: J = {0, 4} and
H = {0, 2, 4, 6}, where J is also a subgroup of H.

In group theory, a cyclic group is a group that
can be generated by a single element, in the
sense that the group has an element a (called the
generator of the group) such that, when written
multiplicatively, every element of the group is a
power of a.

A group G is cyclic if G = {an for any integer n}.
Since any group generated by an element in a

group is a subgroup of that group, showing that
the only subgroup of a group G that contains a is
G itself suffices to show that G is cyclic.

For example, the group G = {0, 2, 4, 6, 1, 3, 5,
7}, with respect to addition modulo 8 operation,
is cyclic. The subgroups J = {0, 4} and H = {0, 2,
4, 6} are also cyclic.

11.2. Rings 

If we take an Abelian group and define a second
operation on it, a new structure is found that is
different from just a group. If this second opera-
tion is associative and is distributive over the
first, then we have a ring.

A ring is a triple of the form (S, +, •), where (S,
+) is an Abelian group, (S, •) is a semigroup, and
• is distributive over +; i.e., “ a, b, c ∈ S, the equa-
tion a • (b + c) = (a • b) + (a • c) holds. Further, if
• is commutative, then the ring is said to be com-
mutative. If there is an identity element for the •
operation, then the ring is said to have an identity.

For example, (Z, +, *), i.e., the set of integers Z,
with the usual addition and multiplication opera-
tions, is a ring. As (Z, *) is commutative, this ring
is a commutative or Abelian ring. The ring has 1
as its identity element.

Let’s note that the second operation may not
have an identity element, nor do we need to find
an inverse for every element with respect to this
second operation. As for what distributive means,
intuitively it is what we do in elementary math-
ematics when performing the following change: a
* (b + c) = (a * b) + (a * c).

A field is a ring for which the elements of the
set, excluding 0, form an Abelian group with the
second operation.

A simple example of a field is the field of ratio-
nal numbers (R, +, *) with the usual addition
and multiplication operations. The numbers of
the format a/b ∈ R, where a, b are integers and
b ≠ 0. The additive inverse of such a fraction is
simply −a/b, and the multiplicative inverse is b/a
provided that a ≠ 0.

http://mathworld.wolfram.com/Semigroup.html
http://mathworld.wolfram.com/IdentityElement.html

Mathematical Foundations 14-21

MATRIX OF TOPICS VS. REFERENCE MATERIAL

R
os

en
 2

01
1

[1
*]

C
he

ne
y

an
d

K
in

ca
id

 2
00

7
[2

*]

1. Sets, Relations, Functions c2
2. Basic Logic c1
3. Proof Techniques c1
4. Basic Counting c6
5. Graphs and Trees c10, c11
6. Discrete Probability c7
7. Finite State Machines c13
8. Grammars c13
9. Numerical Precision, Accuracy, and Errors c2
10. Number Theory c4
11. Algebraic Structures

14-22 SWEBOK® Guide V3.0

REFERENCES

[1*] K. Rosen, Discrete Mathematics and Its 
Applications, 7th ed., McGraw-Hill, 2011.

[2*] E.W. Cheney and D.R. Kincaid, Numerical 
Mathematics and Computing, 6th ed.,
Brooks/Cole, 2007.

ACKNOWLEDGMENTS

The author thankfully acknowledges the contri-
bution of Prof. Arun Kumar Chatterjee, Ex-Head,
Department of Mathematics, Manipur Univer-
sity, India, and Prof. Devadatta Sinha, Ex-Head,
Department of Computer Science and Engineer-
ing, University of Calcutta, India, in preparing
this chapter on Mathematical Foundations.

15-1

CHAPTER 15

ENGINEERING FOUNDATIONS

ACRONYMS

CAD Computer-Aided Design

CMMI Capability Maturity Model
Integration

pdf Probability Density Function
pmf Probability Mass Function
RCA Root Cause Analysis
SDLC Software Development Life Cycle

INTRODUCTION

IEEE defines engineering as “the application of
a systematic, disciplined, quantifiable approach
to structures, machines, products, systems or
processes” [1]. This chapter outlines some of the
engineering foundational skills and techniques
that are useful for a software engineer. The focus
is on topics that support other KAs while mini-
mizing duplication of subjects covered elsewhere
in this document.

As the theory and practice of software engi-
neering matures, it is increasingly apparent that
software engineering is an engineering disci-
pline that is based on knowledge and skills com-
mon to all engineering disciplines. This Engi-
neering Foundations knowledge area (KA) is
concerned with the engineering foundations that
apply to software engineering and other engi-
neering disciplines. Topics in this KA include
empirical methods and experimental techniques;
statistical analysis; measurement; engineering
design; modeling, prototyping, and simulation;
standards; and root cause analysis. Application
of this knowledge, as appropriate, will allow
software engineers to develop and maintain
software more efficiently and effectively. Com-
pleting their engineering work efficiently and

effectively is a goal of all engineers in all engi-
neering disciplines.

BREAKDOWN OF TOPICS FOR
ENGINEERING FOUNDATIONS

The breakdown of topics for the Engineering
Foundations KA is shown in Figure 15.1.

1. Empirical Methods and Experimental
Techniques

[2*, c1]

An engineering method for problem solving
involves proposing solutions or models of solu-
tions and then conducting experiments or tests
to study the proposed solutions or models. Thus,
engineers must understand how to create an exper-
iment and then analyze the results of the experi-
ment in order to evaluate the proposed solution.
Empirical methods and experimental techniques
help the engineer to describe and understand vari-
ability in their observations, to identify the sources
of variability, and to make decisions.

Three different types of empirical studies com-
monly used in engineering efforts are designed
experiments, observational studies, and retro-
spective studies. Brief descriptions of the com-
monly used methods are given below.

1.1. Designed Experiment

A designed or controlled experiment is an inves-
tigation of a testable hypothesis where one or
more independent variables are manipulated to
measure their effect on one or more dependent
variables. A precondition for conducting an
experiment is the existence of a clear hypothesis.
It is important for an engineer to understand how
to formulate clear hypotheses.

15-2 SWEBOK® Guide V3.0

Designed experiments allow engineers to
determine in precise terms how the variables are
related and, specifically, whether a cause-effect
relationship exists between them. Each combi-
nation of values of the independent variables is
a treatment. The simplest experiments have just
two treatments representing two levels of a sin-
gle independent variable (e.g., using a tool vs.
not using a tool). More complex experimental
designs arise when more than two levels, more
than one independent variable, or any dependent
variables are used.

1.2. Observational Study

An observational or case study is an empirical
inquiry that makes observations of processes
or phenomena within a real-life context. While
an experiment deliberately ignores context, an
observational or case study includes context as
part of the observation. A case study is most use-
ful when the focus of the study is on how and why
questions, when the behavior of those involved in
the study cannot be manipulated, and when con-
textual conditions are relevant and the boundaries
between the phenomena and context are not clear.

1.3. Retrospective Study

A retrospective study involves the analysis of his-
torical data. Retrospective studies are also known
as historical studies. This type of study uses data
(regarding some phenomenon) that has been
archived over time. This archived data is then ana-
lyzed in an attempt to find a relationship between
variables, to predict future events, or to identify
trends. The quality of the analysis results will
depend on the quality of the information contained
in the archived data. Historical data may be incom-
plete, inconsistently measured, or incorrect.

2. Statistical Analysis
[2*, c9s1, c2s1] [3*, c10s3]

In order to carry out their responsibilities, engi-
neers must understand how different product
and process characteristics vary. Engineers often
come across situations where the relationship
between different variables needs to be studied.
An important point to note is that most of the
studies are carried out on the basis of samples
and so the observed results need to be understood
with respect to the full population. Engineers
must, therefore, develop an adequate understand-
ing of statistical techniques for collecting reliable
data in terms of sampling and analysis to arrive at
results that can be generalized. These techniques
are discussed below.

2.1. Unit of Analysis (Sampling Units), 
Population, and Sample

Unit of analysis. While carrying out any empiri-
cal study, observations need to be made on cho-
sen units called the units of analysis or sampling
units. The unit of analysis must be identified and
must be appropriate for the analysis. For exam-
ple, when a software product company wants to
find the perceived usability of a software product,
the user or the software function may be the unit
of analysis.
Population. The set of all respondents or items

(possible sampling units) to be studied forms the
population. As an example, consider the case of
studying the perceived usability of a software
product. In this case, the set of all possible users
forms the population.

While defining the population, care must be
exercised to understand the study and target
population. There are cases when the popula-
tion studied and the population for which the

Figure 15.1. Breakdown of Topics for the Engineering Foundations KA

Engineering Foundations 15-3

results are being generalized may be different.
For example, when the study population consists
of only past observations and generalizations are
required for the future, the study population and
the target population may not be the same.
Sample. A sample is a subset of the population.

The most crucial issue towards the selection of
a sample is its representativeness, including size.
The samples must be drawn in a manner so as
to ensure that the draws are independent, and
the rules of drawing the samples must be pre-
defined so that the probability of selecting a par-
ticular sampling unit is known beforehand. This
method of selecting samples is called probability 
sampling.
Random  variable. In statistical terminology,

the process of making observations or measure-
ments on the sampling units being studied is
referred to as conducting the experiment. For
example, if the experiment is to toss a coin 10
times and then count the number of times the
coin lands on heads, each 10 tosses of the coin
is a sampling unit and the number of heads for a
given sample is the observation or outcome for
the experiment. The outcome of an experiment is
obtained in terms of real numbers and defines the
random variable being studied. Thus, the attribute
of the items being measured at the outcome of
the experiment represents the random variable
being studied; the observation obtained from a
particular sampling unit is a particular realization
of the random variable. In the example of the coin
toss, the random variable is the number of heads
observed for each experiment. In statistical stud-
ies, attempts are made to understand population
characteristics on the basis of samples.

The set of possible values of a random variable
may be finite or infinite but countable (e.g., the
set of all integers or the set of all odd numbers).
In such a case, the random variable is called a dis-
crete random variable. In other cases, the random
variable under consideration may take values on
a continuous scale and is called a continuous ran-
dom variable.
Event. A subset of possible values of a random

variable is called an event. Suppose X denotes
some random variable; then, for example, we
may define different events such as X ³ x or X <
x and so on.

Distribution of a random variable. The range
and pattern of variation of a random variable is
given by its distribution. When the distribution
of a random variable is known, it is possible to
compute the chance of any event. Some distribu-
tions are found to occur commonly and are used
to model many random variables occurring in
practice in the context of engineering. A few of
the more commonly occurring distributions are
given below.

• Binomial distribution: used to model random
variables that count the number of successes
in n trials carried out independently of each
other, where each trial results in success or
failure. We make an assumption that the
chance of obtaining a success remains con-
stant [2*, c3s6].

• Poisson distribution: used to model the count
of occurrence of some event over time or
space [2*, c3s9].

• Normal distribution: used to model continu-
ous random variables or discrete random
variables by taking a very large number of
values [2*, c4s6].

Concept of parameters. A statistical distribution
is characterized by some parameters. For exam-
ple, the proportion of success in any given trial
is the only parameter characterizing a binomial
distribution. Similarly, the Poisson distribution is
characterized by a rate of occurrence. A normal
distribution is characterized by two parameters:
namely, its mean and standard deviation.

Once the values of the parameters are known,
the distribution of the random variable is com-
pletely known and the chance (probability) of
any event can be computed. The probabilities
for a discrete random variable can be computed
through the probability mass function, called
the pmf. The pmf is defined at discrete points
and gives the point mass—i.e., the probability
that the random variable will take that particular
value. Likewise, for a continuous random vari-
able, we have the probability density function,
called the pdf. The pdf is very much like density
and needs to be integrated over a range to obtain
the probability that the continuous random vari-
able lies between certain values. Thus, if the pdf

15-4 SWEBOK® Guide V3.0

or pmf is known, the chances of the random vari-
able taking certain set of values may be computed
theoretically.
Concept  of  estimation  [2*, c6s2, c7s1, c7s3].

The true values of the parameters of a distribution
are usually unknown and need to be estimated
from the sample observations. The estimates are
functions of the sample values and are called sta-
tistics. For example, the sample mean is a statistic
and may be used to estimate the population mean.
Similarly, the rate of occurrence of defects esti-
mated from the sample (rate of defects per line of
code) is a statistic and serves as the estimate of
the population rate of rate of defects per line of
code. The statistic used to estimate some popula-
tion parameter is often referred to as the estimator
of the parameter.

A very important point to note is that the results
of the estimators themselves are random. If we
take a different sample, we are likely to get a dif-
ferent estimate of the population parameter. In the
theory of estimation, we need to understand dif-
ferent properties of estimators—particularly, how
much the estimates can vary across samples and
how to choose between different alternative ways
to obtain the estimates. For example, if we wish
to estimate the mean of a population, we might
use as our estimator a sample mean, a sample
median, a sample mode, or the midrange of the
sample. Each of these estimators has different
statistical properties that may impact the standard
error of the estimate.
Types  of  estimates [2*, c7s3, c8s1].There are

two types of estimates: namely, point estimates
and interval estimates. When we use the value
of a statistic to estimate a population parameter,
we get a point estimate. As the name indicates, a
point estimate gives a point value of the param-
eter being estimated.

Although point estimates are often used, they
leave room for many questions. For instance, we
are not told anything about the possible size of
error or statistical properties of the point esti-
mate. Thus, we might need to supplement a point
estimate with the sample size as well as the vari-
ance of the estimate. Alternately, we might use
an interval estimate. An interval estimate is a
random interval with the lower and upper lim-
its of the interval being functions of the sample

observations as well as the sample size. The lim-
its are computed on the basis of some assump-
tions regarding the sampling distribution of the
point estimate on which the limits are based.
Properties  of  estimators. Various statistical

properties of estimators are used to decide about
the appropriateness of an estimator in a given
situation. The most important properties are that
an estimator is unbiased, efficient, and consistent
with respect to the population.
Tests of hypotheses [2*, c9s1].A hypothesis is

a statement about the possible values of a param-
eter. For example, suppose it is claimed that a
new method of software development reduces the
occurrence of defects. In this case, the hypoth-
esis is that the rate of occurrence of defects has
reduced. In tests of hypotheses, we decide—on
the basis of sample observations—whether a pro-
posed hypothesis should be accepted or rejected.

For testing hypotheses, the null and alternative
hypotheses are formed. The null hypothesis is the
hypothesis of no change and is denoted as H0. The
alternative hypothesis is written as H1. It is impor-
tant to note that the alternative hypothesis may be
one-sided or two-sided. For example, if we have
the null hypothesis that the population mean is not
less than some given value, the alternative hypoth-
esis would be that it is less than that value and we
would have a one-sided test. However, if we have
the null hypothesis that the population mean is
equal to some given value, the alternative hypoth-
esis would be that it is not equal and we would
have a two-sided test (because the true value could
be either less than or greater than the given value).

In order to test some hypothesis, we first com-
pute some statistic. Along with the computation
of the statistic, a region is defined such that in
case the computed value of the statistic falls in
that region, the null hypothesis is rejected. This
region is called the critical region (also known as
the confidence interval). In tests of hypotheses,
we need to accept or reject the null hypothesis
on the basis of the evidence obtained. We note
that, in general, the alternative hypothesis is the
hypothesis of interest. If the computed value of
the statistic does not fall inside the critical region,
then we cannot reject the null hypothesis. This
indicates that there is not enough evidence to
believe that the alternative hypothesis is true.

Engineering Foundations 15-5

As the decision is being taken on the basis
of sample observations, errors are possible; the
types of such errors are summarized in the fol-
lowing table.

Nature
Statistical Decision

Accept H0 Reject H0

H0 is
true OK Type I error

(probability = a)
H0 is
false

Type II error
(probability = b) OK

In test of hypotheses, we aim at maximizing the
power of the test (the value of 1−b) while ensur-
ing that the probability of a type I error (the value
of a) is maintained within a particular value—
typically 5 percent.

It is to be noted that construction of a test of
hypothesis includes identifying statistic(s) to
estimate the parameter(s) and defining a critical
region such that if the computed value of the sta-
tistic falls in the critical region, the null hypoth-
esis is rejected.

2.2. Concepts of Correlation and Regression 
[2*, c11s2, c11s8]

A major objective of many statistical investiga-
tions is to establish relationships that make it pos-
sible to predict one or more variables in terms of
others. Although it is desirable to predict a quan-
tity exactly in terms of another quantity, it is sel-
dom possible and, in many cases, we have to be
satisfied with estimating the average or expected
values.

The relationship between two variables is stud-
ied using the methods of correlation and regres-
sion. Both these concepts are explained briefly in
the following paragraphs.
Correlation. The strength of linear relation-

ship between two variables is measured using
the correlation coefficient. While computing the
correlation coefficient between two variables, we
assume that these variables measure two differ-
ent attributes of the same entity. The correlation
coefficient takes a value between –1 to +1. The
values –1 and +1 indicate a situation when the
association between the variables is perfect—i.e.,

given the value of one variable, the other can be
estimated with no error. A positive correlation
coefficient indicates a positive relationship—that
is, if one variable increases, so does the other. On
the other hand, when the variables are negatively
correlated, an increase of one leads to a decrease
of the other.

It is important to remember that correlation
does not imply causation. Thus, if two variables
are correlated, we cannot conclude that one
causes the other.
Regression. The correlation analysis only

measures the degree of relationship between
two variables. The analysis to find the relation-
ship between two variables is called regression 
analysis. The strength of the relationship between
two variables is measured using the coefficient of
determination. This is a value between 0 and 1.
The closer the coefficient is to 1, the stronger the
relationship between the variables. A value of 1
indicates a perfect relationship.

3. Measurement
[4*, c3s1, c3s2] [5*, c4s4] [6*, c7s5]

 [7*, p442–447]

Knowing what to measure and which measure-
ment method to use is critical in engineering
endeavors. It is important that everyone involved
in an engineering project understand the mea-
surement methods and the measurement results
that will be used.

Measurements can be physical, environmen-
tal, economic, operational, or some other sort of
measurement that is meaningful for the particular
project. This section explores the theory of mea-
surement and how it is fundamental to engineer-
ing. Measurement starts as a conceptualization
then moves from abstract concepts to definitions
of the measurement method to the actual appli-
cation of that method to obtain a measurement
result. Each of these steps must be understood,
communicated, and properly employed in order
to generate usable data. In traditional engineer-
ing, direct measures are often used. In software
engineering, a combination of both direct and
derived measures is necessary [6*, p273].

The theory of measurement states that mea-
surement is an attempt to describe an underlying

15-6 SWEBOK® Guide V3.0

real empirical system. Measurement methods
define activities that allocate a value or a symbol
to an attribute of an entity.

Attributes must then be defined in terms of
the operations used to identify and measure
them— that is, the measurement methods. In this
approach, a measurement method is defined to be
a precisely specified operation that yields a num-
ber (called the measurement  result) when mea-
suring an attribute. It follows that, to be useful,
the measurement method has to be well defined.
Arbitrariness in the method will reflect itself in
ambiguity in the measurement results.

In some cases—particularly in the physical
world—the attributes that we wish to measure are
easy to grasp; however, in an artificial world like
software engineering, defining the attributes may
not be that simple. For example, the attributes of
height, weight, distance, etc. are easily and uni-
formly understood (though they may not be very
easy to measure in all circumstances), whereas
attributes such as software size or complexity
require clear definitions.
Operational definitions. The definition of attri-

butes, to start with, is often rather abstract. Such
definitions do not facilitate measurements. For
example, we may define a circle as a line forming 
a closed loop such that the distance between any 
point on this line and a fixed interior point called 
the center is constant. We may further say that the
fixed distance from the center to any point on the
closed loop gives the radius of the circle. It may be
noted that though the concept has been defined, no
means of measuring the radius has been proposed.
The operational definition specifies the exact steps
or method used to carry out a specific measure-
ment. This can also be called the measurement 
method; sometimes a measurement procedure may
be required to be even more precise.

The importance of operational definitions
can hardly be overstated. Take the case of the
apparently simple measurement of height of
individuals. Unless we specify various factors
like the time when the height will be measured
(it is known that the height of individuals vary
across various time points of the day), how the
variability due to hair would be taken care of,
whether the measurement will be with or without
shoes, what kind of accuracy is expected (correct
up to an inch, 1/2 inch, centimeter, etc.)—even

this simple measurement will lead to substantial
variation. Engineers must appreciate the need to
define measures from an operational perspective.

3.1. Levels (Scales) of Measurement 
[4*, c3s2] [6*, c7s5]

Once the operational definitions are determined,
the actual measurements need to be undertaken.
It is to be noted that measurement may be car-
ried out in four different scales: namely, nominal,
ordinal, interval, and ratio. Brief descriptions of
each are given below.
Nominal scale: This is the lowest level of mea-

surement and represents the most unrestricted
assignment of numerals. The numerals serve only
as labels, and words or letters would serve as well.
The nominal scale of measurement involves only
classification and the observed sampling units
are put into any one of the mutually exclusive
and collectively exhaustive categories (classes).
Some examples of nominal scales are:

• Job titles in a company
• The software development life cycle (SDLC)

model (like waterfall, iterative, agile, etc.)
followed by different software projects

In nominal scale, the names of the different cat-
egories are just labels and no relationship between
them is assumed. The only operations that can be
carried out on nominal scale is that of counting
the number of occurrences in the different classes
and determining if two occurrences have the same
nominal value. However, statistical analyses may
be carried out to understand how entities belong-
ing to different classes perform with respect to
some other response variable.
Ordinal scale: Refers to the measurement scale

where the different values obtained through the
process of measurement have an implicit order-
ing. The intervals between values are not speci-
fied and there is no objectively defined zero
element. Typical examples of measurements in
ordinal scales are:

• Skill levels (low, medium, high)
• Capability Maturity Model Integration

(CMMI) maturity levels of software devel-
opment organizations

Engineering Foundations 15-7

• Level of adherence to process as measured in
a 5-point scale of excellent, above average,
average, below average, and poor, indicating
the range from total adherence to no adher-
ence at all

Measurement in ordinal scale satisfies the tran-
sitivity property in the sense that if A > B and B
> C, then A > C. However, arithmetic operations
cannot be carried out on variables measured in
ordinal scales. Thus, if we measure customer sat-
isfaction on a 5-point ordinal scale of 5 implying
a very high level of satisfaction and 1 implying a
very high level of dissatisfaction, we cannot say
that a score of four is twice as good as a score
of two. So, it is better to use terminology such
as excellent, above average, average, below aver-
age, and poor than ordinal numbers in order to
avoid the error of treating an ordinal scale as a
ratio scale. It is important to note that ordinal
scale measures are commonly misused and such
misuse can lead to erroneous conclusions [6*,
p274]. A common misuse of ordinal scale mea-
sures is to present a mean and standard deviation
for the data set, both of which are meaningless.
However, we can find the median, as computation
of the median involves counting only.
Interval  scales: With the interval scale, we

come to a form that is quantitative in the ordi-
nary sense of the word. Almost all the usual sta-
tistical measures are applicable here, unless they
require knowledge of a true zero point. The zero
point on an interval scale is a matter of conven-
tion. Ratios do not make sense, but the difference
between levels of attributes can be computed and
is meaningful. Some examples of interval scale of
measurement follow:

• Measurement of temperature in different
scales, such as Celsius and Fahrenheit. Sup-
pose T1 and T2 are temperatures measured
in some scale. We note that the fact that T1
is twice T2 does not mean that one object is
twice as hot as another. We also note that the
zero points are arbitrary.

• Calendar dates. While the difference between
dates to measure the time elapsed is a mean-
ingful concept, the ratio does not make sense.

• Many psychological measurements aspire to
create interval scales. Intelligence is often

measured in interval scale, as it is not neces-
sary to define what zero intelligence would
mean.

If a variable is measured in interval scale, most
of the usual statistical analyses like mean, stan-
dard deviation, correlation, and regression may
be carried out on the measured values.
Ratio scale: These are quite commonly encoun-

tered in physical science. These scales of mea-
sures are characterized by the fact that operations
exist for determining all 4 relations: equality, rank
order, equality of intervals, and equality of ratios.
Once such a scale is available, its numerical val-
ues can be transformed from one unit to another
by just multiplying by a constant, e.g., conversion
of inches to feet or centimeters. When measure-
ments are being made in ratio scale, existence of
a nonarbitrary zero is mandatory. All statistical
measures are applicable to ratio scale; logarithm
usage is valid only when these scales are used, as
in the case of decibels. Some examples of ratio
measures are

• the number of statements in a software
program

• temperature measured in the Kelvin (K) scale
or in Fahrenheit (F).

An additional measurement scale, the absolute
scale, is a ratio scale with uniqueness of the mea-
sure; i.e., a measure for which no transformation
is possible (for example, the number of program-
mers working on a project).

3.2. Direct and Derived Measures 
[6*, c7s5]

Measures may be either direct or derived (some-
times called indirect measures). An example of
a direct measure would be a count of how many
times an event occurred, such as the number of
defects found in a software product. A derived
measure is one that combines direct measures in
some way that is consistent with the measurement
method. An example of a derived measure would
be calculating the productivity of a team as the
number of lines of code developed per developer-
month. In both cases, the measurement method
determines how to make the measurement.

15-8 SWEBOK® Guide V3.0

3.3. Reliability and Validity
[4*, c3s4, c3s5]

A basic question to be asked for any measure-
ment method is whether the proposed measure-
ment method is truly measuring the concept with
good quality. Reliability and validity are the two
most important criteria to address this question.

The reliability of a measurement method is
the extent to which the application of the mea-
surement method yields consistent measurement
results. Essentially, reliability refers to the consis-
tency of the values obtained when the same item
is measured a number of times. When the results
agree with each other, the measurement method
is said to be reliable. Reliability usually depends
on the operational definition. It can be quantified
by using the index of variation, which is com-
puted as the ratio between the standard deviation
and the mean. The smaller the index, the more
reliable the measurement results.
Validity refers to whether the measurement

method really measures what we intend to mea-
sure. Validity of a measurement method may
be looked at from three different perspectives:
namely, construct validity, criteria validity, and
content validity.

3.4. Assessing Reliability 
[4*, c3s5]

There are several methods for assessing reli-
ability; these include the test-retest method, the
alternative form method, the split-halves method,
and the internal consistency method. The easi-
est of these is the test-retest method. In the test-
retest method, we simply apply the measurement
method to the same subjects twice. The correla-
tion coefficient between the first and second set
of measurement results gives the reliability of the
measurement method.

4. Engineering Design
[5*, c1s2, c1s3, c1s4]

A product’s life cycle costs are largely influenced
by the design of the product. This is true for manu-
factured products as well as for software products.

The design of a software product is guided by
the features to be included and the quality attri-
butes to be provided. It is important to note that
software engineers use the term “design” within
their own context; while there are some common-
alities, there are also many differences between
engineering design as discussed in this section
and software engineering design as discussed in
the Software Design KA. The scope of engineer-
ing design is generally viewed as much broader
than that of software design. The primary aim of
this section is to identify the concepts needed to
develop a clear understanding regarding the pro-
cess of engineering design.

Many disciplines engage in problem solving
activities where there is a single correct solu-
tion. In engineering, most problems have many
solutions and the focus is on finding a feasible
solution (among the many alternatives) that
best meets the needs presented. The set of pos-
sible solutions is often constrained by explic-
itly imposed limitations such as cost, available
resources, and the state of discipline or domain
knowledge. In engineering problems, sometimes
there are also implicit constraints (such as the
physical properties of materials or laws of phys-
ics) that also restrict the set of feasible solutions
for a given problem.

4.1. Engineering Design in Engineering 
Education

The importance of engineering design in engi-
neering education can be clearly seen by the high
expectations held by various accreditation bod-
ies for engineering education. Both the Cana-
dian Engineering Accreditation Board and the
Accreditation Board for Engineering and Tech-
nology (ABET) note the importance of including
engineering design in education programs.

The Canadian Engineering Accreditation
Board includes requirements for the amount of
engineering design experience/coursework that
is necessary for engineering students as well as
qualifications for the faculty members who teach
such coursework or supervise design projects.
Their accreditation criteria states:

Engineering Foundations 15-9

Design: An ability to design solutions for
complex, open-ended engineering prob-
lems and to design systems, components
or processes that meet specified needs with
appropriate attention to health and safety
risks, applicable standards, and economic,
environmental, cultural and societal con-
siderations. [8, p12]

In a similar manner, ABET defines engineering
design as

the process of devising a system, compo-
nent, or process to meet desired needs. It
is a decision-making process (often itera-
tive), in which the basic sciences, math-
ematics, and the engineering sciences are
applied to convert resources optimally to
meet these stated needs. [9, p4]

Thus, it is clear that engineering design is a
vital component in the training and education for
all engineers. The remainder of this section will
focus on various aspects of engineering design.

4.2. Design as a Problem Solving Activity 
[5*, c1s4, c2s1, c3s3]

It is to be noted that engineering design is primar-
ily a problem solving activity. Design problems
are open ended and more vaguely defined. There
are usually several alternative ways to solve the
same problem. Design is generally considered to
be a wicked problem—a term first coined by Horst
Rittel in the 1960s when design methods were a
subject of intense interest. Rittel sought an alterna-
tive to the linear, step-by-step model of the design
process being explored by many designers and
design theorists and argued that most of the prob-
lems addressed by the designers are wicked prob-
lems. As explained by Steve McConnell, a wicked
problem is one that could be clearly defined only
by solving it or by solving part of it. This paradox
implies, essentially, that a wicked problem has to
be solved once in order to define it clearly and then
solved again to create a solution that works. This
has been an important insight for software design-
ers for several decades [10*, c5s1].

4.3. Steps Involved in Engineering Design
[7*, c4]

Engineering problem solving begins when a
need is recognized and no existing solution will
meet that need. As part of this problem solving,
the design goals to be achieved by the solution
should be identified. Additionally, a set of accep-
tance criteria must be defined and used to deter-
mine how well a proposed solution will satisfy
the need. Once a need for a solution to a problem
has been identified, the process of engineering
design has the following generic steps:

a) define the problem
b) gather pertinent information
c) generate multiple solutions
d) analyze and select a solution
e) implement the solution

All of the engineering design steps are itera-
tive, and knowledge gained at any step in the
process may be used to inform earlier tasks and
trigger an iteration in the process. These steps are
expanded in the subsequent sections.

a. Define the problem. At this stage, the custom-
er’s requirements are gathered. Specific informa-
tion about product functions and features are also
closely examined. This step includes refining the
problem statement to identify the real problem to
be solved and setting the design goals and criteria
for success.

The problem definition is a crucial stage in
engineering design. A point to note is that this
step is deceptively simple. Thus, enough care
must be taken to carry out this step judiciously. It
is important to identify needs and link the success
criteria with the required product characteristics.
It is also an engineering task to limit the scope
of a problem and its solution through negotiation
among the stakeholders.

b.  Gather  pertinent  information. At this stage,
the designer attempts to expand his/her knowl-
edge about the problem. This is a vital, yet often
neglected, stage. Gathering pertinent information
can reveal facts leading to a redefinition of the

15-10 SWEBOK® Guide V3.0

problem—in particular, mistakes and false starts
may be identified. This step may also involve the
decomposition of the problem into smaller, more
easily solved subproblems.

While gathering pertinent information, care
must be taken to identify how a product may be
used as well as misused. It is also important to
understand the perceived value of the product/
service being offered. Included in the pertinent
information is a list of constraints that must be
satisfied by the solution or that may limit the set
of feasible solutions.

c. Generate multiple solutions. During this stage,
different solutions to the same problem are devel-
oped. It has already been stated that design prob-
lems have multiple solutions. The goal of this
step is to conceptualize multiple possible solu-
tions and refine them to a sufficient level of detail
that a comparison can be done among them.

d. Analyze and select a solution. Once alternative
solutions have been identified, they need to be ana-
lyzed to identify the solution that best suits the cur-
rent situation. The analysis includes a functional
analysis to assess whether the proposed design
would meet the functional requirements. Physical
solutions that involve human users often include
analysis of the ergonomics or user friendliness of
the proposed solution. Other aspects of the solu-
tion—such as product safety and liability, an eco-
nomic or market analysis to ensure a return (profit)
on the solution, performance predictions and anal-
ysis to meet quality characteristics, opportunities
for incorrect data input or hardware malfunctions,
and so on—may be studied. The types and amount
of analysis used on a proposed solution are depen-
dent on the type of problem and the needs that the
solution must address as well as the constraints
imposed on the design.

e. Implement the solution. The final phase of the
design process is implementation. Implemen-
tation refers to development and testing of the
proposed solution. Sometimes a preliminary,
partial solution called a prototype may be devel-
oped initially to test the proposed design solu-
tion under certain conditions. Feedback resulting
from testing a prototype may be used either to

refine the design or drive the selection of an alter-
native design solution. One of the most impor-
tant activities in design is documentation of the
design solution as well as of the tradeoffs for the
choices made in the design of the solution. This
work should be carried out in a manner such that
the solution to the design problem can be com-
municated clearly to others.

The testing and verification take us back to the
success criteria. The engineer needs to devise
tests such that the ability of the design to meet the
success criteria is demonstrated. While design-
ing the tests, the engineer must think through
different possible failure modes and then design
tests based on those failure modes. The engineer
may choose to carry out designed experiments to
assess the validity of the design.

5. Modeling, Simulation, and Prototyping
[5*, c6] [11*, c13s3] [12*, c2s3.1]

Modeling is part of the abstraction process used
to represent some aspects of a system. Simula-
tion uses a model of the system and provides a
means of conducting designed experiments with
that model to better understand the system, its
behavior, and relationships between subsystems,
as well as to analyze aspects of the design. Mod-
eling and simulation are techniques that can be
used to construct theories or hypotheses about the
behavior of the system; engineers then use those
theories to make predictions about the system.
Prototyping is another abstraction process where
a partial representation (that captures aspects of
interest) of the product or system is built. A pro-
totype may be an initial version of the system but
lacks the full functionality of the final version.

5.1. Modeling

A model is always an abstraction of some real
or imagined artifact. Engineers use models in
many ways as part of their problem solving
activities. Some models are physical, such as a
made-to-scale miniature construction of a bridge
or building. Other models may be nonphysical
representations, such as a CAD drawing of a cog
or a mathematical model for a process. Models
help engineers reason and understand aspects of

Engineering Foundations 15-11

a problem. They can also help engineers under-
stand what they do know and what they don’t
know about the problem at hand.

There are three types of models: iconic, ana-
logic, and symbolic. An iconic model is a visu-
ally equivalent but incomplete 2-dimensional
or 3-dimensional representation—for example,
maps, globes, or built-to-scale models of struc-
tures such as bridges or highways. An iconic
model actually resembles the artifact modeled.

In contrast, an analogic model is a functionally
equivalent but incomplete representation. That
is, the model behaves like the physical artifact
even though it may not physically resemble it.
Examples of analogic models include a miniature
airplane for wind tunnel testing or a computer
simulation of a manufacturing process.

Finally, a symbolic model is a higher level of
abstraction, where the model is represented using
symbols such as equations. The model captures
the relevant aspects of the process or system in
symbolic form. The symbols can then be used to
increase the engineer’s understanding of the final
system. An example is an equation such as F = 
Ma. Such mathematical models can be used to
describe and predict properties or behavior of the
final system or product.

5.2. Simulation 

All simulation models are a specification of real-
ity. A central issue in simulation is to abstract
and specify an appropriate simplification of
reality. Developing this abstraction is of vital
importance, as misspecification of the abstrac-
tion would invalidate the results of the simulation
exercise. Simulation can be used for a variety of
testing purposes.

Simulation is classified based on the type of
system under study. Thus, simulation can be either
continuous or discrete. In the context of software
engineering, the emphasis will be primarily on
discrete simulation. Discrete simulations may
model event scheduling or process interaction.
The main components in such a model include
entities, activities and events, resources, the state
of the system, a simulation clock, and a random
number generator. Output is generated by the
simulation and must be analyzed.

An important problem in the development of a
discrete simulation is that of initialization. Before
a simulation can be run, the initial values of all
the state variables must be provided. As the simu-
lation designer may not know what initial values
are appropriate for the state variables, these val-
ues might be chosen somewhat arbitrarily. For
instance, it might be decided that a queue should
be initialized as empty and idle. Such a choice of
initial condition can have a significant but unrec-
ognized impact on the outcome of the simulation.

5.3. Prototyping

Constructing a prototype of a system is another
abstraction process. In this case, an initial version
of the system is constructed, often while the sys-
tem is being designed. This helps the designers
determine the feasibility of their design.

There are many uses for a prototype, includ-
ing the elicitation of requirements, the design and
refinement of a user interface to the system, vali-
dation of functional requirements, and so on. The
objectives and purposes for building the proto-
type will determine its construction and the level
of abstraction used.

The role of prototyping is somewhat different
between physical systems and software. With
physical systems, the prototype may actually
be the first fully functional version of a system
or it may be a model of the system. In software
engineering, prototypes are also an abstract
model of part of the software but are usually not
constructed with all of the architectural, perfor-
mance, and other quality characteristics expected
in the finished product. In either case, prototype
construction must have a clear purpose and be
planned, monitored, and controlled—it is a tech-
nique to study a specific problem within a limited
context [6*, c2s8].

In conclusion, modeling, simulation, and pro-
totyping are powerful techniques for studying the
behavior of a system from a given perspective.
All can be used to perform designed experiments
to study various aspects of the system. How-
ever, these are abstractions and, as such, may not
model all attributes of interest.

15-12 SWEBOK® Guide V3.0

6. Standards
[5*, c9s3.2] [13*, c1s2]

Moore states that a

standard can be; (a) an object or measure
of comparison that defines or represents
the magnitude of a unit; (b) a characteriza-
tion that establishes allowable tolerances
for categories of items; and (c) a degree or
level of required excellence or attainment.
Standards are definitional in nature, estab-
lished either to further understanding and
interaction or to acknowledge observed (or
desired) norms of exhibited characteristics
or behavior. [13*, p8]

Standards provide requirements, specifica-
tions, guidelines, or characteristics that must be
observed by engineers so that the products, pro-
cesses, and materials have acceptable levels of
quality. The qualities that various standards pro-
vide may be those of safety, reliability, or other
product characteristics. Standards are considered
critical to engineers and engineers are expected to
be familiar with and to use the appropriate stan-
dards in their discipline.

Compliance or conformance to a standard lets
an organization say to the public that they (or
their products) meet the requirements stated in
that standard. Thus, standards divide organiza-
tions or their products into those that conform to
the standard and those that do not. For a standard
to be useful, conformance with the standard must
add value—real or perceived—to the product,
process, or effort.

Apart from the organizational goals, standards
are used for a number of other purposes such
as protecting the buyer, protecting the business,
and better defining the methods and procedures
to be followed by the practice. Standards also
provide users with a common terminology and
expectations.

There are many internationally recognized
standards-making organizations including the
International Telecommunications Union (ITU),
the International Electrotechnical Commission
(IEC), IEEE, and the International Organization
for Standardization (ISO). In addition, there are

regional and governmentally recognized organi-
zations that generate standards for that region or
country. For example, in the United States, there
are over 300 organizations that develop stan-
dards. These include organizations such as the
American National Standards Institute (ANSI),
the American Society for Testing and Materials
(ASTM), the Society of Automotive Engineers
(SAE), and Underwriters Laboratories, Inc. (UL),
as well as the US government. For more detail
on standards used in software engineering, see
Appendix B on standards.

There is a set of commonly used principles
behind standards. Standards makers attempt to
have consensus around their decisions. There is
usually an openness within the community of
interest so that once a standard has been set, there
is a good chance that it will be widely accepted.
Most standards organizations have well-defined
processes for their efforts and adhere to those
processes carefully. Engineers must be aware of
the existing standards but must also update their
understanding of the standards as those standards
change over time.

In many engineering endeavors, knowing and
understanding the applicable standards is critical
and the law may even require use of particular
standards. In these cases, the standards often rep-
resent minimal requirements that must be met by
the endeavor and thus are an element in the con-
straints imposed on any design effort. The engi-
neer must review all current standards related to
a given endeavor and determine which must be
met. Their designs must then incorporate any and
all constraints imposed by the applicable stan-
dard. Standards important to software engineers
are discussed in more detail in an appendix spe-
cifically on this subject.

7. Root Cause Analysis
[4*, c5, c3s7, c9s8] [5*, c9s3, c9s4, c9s5]

[13*, c13s3.4.5]

Root cause analysis (RCA) is a process designed
to investigate and identify why and how an
undesirable event has happened. Root causes
are underlying causes. The investigator should
attempt to identify specific underlying causes of
the event that has occurred. The primary objective

Engineering Foundations 15-13

of RCA is to prevent recurrence of the undesir-
able event. Thus, the more specific the investiga-
tor can be about why an event occurred, the easier
it will be to prevent recurrence. A common way
to identify specific underlying cause(s) is to ask a
series of why questions.

7.1. Techniques for Conducting Root Cause 
Analysis

[4*, c5] [5*, c3]

There are many approaches used for both quality
control and root cause analysis. The first step in
any root cause analysis effort is to identify the real
problem. Techniques such as statement-restate-
ment, why-why diagrams, the revision method,
present state and desired state diagrams, and the
fresh-eye approach are used to identify and refine
the real problem that needs to be addressed.

Once the real problem has been identified, then
work can begin to determine the cause of the
problem. Ishikawa is known for the seven tools
for quality control that he promoted. Some of
those tools are helpful in identifying the causes
for a given problem. Those tools are check sheets
or checklists, Pareto diagrams, histograms, run
charts, scatter diagrams, control charts, and
fishbone or cause-and-effect diagrams. More
recently, other approaches for quality improve-
ment and root cause analysis have emerged. Some
examples of these newer methods are affinity dia-
grams, relations diagrams, tree diagrams, matrix
charts, matrix data analysis charts, process deci-
sion program charts, and arrow diagrams. A few
of these techniques are briefly described below.

A fishbone or cause-and-effect diagram is a
way to visualize the various factors that affect
some characteristic. The main line in the diagram
represents the problem and the connecting lines
represent the factors that led to or influenced the
problem. Those factors are broken down into sub-
factors and sub-subfactors until root causes can
be identified.

A very simple approach that is useful in quality
control is the use of a checklist. Checklists are
a list of key points in a process with tasks that
must be completed. As each task is completed,
it is checked off the list. If a problem occurs,
then sometimes the checklist can quickly identify
tasks that may have been skipped or only par-
tially completed.

Finally, relations diagrams are a means for dis-
playing complex relationships. They give visual
support to cause-and-effect thinking. The dia-
gram relates the specific to the general, revealing
key causes and key effects.

Root cause analysis aims at preventing the
recurrence of undesirable events. Reduction of
variation due to common causes requires utili-
zation of a number of techniques. An important
point to note is that these techniques should be
used offline and not necessarily in direct response
to the occurrence of some undesirable event.
Some of the techniques that may be used to
reduce variation due to common causes are given
below.

1. Cause-and-effect diagrams may be used to
identify the sub and sub-sub causes.

2. Fault tree analysis is a technique that may be
used to understand the sources of failures.

3. Designed experiments may be used to under-
stand the impact of various causes on the
occurrence of undesirable events (see Empir-
ical Methods and Experimental Techniques
in this KA).

4. Various kinds of correlation analyses may be
used to understand the relationship between
various causes and their impact. These tech-
niques may be used in cases when conduct-
ing controlled experiments is difficult but
data may be gathered (see Statistical Analy-
sis in this KA).

15-14 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

M
on

tg
om

er
y

an
d

R
un

ge
r

20
07

[2

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[3
*]

K
an

 2
00

2
[4

*]

Vo
la

nd
 2

00
3

[5
*]

Fa
ir

le
y

20
09

[6

*]

To
ck

ey
 2

00
4

[7
*]

M
cC

on
ne

ll
20

04

[1
0*

]

C
he

ne
y

an
d

K
in

ca
id

 2
00

7
[1

1*
]

So
m

m
er

vi
lle

 2
01

1
[1

2*
]

M
oo

re
 2

00
6

[1
3*

]

1. Empirical
Methods and
Experimental
Techniques

c1

1.1. Designed
Experiment
1.2.
Observational
Study
1.3.
Retrospective
Study

2. Statistical
Analysis

c9s1,
c2s1 c10s3

2.1. Concept of
Unit of Analysis
(Sampling
Units), Sample,
and Population

c3s6,
c3s9,
c4s6,
c6s2,
c7s1,
c7s3,
c8s1,
c9s1

2.2. Concepts of
Correlation and
Regression

c11s2,
c11s8

3. Measurement c3s1,
c3s2 c4s4 c7s5

3.1. Levels
(Scales) of
Measurement

c3s2 c7s5 p442
–447

3.2. Direct
and Derived
Measures

Engineering Foundations 15-15

M
on

tg
om

er
y

an
d

R
un

ge
r

20
07

[2

*]

N
ul

l a
nd

 L
ob

ur
 2

00
6

[3
*]

K
an

 2
00

2
[4

*]

Vo
la

nd
 2

00
3

[5
*]

Fa
ir

le
y

20
09

[6

*]

To
ck

ey
 2

00
4

[7
*]

M
cC

on
ne

ll
20

04

[1
0*

]

C
he

ne
y

an
d

K
in

ca
id

 2
00

7
[1

1*
]

So
m

m
er

vi
lle

 2
01

1
[1

2*
]

M
oo

re
 2

00
6

[1
3*

]

3.3. Reliability
and Validity

c3s4,
c3s5

3.4. Assessing
Reliability c3s5

4. Engineering
Design

c1s2,
c1s3,
c1s4

4.1. Design in
Engineering
Education
4.2. Design
as a Problem
Solving Activity

c1s4,
c2s1,
c3s3

c5s1

4.3. Steps
Involved in
Engineering
Design

c4

5. Modeling,
Prototyping, and
Simulation

c6 c13s3 c2
s3.1

5.1. Modeling
5.2. Simulation
5.3. Prototyping

6. Standards c9
s3.2 c1s2

7. Root Cause
Analysis

c5,
c3s7,
c9s8

c9s3,
c9s4,
c9s5

c13
s3.4.5

7.1. Techniques
for Conducting
Root Cause
Analysis

c5 c3

15-16 SWEBOK® Guide V3.0

FURTHER READINGS

A. Abran, Software Metrics and Software 
Metrology. [14]

This book provides very good information on the
proper use of the terms measure, measurement
method and measurement outcome. It provides
strong support material for the entire section on
Measurement.

W.G. Vincenti, What Engineers Know and How 
They Know It. [15]

This book provides an interesting introduc-
tion to engineering foundations through a series
of case studies that show many of the founda-
tional concepts as used in real world engineering
applications.

Engineering Foundations 15-17

REFERENCES

[1] ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[2*] D.C. Montgomery and G.C. Runger,
Applied Statistics and Probability for 
Engineers, 4th ed., Wiley, 2007.

[3*] L. Null and J. Lobur, The Essentials of 
Computer Organization and Architecture,
2nd ed., Jones and Bartlett Publishers,
2006.

[4*] S.H. Kan, Metrics and Models in Software 
Quality Engineering, 2nd ed., Addison-
Wesley, 2002.

[5*] G. Voland, Engineering by Design, 2nd ed.,
Prentice Hall, 2003.

[6*] R.E. Fairley, Managing and Leading 
Software Projects, Wiley-IEEE Computer
Society Press, 2009.

[7*] S. Tockey, Return on Software: Maximizing 
the Return on Your Software Investment,
Addison-Wesley, 2004.

[8] Canadian Engineering Accreditation Board,
Engineers Canada, “Accreditation Criteria
and Procedures,” Canadian Council of
Professional Engineers, 2011; www.
engineerscanada.ca/files/w_Accreditation_
Criteria_Procedures_2011.pdf.

[9] ABET Engineering Accreditation
Commission, “Criteria for Accrediting
Engineering Programs, 2012-2013,”
ABET, 2011; www.abet.org/uploadedFiles/
Accreditation/Accreditation_Process/
Accreditation_Documents/Current/eac-
criteria-2012-2013.pdf.

[10*] S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

[11*] E.W. Cheney and D.R. Kincaid, Numerical 
Mathematics and Computing, 6th ed.,
Brooks/Cole, 2007.

[12*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[13*] J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.

[14] A. Abran, Software Metrics and Software 
Metrology, Wiley-IEEE Computer Society
Press, 2010.

[15] W.G. Vincenti, What Engineers Know 
and How They Know It, John Hopkins
University Press, 1990.

http://www.engineerscanada.ca/files/w_Accreditation_Criteria_Procedures_2011.pdf
http://www.engineerscanada.ca/files/w_Accreditation_Criteria_Procedures_2011.pdf
http://www.engineerscanada.ca/files/w_Accreditation_Criteria_Procedures_2011.pdf
http://www.abet.org/uploadedFiles/Accreditation/Accreditation_Process/Accreditation_Documents/Current/eac-criteria-2012-2013.pdf
http://www.abet.org/uploadedFiles/Accreditation/Accreditation_Process/Accreditation_Documents/Current/eac-criteria-2012-2013.pdf
http://www.abet.org/uploadedFiles/Accreditation/Accreditation_Process/Accreditation_Documents/Current/eac-criteria-2012-2013.pdf
http://www.abet.org/uploadedFiles/Accreditation/Accreditation_Process/Accreditation_Documents/Current/eac-criteria-2012-2013.pdf

A-1

APPENDIX A

KNOWLEDGE AREA DESCRIPTION
SPECIFICATIONS

INTRODUCTION

This document presents the specifications pro-
vided to the Knowledge Area Editors (KA Edi-
tors) regarding the Knowledge Area Descriptions
(KA Descriptions) of the Version 3 (V3) edition
of the Guide  to  the Software Engineering Body 
of Knowledge (SWEBOK Guide). This document
will also enable readers, reviewers, and users to
clearly understand what specifications were used
when developing this version of the SWEBOK
Guide.

This document begins by situating the SWE-
BOK Guide as a foundational document for the
IEEE Computer Society suite of software engi-
neering products and more widely within the
software engineering community at large. The
role of the baseline and the Change Control
Board is then described. Criteria and require-
ments are defined for the breakdowns of topics,
for the rationale underlying these breakdowns
and the succinct description of topics, and for ref-
erence materials. Important input documents are
also identified, and their role within the project is
explained. Noncontent issues such as submission
format and style guidelines are also discussed.

THE SWEBOK GUIDE IS A
FOUNDATIONAL DOCUMENT FOR THE
IEEE COMPUTER SOCIETY SUITE OF
SOFTWARE ENGINEERING PRODUCTS

The SWEBOK Guide is an IEEE Computer Soci-
ety flagship and structural document for the IEEE
Computer Society suite of software engineer-
ing products. The SWEBOK Guide is also more
widely recognized as a foundational document
within the software engineering community at

large notably through the official recognition of
the 2004 Version as ISO/IEC Technical Report
19759:2005. The list of knowledge areas (KAs)
and the breakdown of topics within each KA is
described and detailed in the introduction of this
SWEBOK Guide.

Consequently, the SWEBOK Guide is founda-
tional to other initiatives within the IEEE Com-
puter Society:

a) The list of KAs and the breakdown of topics
within each KA are also adopted by the soft-
ware engineering certification and associated
professional development products offered
by the IEEE Computer Society (see www.
computer.org/certification).

b) The list of KAs and the breakdown of top-
ics are also foundational to the software
engineering curricula guidelines developed
or endorsed by the IEEE Computer Society
(www.computer.org/portal/web/education/
Curricula).

c) The Consolidated Reference List (see Appen-
dix C), meaning the list of recommended
reference materials (to the level of section
number) that accompanies the breakdown of
topics within each KA is also adopted by the
software engineering certification and asso-
ciated professional development products
offered by the IEEE Computer Society.

BASELINE AND CHANGE CONTROL
BOARD

Due to the structural nature of the SWEBOK
Guide and its adoption by other products, a base-
line was developed at the outset of the project
comprised of the list of KAs, the breakdown of

http://www.computer.org/certification
http://www.computer.org/certification
http://www.computer.org/portal/web/education/Curricula
http://www.computer.org/portal/web/education/Curricula

A-2 SWEBOK® Guide V3.0

topics within each KA, and the Consolidated Ref-
erence List.

A Change Control Board (CCB) has been in
place for the development of this version to han-
dle all change requests to this baseline coming
from the KA Editors, arising during the review
process, or otherwise. Change requests must be
approved both by the SWEBOK Guide Editors
and by the CCB before being implemented. This
CCB is comprised of members of the initiatives
listed above and acting under the authority of the
Software and Systems Engineering Committee of
the IEEE Computer Society Professional Activi-
ties Board.

CRITERIA AND REQUIREMENTS FOR
THE BREAKDOWN OF TOPICS WITHIN
A KNOWLEDGE AREA

a) KA Editors are instructed to adopt the base-
line breakdown of topics.

b) The breakdown of topics is expected to be
“reasonable,” not “perfect.”

c) The breakdown of topics within a KA must
decompose the subset of the Software Engi-
neering Body of Knowledge that is “gen-
erally recognized.” See below for a more
detailed discussion of this point.

d) The breakdown of topics within a KA must
not presume specific application domains,
business needs, sizes of organizations, organi-
zational structures, management philosophies,
software life cycle models, software technolo-
gies, or software development methods.

e) The breakdown of topics must, as much
as possible, be compatible with the vari-
ous schools of thought within software
engineering.

f) The breakdown of topics within a KA must
be compatible with the breakdown of soft-
ware engineering generally found in indus-
try and in the software engineering literature
and standards.

g) The breakdown of topics is expected to be as
inclusive as possible.

h) The SWEBOK Guide adopts the position
that even though the following “themes” are
common across all Knowledge Areas, they
are also an integral part of all Knowledge

Areas and therefore must be incorporated
into the proposed breakdown of topics of
each Knowledge Area. These common
themes are measurement, quality (in gen-
eral), and security.

i) The breakdown of topics should be at most
two or three levels deep. Even though no
upper or lower limit is imposed on the num-
ber of topics within each KA, a reasonable
and manageable number of topics is expected
to be included in each KA. Emphasis should
also be put on the selection of the topics
themselves rather than on their organization
in an appropriate hierarchy.

j) Topic names must be significant enough
to be meaningful even when cited outside the
SWEBOK Guide.

k) The description of a KA will include a chart
(in tree form) describing the knowledge
breakdown.

CRITERIA AND REQUIREMENTS FOR
DESCRIBING TOPICS

Topics need only be sufficiently described so the
reader can select the appropriate reference mate-
rial according to his/her needs. Topic descrip-
tions must not be prescriptive.

CRITERIA AND REQUIREMENTS FOR
REFERENCE MATERIAL

a) KA Editors are instructed to use the refer-
ences (to the level of section number) allo-
cated to their KA by the Consolidated Refer-
ence List as their Recommended References.

b) There are three categories of reference
material:

 » Recommended References. The set of
Recommended References (to the level
of section number) is collectively known
as the Consolidated Reference List.

 » Further Readings.
 » Additional references cited in the KA
Description (for example, the source
of a quotation or reference material in
support of a rationale behind a particular
argument).

Appendix A A-3

c) The SWEBOK Guide is intended by defini-
tion to be selective in its choice of topics
and associated reference material. The list of
reference material should be clearly viewed
as an “informed and reasonable selection”
rather than as a definitive list.

d) Reference material can be book chapters,
refereed journal papers, refereed confer-
ence papers, refereed technical or industrial
reports, or any other type of recognized arti-
fact. References to another KA, subarea, or
topic are also permitted.

e) Reference material must be generally avail-
able and must not be confidential in nature.

f) Reference material must be in English.
g) Criteria and requirements for recommended

reference material or Consolidated Refer-
ence List:

 » Collectively the list of Recommended
References should be

i. complete: covering the entire
scope of the SWEBOK Guide

ii. sufficient: providing enough
information to describe “gener-
ally accepted” knowledge

iii. consistent: not providing contra-
dictory knowledge nor conflict-
ing practices

iv. credible: recognized as providing
expert treatment

v. current: treating the subject in
a manner that is commensurate
with currently generally accepted
knowledge

vi. succinct: as short as possible
(both in number of reference
items and in total page count)
without failing other objectives.

 » Recommended reference material must
be identified for each topic. Each recom-
mended reference item may of course
cover multiple topics. Exceptionally, a
topic may be self-descriptive and not cite
a reference material item (for example, a
topic that is a definition or a topic for
which the description itself without any

cited reference material is sufficient for
the objectives of the SWEBOK Guide).

 » Each reference to the recommended
reference material should be as precise
as possible by identifying what specific
chapter or section is relevant.

 » A matrix of reference material (to the
level of section number) versus topics
must be provided.

 » A reasonable amount of recommended
reference material must be identified
for each KA. The following guidelines
should be used in determining how
much is reasonable:

i. If the recommended reference
material were written in a coher-
ent manner that followed the pro-
posed breakdown of topics and in
a uniform style (for example, in a
new book based on the proposed
KA description), an average tar-
get across all KAs for the number
of pages would be 750. However,
this target may not be attainable
when selecting existing reference
material due to differences in
style and overlap and redundancy
between the selected reference
materials.

ii. In other words, the target for the
number of pages for the entire
collection of recommended refer-
ences of the SWEBOK Guide is
in the range of 10,000 to 15,000
pages.

iii. Another way of viewing this is
that the amount of recommended
reference material would be
reasonable if it consisted of the
study material on this KA for a
software engineering licensing
exam that a graduate would pass
after completing four years of
work experience.

h) Additional reference material can be
included by the KA Editor in a “Further
Readings” list:

A-4 SWEBOK® Guide V3.0

 » These further readings must be related to
the topics in the breakdown rather than,
for example, to more advanced topics.

 » The list must be annotated (within 1
paragraph per reference) as to why this
reference material was included in the
list of further readings. Further readings
could include: new versions of an exist-
ing reference already included in the
recommended references, alternative
viewpoints on a KA, or a seminal treat-
ment of a KA.

 » A general guideline to be followed is 10
or fewer further readings per KA.

 » There is no matrix of the reference
materials listed in further readings and
the breakdown of topics.

i) Criteria and requirements regarding addi-
tional references cited in the KA Description:

 » The SWEBOK Guide is not a research
document and its readership will be var-
ied. Therefore, a delicate balance must
be maintained between ensuring a high
level of readability within the document
while maintaining its technical excel-
lence. Additional reference material
should therefore only be brought in by
the KA Editor if it is necessary to the
discussion. Examples are to identify the
source of a quotation or to cite reference
item in support of a rationale behind a
particular and important argument.

COMMON STRUCTURE

KA descriptions should use the following structure:

• Acronyms
• Introduction
• Breakdown of Topics of the KA (including a

figure describing the breakdown)
• Matrix of Topics vs. Reference Material
• List of Further Readings
• References

WHAT DO WE MEAN BY “GENERALLY
RECOGNIZED KNOWLEDGE”?

The Software Engineering Body of Knowledge
is an all-inclusive term that describes the sum
of knowledge within the profession of software
engineering. However, the SWEBOK Guide seeks
to identify and describe that subset of the body
of knowledge that is generally recognized or, in
other words, the core body of knowledge. To bet-
ter illustrate what “generally recognized” knowl-
edge is relative to other types of knowledge,
Figure A.1 proposes a three-category schema for
classifying knowledge.

The Project Management Institute in its Guide
to  the Project Management Body of Knowledge
defines “generally recognized” knowledge for
project management as being:

that subset of the project management
body of knowledge generally recognized
as good practice. “Generally recognized”
means the knowledge and practices
described are applicable to most projects
most of the time, and there is consensus
about their value and usefulness. “Good
practice” means there is general agreement
that the application of these skills, tools,
and techniques can enhance the chances
of success over a wide range of projects.
“Good practice” does not mean that the
knowledge described should always be
applied uniformly to all projects; the orga-
nization and/or project management team
is responsible for determining what is
appropriate for any given project. [1]

“Generally accepted” knowledge could also be
viewed as knowledge to be included in the study
material of a software engineering licensing exam
(in the USA) that a graduate would take after
completing four years of work experience. These
two definitions should be seen as complementary.

KA Editors are also expected to be somewhat
forward looking in their interpretation by tak-
ing into consideration not only what is “gener-
ally recognized” today and but what they expect
will be “generally recognized” in a 3- to 5-year
timeframe.

Appendix A A-5

Sp
ec

ia
liz

ed
Pr

ac
tic

es
 U

se
d

O
nl

y
fo

r
C

er
ta

in
 T

yp
es

 o
f S

of
tw

ar
e Generally Recognized

Established traditional prac-
tices recommended by many

organizations
Advanced and Research
Innovative practices tested

and used only by some orga-
nizations and concepts still

being developed and tested in
research organizations

Figure A.1. Categories of Knowledge

LENGTH OF KA DESCRIPTION

KA Descriptions are to be roughly 10 to 20 pages
using the formatting template for papers pub-
lished in conference proceedings of the IEEE
Computer Society. This includes text, references,
appendices, tables, etc. This, of course, does not
include the reference materials themselves.

IMPORTANT RELATED DOCUMENTS

1. Graduate Software Engineering 2009 
(GSwE2009): Curriculum Guidelines for 
Graduate Degree Programs in Software 
Engineering, 2009; www.gswe2009.org. [2]

This document “provides guidelines and rec-
ommendations” for defining the curricula of a
professional master’s level program in software
engineering. The SWEBOK Guide is identified
as a “primary reference” in developing the body
of knowledge underlying these guidelines. This
document has been officially endorsed by the
IEEE Computer Society and sponsored by the
Association for Computing Machinery.

2. IEEE Std. 12207-2008 (a.k.a. ISO/IEC 
12207:2008) Standard for Systems and 
Software Engineering—Software Life Cycle 
Processes, IEEE, 2008 [3].

This standard is considered the key standard
regarding the definition of life cycle processes and
has been adopted by the two main standardization
bodies in software engineering: ISO/IEC JTC1/
SC7 and the IEEE Computer Society Software

and Systems Engineering Standards Committees.
It also has been designated as a pivotal standard
by the Software and System Engineering Stan-
dards Committee (S2ESC) of the IEEE.

Even though we do not intend that the Guide to 
the Software Engineering Body of Knowledge be
fully 12207-conformant, this standard remains a
key input to the SWEBOK Guide, and special care
will be taken throughout the SWEBOK Guide
regarding the compatibility of the Guide with the
12207 standard.

3. J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.
[4*]

This book describes the scope, roles, uses, and
development trends of the most widely used soft-
ware engineering standards. It concentrates on
important software engineering activities—qual-
ity and project management, system engineer-
ing, dependability, and safety. The analysis and
regrouping of the standard collections exposes
the reader to key relationships between standards.

Even though the SWEBOK Guide is not a soft-
ware engineering standard per se, special care
will be taken throughout the document regarding
the compatibility of the Guide with the current
IEEE and ISO/IEC Systems and Software Engi-
neering Standards Collection.

4. Software Engineering 2004: Curriculum 
Guidelines for Undergraduate Degree 
Programs in Software Engineering, IEEE
Computer Society and Association for
Computing Machinery, 2004; http://sites.
computer.org/ccse/SE2004Volume.pdf. [5]

This document describes curriculum guidelines
for an undergraduate degree in software engineer-
ing. The SWEBOK Guide is identified as being
“one of the primary sources” in developing the
body of knowledge underlying these guidelines.

5. ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010; www.computer.org/
sevocab. [6]

http://www.gswe2009.org
http://sites.computer.org/ccse/SE2004Volume.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf
http://www.computer.org/
sevocab
http://www.computer.org/
sevocab

A-6 SWEBOK® Guide V3.0

The hierarchy of references for terminology is
Merriam Webster’s Collegiate Dictionary (11th
ed.) [7], IEEE/ISO/IEC 24765 [6], and new pro-
posed definitions if required.

6. “Certification and Training for Software
Professionals,” IEEE Computer Society,
2013; www.computer.org/certification. [8]

Information on the certification and associated
professional development products developed
and offered by the IEEE Computer Society for
professionals in the field of software engineer-
ing can be found on this website. The SWEBOK
Guide is foundational to these products.

STYLE AND TECHNICAL GUIDELINES

• KA Descriptions should conform to the
Word template available at www.computer.
org/portal/web/cscps/formatting.

• KA Descriptions are expected to follow the
IEEE Computer Society Style Guide (www.
computer.org/portal/web/publications/
styleguide).

• Files are to be submitted in Microsoft Word
format.

• All citations of reference material are to be
produced using EndNote Web as indicated
in the instructions provided to KA Editors in
this regard.

OTHER DETAILED GUIDELINES

When referencing the Guide  to  the  Software 
Engineering  Body  of  Knowledge, use the title
“SWEBOK Guide.”

For the purpose of simplicity, avoid footnotes
and try to include their content in the main text.

Use explicit references to standards, as opposed
to simply inserting numbers referencing items in

the bibliography. We believe this approach allows
the reader to be better exposed to the source and
scope of a standard.

The text accompanying figures and tables
should be self-explanatory or have enough related
text. This would ensure that the reader knows
what the figures and tables mean.

To make sure that some information in the
SWEBOK Guide does not become rapidly obso-
lete and due to its generic nature, please avoid
directly naming tools and products. Instead, try
to name their functions.

EDITING

Editors of the SWEBOK Guide as well as profes-
sional copy editors will edit KA Descriptions.
Editing includes copy editing (grammar, punc-
tuation, and capitalization), style editing (confor-
mance to the Computer Society style guide), and
content editing (flow, meaning, clarity, direct-
ness, and organization). The final editing will
be a collaborative process in which the Editors
of the SWEBOK Guide and the KA Editors work
together to achieve a concise, well-worded, and
useful KA Description.

RELEASE OF COPYRIGHT

All intellectual property rights associated with
the SWEBOK Guide will remain with the IEEE.
KA Editors must sign a copyright release form.

It is also understood that the SWEBOK Guide
will continue to be available free of charge in the
public domain in at least one format, provided by
the IEEE Computer Society through web technol-
ogy or by other means.

For more information, see www.computer.org/
copyright.htm.

http://www.computer.org/certification
http://www.computer.org/portal/web/cscps/formatting
http://www.computer.org/portal/web/cscps/formatting
http://www.computer.org/portal/web/publications/styleguide
http://www.computer.org/portal/web/publications/styleguide
http://www.computer.org/portal/web/publications/styleguide
http://www.computer.org/copyright.htm
http://www.computer.org/copyright.htm

Appendix A A-7

REFERENCES

[1] Project Management Institute, A Guide to the 
Project Management Body of Knowledge 
(PMBOK(R) Guide), 5th ed., Project
Management Institute, 2013.

[2] Integrated Software and Systems
Engineering Curriculum (iSSEc) Project,
Graduate Software Engineering 2009 
(GSwE2009): Curriculum Guidelines 
for Graduate Degree Programs in 
Software Engineering, Stevens Institute of
Technology, 2009; www.gswe2009.org.

[3] IEEE Std. 12207-2008 (a.k.a. ISO/IEC 
12207:2008) Standard for Systems and 
Software Engineering—Software Life Cycle 
Processes, IEEE, 2008.

[4*] J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.

[5] Joint Task Force on Computing Curricula,
IEEE Computer Society and Association
for Computing Machinery, Software 
Engineering 2004: Curriculum Guidelines 
for Undergraduate Degree Programs in 
Software Engineering, 2004; http://sites.
computer.org/ccse/SE2004Volume.pdf.

[6] ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[7] Merriam-Webster’s Collegiate Dictionary,
11th ed., 2003.

[8] IEEE Computer Society, “Certification and
Training for Software Professionals,” 2013;
www.computer.org/certification.

http://www.gswe2009.org
http://sites.computer.org/ccse/SE2004Volume.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf
http://www.computer.org/certification

B-1

APPENDIX B

IEEE AND ISO/IEC STANDARDS SUPPORTING
THE SOFTWARE ENGINEERING BODY OF

KNOWLEDGE (SWEBOK)

Some might say that the supply of software engi-
neering standards far exceeds the demand. One
seldom listens to a briefing on the subject without
suffering some apparently obligatory joke that
there are too many of them. However, the exis-
tence of standards takes a very large (possibly
infinite) trade space of alternatives and reduces
that space to a smaller set of choices—a huge
advantage for users. Nevertheless, it can still be
difficult to choose from dozens of alternatives, so
supplementary guidance, like this appendix, can
be helpful. A summary list of the standards men-
tioned in this appendix appears at the end.

To reduce tedium in reading, a few simplifica-
tions and abridgements are made in this appendix:

• ISO/IEC JTC 1/SC 7 maintains nearly two
hundred standards on the subject. IEEE
maintains about fifty. The two organizations
are in the tenth year of a systematic program
to coordinate and integrate their collections.
In general, this article will focus on the stan-
dards that are recognized by both organiza-
tions, taking this condition as evidence that
wide agreement has been obtained. Other
standards will be mentioned briefly.

• Standards tend to have long, taxonomical
titles. If there were a single standard for
building an automobile, the one for your
Camry probably would be titled something
like, “Vehicle, internal combustion, four-
wheel, passenger, sedan.” Also, modern stan-
dards organizations provide their standards
from databases. Like any database, these
sometimes contain errors, particularly for the
titles. So this article will often paraphrase the

title of the standard or simply use its number.
In obtaining a standard of interest, the reader
should rely on the number, not the title, given
in this article. For reasons of consistency, the
article will use the IEEE’s convention for the
capitalization of titles—nouns, pronouns,
adjectives, verbs, adverbs, and first and last
words have an initial capital letter—despite
the fact that IEEE and ISO/IEC use differing
conventions.

• Because these standards are being continu-
ally revised to take account of new technolo-
gies and usage patterns, this article will be
obsolescent before it is published. Therefore,
it will occasionally discuss standards that
have not yet been published, if they are likely
to assume significant importance.

• Explicit trademarks are omitted. Suffice it to
say that IEEE places a trademark on all of its
standards’ designations.

There are some other conventions of interest:

• In both IEEE and ISO/IEC, standards for
systems engineering are maintained by the
same committee as those for software engi-
neering. Many of the standards apply to both.
So, instead of making fine distinctions, this
article will deal with both.

• On the other hand, both S2ESC and SC 7
(see below for descriptions of these orga-
nizations) are responsible for standards
that don’t qualify as “engineering.” In the
US and many other countries, the services
of a licensed engineer are required when a
product might affect public safety, health,

B-2 SWEBOK® Guide V3.0

and welfare as opposed to affecting merely
the pocketbook of the client. This appendix
will respect that distinction and ignore stan-
dards that appear to be merely economic in
consequence.

• User documentation is assumed to be devel-
oped similarly to software. For example,
a standard concerning the design of user
documentation is described in the Software
Design KA.

• Some jointly developed standards are explic-
itly labeled as joint developments, e.g., ISO/
IEC/IEEE 24765. In other cases, the stan-
dards have different designations in the two
organizations. Examples include

 » IEEE Std. 12207:2008 (a.k.a. ISO/IEC
12207:2008), where “a.k.a.” (“also
known as”) is this appendix’s abbrevia-
tion to note the designation in the other
organization;

 » IEEE Std. 15939:2008 Standard Adop-
tion of ISO/IEC 15939:2007, an adop-
tion by IEEE of a standard developed in
ISO/IEC;

 » IEEE Std. 1220:2005 (a.k.a. ISO/IEC
26702:2007), a “fast-track” by ISO/IEC
of a standard developed in IEEE.

In each of these cases, the standards are
substantively identical in the two orga-
nizations, differing only in front matter
and, occasionally, added informational
material.

A summary list of all of the mentioned stan-
dards is provided at the end of this appendix.

ISO/IEC JTC 1/SC 7, SOFTWARE AND
SYSTEMS ENGINEERING

ISO/IEC JTC 1/SC 7 is the major source of
international standards on software and systems
engineering. Its name is formed taxonomically.
Joint Technical Committee 1 (JTC 1) is a child
of the International Organization for Standardiza-
tion (ISO) and the International Electrotechnical
Commission (IEC); it has the scope of “informa-
tion technology” and subdivides its work among
a number of subcommittees; Subcommittee 7 (SC

7) is the one responsible for software and sys-
tems engineering. SC 7, and its working groups,
meets twice a year, attracting delegations repre-
senting the national standards bodies of partici-
pating nations. Each nation follows its own pro-
cedures for determining national positions and
each nation has the responsibility of determining
whether an ISO/IEC standard should be adopted
as a national standard.

SC 7 creates three types of documents:

• International Standards: Documents contain-
ing requirements that must be satisfied in
order to claim conformance.

• Technical Specifications (formerly called
Technical Reports, type 1 and type 2): Docu-
ments published in a preliminary manner
while work continues.

• Technical Reports (formerly called Techni-
cal Reports, type 3): Documents inherently
unsuited to be standards, usually because
they are descriptive rather than prescriptive.

The key thing to remember is that only the
first category counts as a consensus standard.
The reader can easily recognize the others by the
suffix TS or TR prepended to the number of the
document.

IEEE SOFTWARE AND SYSTEMS
ENGINEERING STANDARDS
COMMITTEE (S2ESC)

IEEE is the world’s largest organization of tech-
nical professionals, with about 400,000 members
in more than 160 countries. The publication of
standards is performed by the IEEE Standards
Association (IEEE-SA), but the committees that
draft and sponsor the standards are in the various
IEEE societies; S2ESC is a part of the IEEE Com-
puter Society. IEEE is a global standards maker
because its standards are used in many differ-
ent countries. Despite its international member-
ship (about 50% non-US), though, the IEEE-SA
routinely submits its standards to the American
National Standards Institute (ANSI) for endorse-
ment as “American National Standards.” Some
S2ESC standards are developed within S2ESC,
some are developed jointly with SC 7, and some
are adopted after being developed by SC 7.

Appendix B B-3

IEEE-SA publishes three types of “standards”:

• Standards, with a preponderance of the verb
“shall”

• Recommended Practices, with a preponder-
ance of the verb “should”

• Guides, with a preponderance of the verb
“may.”

All three of these compare to ISO/IEC stan-
dards. IEEE-SA does have the concept of a “Trial-
Use” standard, which is roughly comparable to
an ISO/IEC Technical Specification. However, it
has nothing comparable to an ISO/IEC Techni-
cal Report; one would look elsewhere in IEEE for
documents of this ilk.

THE STANDARDS

The remainder of this article allocates the selected
standards to relevant knowledge areas (KAs) of
the SWEBOK Guide. There is a section for each
KA. Within each section, the relevant standards
are listed—the ones that principally apply to the
KA as well as others that principally apply to
other KAs but which are also related to the cur-
rent one. Following each standard is a brief sum-
mary. In most cases, the summary is a quotation
or paraphrase of the abstract or other introductory
material from the text of the standard.

Most of the standards easily fit into one KA.
Some fit into more than one; in such cases,
a cross-reference is provided. Two standards
apply to all KAs, so they are listed in a category
called “General.” All of the standards related to
computer-aided software engineering (CASE)
tools and environments are listed in the Software
Engineering Models and Methods KA section.

GENERAL

The first two standards are so central that they
could be slotted into all of the KAs. Two more are
described in the Software Engineering Process
KA, but are mentioned here because they provide
a helpful framework and because the descriptions
of several other standards refer to them.

ISO/IEC TR 19759 is the SWEBOK Guide
itself. It’s not an IEEE standard because, lacking
prescriptive verbs, it doesn’t satisfy the criteria

for any of the IEEE categories. In ISO/IEC, it is a
“technical report”—defined as a document inher-
ently unsuited to be a standard. The 2004 IEEE
SWEBOK Guide was adopted by ISO/IEC with-
out change. Presumably, ISO/IEC will adopt Ver-
sion 3 of the SWEBOK Guide.

ISO/IEC TR 19759:2005 Software Engineering—
Guide to the Software Engineering Body of Knowledge
(SWEBOK)

Applies to all KAs

ISO/IEC 19759:2005, a Guide  to  the  Software 
Engineering  Body  of  Knowledge  (SWEBOK),
identifies and describes that subset of the body
of knowledge that is generally accepted, even
though software engineers must be knowledge-
able not only in software engineering, but also,
of course, in other related disciplines. SWEBOK
is an all-inclusive term that describes the sum
of knowledge within the profession of software
engineering.

The text of the SWEBOK Guide is freely avail-
able at www.swebok.org/. The ISO/IEC adoption
of the Guide is freely available at http://standards.
iso.org/ittf/PubliclyAvailableStandards/index.
html.

ISO/IEC/IEEE 24765 provides a shared vocab-
ulary for the systems and software engineering
standards of both SC 7 and S2ESC.

ISO/IEC/IEEE 24765:2010 Systems and Software
Engineering—Vocabulary

Applies to all KAs

ISO/IEC/IEEE 24765:2010 provides a common
vocabulary applicable to all systems and software
engineering work. It was prepared to collect and
support the standardization of terminology. ISO/
IEC/IEEE 24765:2010 is intended to serve as a
useful reference for those in the information tech-
nology field and to encourage the use of systems
and software engineering standards prepared by
ISO and liaison organizations IEEE Computer
Society and Project Management Institute. ISO/
IEC/IEEE 24765:2010 includes references to the

http://www.swebok.org/
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

B-4 SWEBOK® Guide V3.0

active source standards for each definition so that
the use of the term can be further explored.

The vocabulary is descriptive, rather than pre-
scriptive; it gathers up all of the definitions from
all of the relevant standards, as well as a few
other sources, rather than choosing among com-
peting definitions.

The content of the 24765 standard is freely
accessible online at www.computer.org/sevocab.

Two standards, 12207 and 15288, provide a
complete set of processes for the entire life cycle
of a system or a software product. The two stan-
dards are aligned for concurrent use on a single
project or in a single organization. They are
mentioned here because they are often used as a
framework for explaining or localizing the role of
other standards in the life cycle.

IEEE Std. 12207-2008 (a.k.a. ISO/IEC 12207:2008)
Standard for Systems and Software Engineering—
Software Life Cycle Processes

See Software Engineering Process KA

IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008)
Standard for Systems and Software Engineering—
System Life Cycle Processes

See Software Engineering Process KA

SOFTWARE REQUIREMENTS

The primary standard for software and systems
requirements engineering is a new one that
replaced several existing IEEE standards. It pro-
vides a broad view of requirements engineering
across the entire life cycle.

ISO/IEC/IEEE 29148:2011 Systems and Software
Engineering—Life Cycle Processes—Requirements
Engineering

ISO/IEC/IEEE 29148:2011 contains provisions
for the processes and products related to the engi-
neering of requirements for systems and software
products and services throughout the life cycle.

It defines the construct of a good requirement,
provides attributes and characteristics of require-
ments, and discusses the iterative and recursive
application of requirements processes through-
out the life cycle. ISO/IEC/IEEE 29148:2011
provides additional guidance in the application
of requirements engineering and management
processes for requirements-related activities in
ISO/IEC 12207:2008 and ISO/IEC 15288:2008.
Information items applicable to the engineering
of requirements and their content are defined.
The content of ISO/IEC/IEEE 29148:2011 can
be added to the existing set of requirements-
related life cycle processes defined by ISO/IEC
12207:2008 or ISO/IEC 15288:2008, or it can be
used independently.

A multipart ISO/IEC standard provides princi-
ples and methods for “sizing” software based on
its requirements. The functional size is often use-
ful in the denominator of measurements of qual-
ity and productivity in software development. It
may also play a role in contracting for service-
level agreements.

ISO/IEC 14143 [six parts] Information Technol-
ogy—Software Measurement—Functional Size
Measurement

ISO/IEC 14143 describes FSM (functional size
measurement). The concepts of functional size
measurement (FSM) are designed to overcome the
limitations of earlier methods of sizing software by
shifting the focus away from measuring how the
software is implemented to measuring size in terms
of the functions required by the user.

FSM is often known as “function point count-
ing.” The four standards listed below are alter-
native methods for function point counting—all
meet the requirements of ISO/IEC 14143. The
dominant method, in terms of market share, is
the IFPUG method, described in ISO/IEC 20926.
Other methods are variations intended to improve
the validity of the count in various circumstances.
For example, ISO/IEC 19761—COSMIC is

http://www.computer.org/sevocab

Appendix B B-5

notably intended to be used on software with a
real-time component.

ISO/IEC 19761:2011 Software Engineering—COS-
MIC: A Functional Size Measurement Method

ISO/IEC 20926:2009 Software and Systems Engi-
neering—Software Measurement—IFPUG Func-
tional Size Measurement Method

ISO/IEC 20968:2002 Software Engineering—Mk
II Function Point Analysis—Counting Practices
Manual

ISO/IEC 24570:2005 Software Engineering—
NESMA Functional Size Measurement Method Ver-
sion 2.1—Definitions and Counting Guidelines for
the Application of Function Point Analysis

Sometimes requirements are described in natu-
ral language, but sometimes they are described
in formal or semiformal notations. The objective
of the Unified Modeling Language (UML) is to
provide system architects, software engineers,
and software developers with tools for analysis,
design, and implementation of software-based
systems as well as for modeling business and
similar processes. The two parts of ISO/IEC
19505 define UML, revision 2. The older ISO/
IEC 19501 is an earlier version of UML. They
are mentioned here because they are often used to
model requirements.

ISO/IEC 19501:2005 Information Technology—
Open Distributed Processing—Unified Modeling
Language (UML) Version 1.4.2

See Software Engineering Models and
Methods KA

ISO/IEC 19505:2012 [two parts] Information Tech-
nology—Object Management Group Unified Model-
ing Language (OMG UML)

See Software Engineering Models and
Methods KA

SOFTWARE DESIGN

The software design KA includes both software
architectural design (for determining the relation-
ships among the items of the software and detailed
design (for describing the individual items). ISO/
IEC/IEEE 42010 concerns the description of
architecture for systems and software.

ISO/IEC/IEEE 42010:2011 Systems and Software
Engineering—Architecture Description

ISO/IEC/IEEE 42010:2011 addresses the cre-
ation, analysis, and sustainment of architec-
tures of systems through the use of architecture
descriptions. A conceptual model of architecture
description is established. The required contents
of an architecture description are specified. Archi-
tecture viewpoints, architecture frameworks and
architecture description languages are introduced
for codifying conventions and common practices
of architecture description. The required content
of architecture viewpoints, architecture frame-
works and architecture description languages
is specified. Annexes provide the motivation
and background for key concepts and terminol-
ogy and examples of applying ISO/IEC/IEEE
42010:2011.

Like ISO/IEC/IEEE 42010, the next stan-
dard treats software “design” as an abstraction,
independent of its representation in a document.
Accordingly, the standard places provisions on
the description of design, rather than on design
itself.

IEEE Std. 1016-2009 Standard for Information
Technology—Systems Design—Software Design
Descriptions

This standard describes software designs and
establishes the information content and organiza-
tion of a software design description (SDD). An
SDD is a representation of a software design to be
used for recording design information and com-
municating that design information to key design

B-6 SWEBOK® Guide V3.0

stakeholders. This standard is intended for use in
design situations in which an explicit software
design description is to be prepared. These situ-
ations include traditional software construction
activities (when design leads to code) and reverse
engineering situations (when a design description
is recovered from an existing implementation).
This standard can be applied to commercial, sci-
entific, or military software that runs on digital
computers. Applicability is not restricted by the
size, complexity, or criticality of the software.
This standard can be applied to the description
of high-level and detailed designs. This stan-
dard does not prescribe specific methodologies
for design, configuration management, or qual-
ity assurance. This standard does not require the
use of any particular design languages, but estab-
lishes requirements on the selection of design
languages for use in an SDD. This standard can
be applied to the preparation of SDDs captured as
paper documents, automated databases, software
development tools, or other media.

By convention, this appendix treats user docu-
mentation as a part of a software system. There-
fore, the various aspects of user documentation—
its design, its testing, and so forth—are allocated
to different KAs. The next standard deals with the
design of user documentation.

IEEE Std. 26514-2010 Standard Adoption of ISO/
IEC 26514:2008 Systems and Software Engineer-
ing—Requirements for Designers and Developers of
User Documentation

This standard provides requirements for the
design and development of software user docu-
mentation as part of the life cycle processes. It
defines the documentation process from the view-
point of the documentation developer and also
covers the documentation product. It specifies the
structure, content, and format for user documen-
tation and also provides informative guidance for
user documentation style. It is independent of the
software tools that may be used to produce docu-
mentation and applies to both printed documenta-
tion and onscreen documentation. Much of this

standard is also applicable to user documentation
for systems including hardware.

SOFTWARE CONSTRUCTION

The term “software construction” refers to the
detailed creation of working, meaningful software
through a combination of coding, verification,
unit testing, integration testing, and debugging.

There are few standards on the details of soft-
ware coding. It has been found through (mostly
bad) experience that coding conventions are not
appropriate for standardization because, in most
cases, the real benefit comes from the consis-
tency of applying an arbitrary convention rather
than the convention itself. So, although coding
conventions are a good idea, it is generally left
to the organization or the project to develop such
a standard.

Nevertheless, the subject of secure coding has
attracted attention in recent years because some
coding idioms are insecure in the face of attack.
A Technical Report prepared by ISO/IEC JTC 1/
SC 22 (programming languages) describes vul-
nerabilities in programming languages and how
they can be avoided.

ISO/IEC TR 24772:2013 Information Technology—
Programming Languages—Guidance to Avoiding
Vulnerabilities in Programming Languages through
Language Selection and Use

ISO/IEC TR 24772:2013 specifies software pro-
gramming language vulnerabilities to be avoided
in the development of systems where assured
behavior is required for security, safety, mis-
sion-critical, and business-critical software. In
general, this guidance is applicable to the soft-
ware developed, reviewed, or maintained for any
application.

Vulnerabilities are described in a generic man-
ner that is applicable to a broad range of pro-
gramming languages. Annexes relate the generic
guidance to a selection of specific programming
languages.

Appendix B B-7

The Technical Report is freely available at http://
standards.iso.org/ittf/PubliclyAvailableStandards/
index.html.

Two standards are mentioned here because unit
testing is often regarded as an activity of software
construction. IEEE and ISO/IEC are cooperating
in the development of a four-part joint standard,
29119, that will provide a comprehensive treat-
ment of testing and supplant IEEE Std. 1008.

IEEE Std. 1008-1987 Standard for Software Unit
Testing

See Software Testing KA

ISO/IEC/IEEE 29119 [four parts] (Draft) Software
and Systems Engineering—Software Testing

See Software Testing KA

The next standard provides for the development
of user documentation during an agile devel-
opment process. It is mentioned here because
agile development is sometimes regarded as
construction.

ISO/IEC/IEEE 26515:2012 Systems and Software
Engineering—Developing User Documentation in an
Agile Environment

See Software Engineering Models and
Methods KA

Coding is not the only way to create a software
product. Often code (as well as requirements and
design) is reused from previous projects or engi-
neered for reuse in future projects. IEEE Std. 1517
is mentioned here because it provides a common
framework for extending the system and software
life cycle processes of IEEE Std. 12207:2008 to
include the systematic practice of reuse.

IEEE Std. 1517-2010 Standard for Information
Technology—System and Software Life Cycle Pro-
cesses—Reuse Processes

See Software Engineering Process KA

SOFTWARE TESTING

Oddly, there are few standards for testing. IEEE
Std. 829 is the most comprehensive.

IEEE Std. 829-2008 Standard for Software and Sys-
tem Test Documentation

Test processes determine whether the develop-
ment products of a given activity conform to the
requirements of that activity and whether the sys-
tem and/or software satisfies its intended use and
user needs. Testing process tasks are specified
for different integrity levels. These process tasks
determine the appropriate breadth and depth of
test documentation. The documentation elements
for each type of test documentation can then be
selected. The scope of testing encompasses soft-
ware-based systems, computer software, hard-
ware, and their interfaces. This standard applies
to software-based systems being developed,
maintained, or reused (legacy, commercial off-
the-shelf, nondevelopmental items). The term
“software” also includes firmware, microcode,
and documentation. Test processes can include
inspection, analysis, demonstration, verification,
and validation of software and software-based
system products.

IEEE Std. 1008 focuses on unit testing.

IEEE Std. 1008-1987 Standard for Software Unit
Testing

The primary objective is to specify a standard
approach to software unit testing that can be
used as a basis for sound software engineer-
ing practice. A second objective is to describe
the software engineering concepts and testing
assumptions on which the standard approach is
based. A third objective is to provide guidance
and resource information to assist with the imple-
mentation and usage of the standard unit testing
approach.

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

B-8 SWEBOK® Guide V3.0

IEEE and ISO/IEC JTC 1/SC 7 are cooperating
in a project to develop a single comprehensive
standard that covers all aspects of testing. One
can hope for publication of the four-part standard
by 2014. Portions of the content remain contro-
versial. One taxonomical issue is whether “static
methods”—such as inspection, review, and static
analysis—should fall within the scope of “test-
ing” or should be distinguished as “verification
and validation.” Although the resolution of the
issue is probably of little importance to users of
the standard, it assumes great importance to the
standards-writers who must manage an integrated
suite of interoperating standards.

ISO/IEC/IEEE 29119 [four parts] (Draft) Software
and Systems Engineering—Software Testing

The purpose of ISO/IEC 29119 Software Testing
is to define an internationally agreed standard for
software testing that can be used by any orga-
nization when performing any form of software
testing.

Testing of user documentation is described in
the next standard, providing requirements for the
test and review of software user documentation
as part of the life cycle processes. It defines the
documentation process from the viewpoint of the
documentation tester and reviewer. It is relevant
to roles involved in testing and development of
software and user documentation, including proj-
ect managers, usability experts, and information
developers in addition to testers and reviewers.

IEEE Std. 26513-2010 Standard Adoption of ISO/
IEC 26513:2009 Systems and Software Engineer-
ing—Requirements for Testers and Reviewers of
Documentation

ISO/IEC 26513 provides the minimum require-
ments for the testing and reviewing of user docu-
mentation, including both printed and onscreen
documents used in the work environment by the
users of systems software. It applies to printed
user manuals, online help, tutorials, and user ref-
erence documentation.

It specifies processes for use in testing and
reviewing of user documentation. It is not lim-
ited to the test and review phase of the life cycle,
but includes activities throughout the information
management and documentation management
processes.

Two standards are mentioned here because
some sources consider software verification and
validation to be taxonomically included in testing.

IEEE Std. 1012-2012 Standard for System and Soft-
ware Verification and Validation

See Software Quality KA

IEEE Std. 1044-2009 Standard for Classification for
Software Anomalies

See Software Quality KA

SOFTWARE MAINTENANCE

This standard—the result of harmonizing distinct
IEEE and ISO/IEC standards on the subject—
describes a single comprehensive process for the
management and execution of software mainte-
nance. It expands on the provisions of the soft-
ware maintenance process provided in ISO/IEC/
IEEE 12207.

IEEE Std. 14764-2006 (a.k.a. ISO/IEC 14764:2006)
Standard for Software Engineering—Software Life
Cycle Processes—Maintenance

ISO/IEC 14764:2006 describes in greater
detail management of the maintenance process
described in ISO/IEC 12207, including amend-
ments. It also establishes definitions for the vari-
ous types of maintenance. ISO/IEC 14764:2006
provides guidance that applies to planning, exe-
cution and control, review and evaluation, and
closure of the maintenance process. The scope of
ISO/IEC 14764:2006 includes maintenance for
multiple software products with the same main-
tenance resources. “Maintenance” in ISO/IEC
14764:2006 means software maintenance unless
otherwise stated.

Appendix B B-9

ISO/IEC 14764:2006 provides the framework
within which generic and specific software main-
tenance plans may be executed, evaluated, and
tailored to the maintenance scope and magni-
tude of given software products. It provides the
framework, precise terminology, and processes
to allow the consistent application of technol-
ogy (tools, techniques, and methods) to software
maintenance.

It does not address the operation of software
and the operational functions, e.g., backup,
recovery, and system administration, which are
normally performed by those who operate the
software.

ISO/IEC 14764:2006 is written primarily for
maintainers of software and additionally for those
responsible for development and quality assur-
ance. It may also be used by acquirers and users
of systems containing software, who may provide
inputs to the maintenance plan.

SOFTWARE CONFIGURATION
MANAGEMENT

There is one standard for configuration
management.

IEEE Std. 828-2012 Standard for Configuration
Management in Systems and Software Engineering

This standard establishes the minimum require-
ments for processes for configuration management
(CM) in systems and software engineering. The
application of this standard applies to any form,
class, or type of software or system. This revision
of the standard expands the previous version to
explain CM, including identifying and acquiring
configuration items, controlling changes, report-
ing the status of configuration items, as well as
software builds and release engineering. Its pre-
decessor defined only the contents of a software
configuration management plan. This standard
addresses what CM activities are to be done, when
they are to happen in the life cycle, and what plan-
ning and resources are required. It also describes
the content areas for a CM plan. The standard sup-
ports ISO/IEC/IEEE 12207:2008 and ISO/IEC/
IEEE 15288:2008 and adheres to the terminology

in ISO/IEC/IEEE Std. 24765 and the information
item requirements of IEEE Std. 15939.

ISO/IEC JTC 1/SC 7 has not yet determined
what action it should take regarding the new
IEEE Std. 828. There are issues concerning the
extent of compatibility with ISO/IEC/IEEE
12207 and other standards in the SC 7 suite. It
should be noted, though, that SC 7 does not have
a competing standard.

SOFTWARE ENGINEERING
MANAGEMENT

Most readers will interpret the phrase “software
engineering management” to mean the manage-
ment of a project that concerns software. There
are at least two possible extensions to this gen-
eralization, though. Some software activities are
managed according to a service-level agreement
(SLA). SLAs do not meet the criteria for “proj-
ect” according to some definitions. Also, it has
become generally agreed that some management
of software should occur in the organization at a
level above the project, so that all projects can
benefit from a common investment. A commonly
cited example is the provision of software pro-
cesses and tooling by the organization.

Software project management can be regarded
as a specialization of “project management”—
often regarded as a distinct discipline. The Proj-
ect Management Institute’s Guide to the Project 
Management  Body  of  Knowledge  (PMBOK®
Guide)  is often regarded as the authoritative
source for this knowledge. From time to time,
IEEE adopts the most recent version of the
PMBOK® Guide as an IEEE standard.

IEEE Std. 1490-2011 Guide—Adoption of the Proj-
ect Management Institute (PMI®) Standard, A
Guide to the Project Management Body of Knowl-
edge (PMBOK® Guide)—Fourth Edition

The PMBOK®  Guide identifies that subset of
the project management body of knowledge gen-
erally recognized as good practice. “Generally
recognized” means the knowledge and practices
described are applicable to most projects most of

B-10 SWEBOK® Guide V3.0

the time and there is consensus about their value and
usefulness. “Good practice” means there is general
agreement that the application of these skills, tools,
and techniques can enhance the chances of success
over a wide range of projects. Good practice does
not mean the knowledge described should always
be applied uniformly to all projects; the organiza-
tion and/or project management team is respon-
sible for determining what is appropriate for any
given project. The PMBOK® Guide also provides
and promotes a common vocabulary within the
project management profession for discussing,
writing, and applying project management con-
cepts. Such a standard vocabulary is an essential
element of a professional discipline. The Project
Management Institute (PMI) views this standard
as a foundational project management reference
for its professional development programs and
certifications.

The 2008 revisions of ISO/IEC/IEEE 12207
and 15288 provide project management pro-
cesses for software and systems and relate them
to organization-level processes as well as tech-
nical processes. The jointly developed 16326
standard, replacing two older standards, expands
those provisions with guidance for application.

ISO/IEC/IEEE 16326:2009 Systems and Soft-
ware Engineering—Life Cycle Processes—Project
Management

ISO/IEC/IEEE 16326:2009 provides normative
content specifications for project management
plans covering software projects and software-
intensive system projects. It also provides detailed
discussion and advice on applying a set of proj-
ect processes that are common to both the soft-
ware and system life cycle as covered by ISO/IEC
12207:2008 (IEEE Std. 12207-2008) and ISO/IEC
15288:2008 (IEEE Std. 15288-2008), respectively.
The discussion and advice are intended to aid in
the preparation of the normative content of project
management plans. ISO/IEC/IEEE 16326:2009
is the result of the harmonization of ISO/IEC TR
16326:1999 and IEEE Std. 1058-1998.

Particularly in high-technology applications
and high-consequence projects, the management
of risk is an important aspect of the overall proj-
ect management responsibilities. This standard
deals with that subject.

IEEE Std. 16085-2006 (a.k.a. ISO/IEC 16085:2006)
Standard for Systems and Software Engineering—
Software Life Cycle Processes—Risk Management

ISO/IEC 16085:2006 defines a process for the
management of risk in the life cycle. It can be
added to the existing set of system and software
life cycle processes defined by ISO/IEC 15288 and
ISO/IEC 12207, or it can be used independently.

ISO/IEC 16085:2006 can be applied equally to
systems and software.

The purpose of risk management is to iden-
tify potential managerial and technical problems
before they occur so that actions can be taken that
reduce or eliminate the probability and/or impact
of these problems should they occur. It is a criti-
cal tool for continuously determining the feasi-
bility of project plans, for improving the search
for and identification of potential problems that
can affect life cycle activities and the quality and
performance of products, and for improving the
active management of projects.

The analysis of risk and risk mitigation depends
crucially upon measurement. This international
standard provides an elaboration of the measure-
ment process from ISO/IEC/IEEE 15288:2008
and ISO/IEC/IEEE 12207:2008.

IEEE Std. 15939-2008 Standard Adoption of ISO/
IEC 15939:2007 Systems and Software Engineer-
ing—Measurement Process

ISO/IEC 15939 defines a measurement process
applicable to system and software engineer-
ing and management disciplines. The process is
described through a model that defines the activi-
ties of the measurement process that are required
to adequately specify what measurement infor-
mation is required, how the measures and analy-
sis results are to be applied, and how to determine

Appendix B B-11

if the analysis results are valid. The measurement
process is flexible, tailorable, and adaptable to the
needs of different users.

ISO/IEC 15939:2007 identifies a process that
supports defining a suitable set of measures that
address specific information needs. It identifies the
activities and tasks that are necessary to success-
fully identify, define, select, apply, and improve
measurement within an overall project or organi-
zational measurement structure. It also provides
definitions for measurement terms commonly used
within the system and software industries.

Software projects often require the develop-
ment of user documentation. Management of the
project, therefore, includes management of the
documentation effort.

ISO/IEC/IEEE 26511:2012 Systems and Software
Engineering—Requirements for Managers of User
Documentation

ISO/IEC/IEEE 26511:2012 specifies procedures
for managing user documentation throughout the
software life cycle. It applies to people or orga-
nizations producing suites of documentation, to
those undertaking a single documentation project,
and to documentation produced internally, as well
as to documentation contracted to outside service
organizations. It provides an overview of the soft-
ware documentation and information management
processes, and also presents aspects of portfolio
planning and content management that user docu-
mentation managers apply. It covers management
activities in starting a project, including setting
up procedures and specifications, establishing
infrastructure, and building a team. It includes
examples of roles needed on a user documentation
team. It addresses measurements and estimates
needed for management control, and the use of
supporting processes such as change management,
schedule and cost control, resource management,
and quality management and process improve-
ment. It includes requirements for key documents
produced for user documentation management,
including documentation plans and documentation
management plans. ISO/IEC/IEEE 26511:2012 is
independent of the software tools that may be used

to produce or manage documentation, and applies
to both printed documentation and onscreen docu-
mentation. Much of its guidance is applicable to
user documentation for systems including hard-
ware as well as software.

Sometimes software or system components are
acquired rather than developed.

IEEE Std. 1062-1998 Recommended Practice for
Software Acquisition

A set of useful quality practices that can be
selected and applied during one or more steps in
a software acquisition process is described. This
recommended practice can be applied to software
that runs on any computer system regardless of
the size, complexity, or criticality of the software,
but is more suited for use on modified-off-the-
shelf software and fully developed software.

Sometimes user documentation is acquired
regardless of whether the software it describes
was acquired. The following standard deals with
that subject.

ISO/IEC/IEEE 26512:2011 Systems and Software
Engineering—Requirements for Acquirers and Sup-
pliers of User Documentation

ISO/IEC/IEEE 26512:2011 was developed to
assist users of ISO/IEC/IEEE 15288:2008 or ISO/
IEC/IEEE 12207:2008 to acquire or supply soft-
ware user documentation as part of the software
life cycle processes. It defines the documentation
process from the acquirer’s standpoint and the
supplier’s standpoint. ISO/IEC/IEEE 26512:2011
covers the requirements for information items used
in the acquisition of user documentation products:
the acquisition plan, document specification, state-
ment of work, request for proposals, and proposal.
It provides an overview of the software user docu-
mentation and information management processes
which may require acquisition and supply of soft-
ware user documentation products and services.
It addresses the preparation of requirements for

B-12 SWEBOK® Guide V3.0

software user documentation. These requirements
are central to the user documentation specification
and statement of work. It includes requirements
for primary document outputs of the acquisition
and supply process: the request for proposal and
the proposal for user documentation products and
services. It also discusses the use of a documen-
tation management plan and a document plan as
they arise in the acquisition and supply processes.
ISO/IEC/IEEE 26512:2011 is independent of the
software tools that may be used to produce docu-
mentation and applies to both printed documen-
tation and onscreen documentation. Much of its
guidance is applicable to user documentation for
systems including hardware as well as software.

The next two standards are mentioned here
because they supply information used in manage-
ment decision-making.

IEEE Std. 1028-2008 Standard for Software Reviews
and Audits

See Software Quality KA

IEEE Std. 1061-1998 Standard for Software Quality
Metrics Methodology

See Software Quality KA

The next standard is mentioned because it
includes the manager’s role in developing user
documentation in an agile project.

ISO/IEC/IEEE 26515:2012 Systems and Software
Engineering—Developing User Documentation in an
Agile Environment

See Software Engineering Models and
Methods KA

SOFTWARE ENGINEERING PROCESS

Software and systems engineering processes
are central to the standardization of those two
disciplines—not just because many are inter-
ested in process improvement, but also because
processes are effective for the description of

improved practices. For example, one might pro-
pose an improved practice for software require-
ments analysis. A naïve treatment might relate
the description to an early stage of the life cycle
model. A superior approach is to describe the
practice in the context of a process that can be
applied at any stage of the life cycle. The require-
ments analysis process, for example, is neces-
sary for the development stage, for maintenance,
and often for retirement, so an improved practice
described in terms of the requirements analysis
process can be applied to any of those stages.

The two key standards are ISO/IEC/IEEE
12207, Software Life Cycle Processes, and ISO/
IEC/IEEE 15288, System  Life  Cycle  Processes.
The two standards have distinct histories, but
they were both revised in 2008 to align their pro-
cesses, permitting their interoperable use across a
wide spectrum of projects ranging from a stand-
alone software component to a system with neg-
ligible software content. Both are being revised
again with the intent of containing an identical
list of processes, but with provisions specialized
for the respective disciplines.

IEEE Std. 12207-2008 (a.k.a. ISO/IEC 12207:2008)
Standard for Systems and Software Engineering—
Software Life Cycle Processes

ISO/IEC 12207:2008 establishes a common
framework for software life cycle processes, with
well-defined terminology that can be referenced
by the software industry.

ISO/IEC 12207:2008 applies to the acquisi-
tion of systems and software products and ser-
vices and to the supply, development, operation,
maintenance, and disposal of software products
and the software portion of a system, whether
performed internally or externally to an organiza-
tion. Those aspects of system definition needed
to provide the context for software products and
services are included.

ISO/IEC 12207:2008 also provides a process
that can be employed for defining, controlling,
and improving software life cycle processes.

The processes, activities and tasks of ISO/IEC
12207:2008—either alone or in conjunction with
ISO/IEC 15288—may also be applied during the
acquisition of a system that contains software.

Appendix B B-13

IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008)
Standard for Systems and Software Engineering—
System Life Cycle Processes

ISO/IEC 15288:2008 establishes a common
framework for describing the life cycle of sys-
tems created by humans. It defines a set of
processes and associated terminology. These
processes can be applied at any level in the
hierarchy of a system’s structure. Selected sets
of these processes can be applied throughout
the life cycle for managing and performing the
stages of a system’s life cycle. This is accom-
plished through the involvement of all interested
parties, with the ultimate goal of achieving cus-
tomer satisfaction.

ISO/IEC 15288:2008 also provides processes
that support the definition, control, and improve-
ment of the life cycle processes used within an
organization or a project. Organizations and
projects can use these life cycle processes when
acquiring and supplying systems.

ISO/IEC 15288:2008 concerns those systems
that are man-made and may be configured with
one or more of the following: hardware, software,
data, humans, processes (e.g., processes for pro-
viding service to users), procedures (e.g., opera-
tor instructions), facilities, materials, and natu-
rally occurring entities. When a system element is
software, the software life cycle processes docu-
mented in ISO/IEC 12207:2008 may be used to
implement that system element.

ISO/IEC 15288:2008 and ISO/IEC 12207:2008
are harmonized for concurrent use on a single
project or in a single organization.

Those two standards specify that processes
may produce items of information but do not pre-
scribe their content or format. The next standard
provides help with that.

ISO/IEC/IEEE 15289:2011 Systems and Software
Engineering—Content of Life-Cycle Information
Products (Documentation)

ISO/IEC/IEEE 15289:2011 provides require-
ments for identifying and planning the specific

information items (information products, docu-
mentation) to be developed and revised during
systems and software life cycles and service
management processes. It specifies the purpose
and content of all identified systems and software
data records and life cycle information items, as
well as records and information items for infor-
mation technology service management. The
information item contents are defined according
to generic document types (description, plan, pol-
icy, procedure, report, request, and specification)
and the specific purpose of the document. For
simplicity of reference, each information item
is described as if it were published as a separate
document. However, information items may be
unpublished but available in a repository for ref-
erence, divided into separate documents or vol-
umes, or combined with other information items
into one document. ISO/IEC/IEEE 15289:2011
is based on the life cycle processes specified in
ISO/IEC 12207:2008 (IEEE Std. 12207-2008)
and ISO/IEC 15288:2008 (IEEE Std. 15288-
2008), and the service management processes
specified in ISO/IEC 20000-1:2005 and ISO/IEC
20000-2:2005.

The next two guides provide supplementary
information helpful in applying 12207 and 15288.

IEEE Std. 24748.2-2012 Guide—Adoption of ISO/
IEC TR 24748-2:2011 Systems and Software Engi-
neering—Life Cycle Management—Part 2: Guide to
the Application of ISO/IEC 15288 (System Life Cycle
Processes)

ISO/IEC TR 24748-2 is a guide for the applica-
tion of ISO/IEC 15288:2008. It addresses sys-
tem, life cycle, process, organizational, project,
and adaptation concepts, principally through
reference to ISO/IEC TR 24748-1 and ISO/IEC
15288:2008. It then gives guidance on applying
ISO/IEC 15288:2008 from the aspects of strat-
egy, planning, application in organizations, and
application on projects.

IEEE Std. 24748.3-2012 Guide—Adoption of
ISO/IEC TR 24748-3:2011 Systems and Software

B-14 SWEBOK® Guide V3.0

Engineering—Life Cycle Management—Part 3:
Guide to the Application of ISO/IEC 12207 (Soft-
ware Life Cycle Processes)

ISO/IEC TR 24748-3 is a guide for the applica-
tion of ISO/IEC 12207:2008. It addresses sys-
tem, life cycle, process, organizational, project,
and adaptation concepts, principally through
reference to ISO/IEC TR 24748-1 and ISO/IEC
12207:2008. It gives guidance on applying ISO/
IEC 12207:2008 from the aspects of strategy,
planning, application in organizations, and appli-
cation on projects.

The 12207 and 15288 standards provide pro-
cesses covering the life cycle, but they do not pro-
vide a standard life cycle model (waterfall, incre-
mental delivery, prototype-driven, etc). Selecting
an appropriate life cycle model for a project is a
major concern of ISO/IEC 24748-1.

IEEE Std. 24748.1-2011 Guide—Adoption of ISO/
IEC TR 24748-1:2010 Systems and Software Engi-
neering—Life Cycle Management—Part 1: Guide
for Life Cycle Management

ISO/IEC TR 24748-1 provides information on
life cycle concepts and descriptions of the pur-
poses and outcomes of representative life cycle
stages. It also illustrates the use of a life cycle
model for systems in the context of ISO/IEC
15288 and provides a corresponding illustration
of the use of a life cycle model for software in the
context of ISO/IEC 12207. ISO/IEC TR 24748-1
additionally provides detailed discussion and
advice on adapting a life cycle model for use in a
specific project and organizational environment.
It further provides guidance on life cycle model
use by domains, disciplines and specialties. ISO/
IEC TR 24748-1 gives a detailed comparison
between prior and current versions of ISO/IEC
12207 and ISO/IEC 15288 as well as advice on
transitioning from prior to current versions and
on using their application guides. The discus-
sion and advice are intended to provide a refer-
ence model for life cycle models, facilitate use of
the updated ISO/IEC 15288 and ISO/IEC 12207,
and provide a framework for the development of

updated application guides for those International
Standards. ISO/IEC TR 24748-1 is a result of the
alignment stage of the harmonization of ISO/IEC
12207 and ISO/IEC 15288.

The next standard extends the provisions of
ISO/IEC/IEEE 12207 to deal with systematic
software reuse.

IEEE Std. 1517-2010 Standard for Information
Technology—System and Software Life Cycle Pro-
cesses—Reuse Processes

A common framework for extending the system
and software life cycle processes of IEEE Std.
12207:2008 to include the systematic practice
of reuse is provided. The processes, activities,
and tasks to be applied during each life cycle
process to enable a system and/or product to be
constructed from reusable assets are specified.
The processes, activities, and tasks to enable
the identification, construction, maintenance,
and management of assets supplied are also
specified.

IEEE Std. 1220 has been widely applied as a
systems engineering process and was adopted by
ISO/IEC with the number 26702. Unfortunately,
the standard is not completely compatible with
ISO/IEC/IEEE 15288 and is being revised to
solve that problem. The result will be published
as ISO/IEC/IEEE 24748-4.

IEEE Std. 1220-2005 (a.k.a. ISO/IEC 26702:2007)
Standard for Application and Management of the
Systems Engineering Process

ISO/IEC 26702 defines the interdisciplinary tasks
which are required throughout a system’s life
cycle to transform customer needs, requirements,
and constraints into a system solution. In addi-
tion, it specifies the requirements for the systems
engineering process and its application through-
out the product life cycle. ISO/IEC 26702:2007
focuses on engineering activities necessary to
guide product development, while ensuring

Appendix B B-15

that the product is properly designed to make it
affordable to produce, own, operate, maintain,
and eventually dispose of without undue risk to
health or the environment.

Since SC 7 and IEEE have written so many
process standards, one may not be surprised to
learn that their model for process description is
recorded in a Technical Report.

IEEE Std. 24774-2012 Guide—Adoption of ISO/IEC
TR 24474:2010 Systems and Software Engineer-
ing—Life Cycle Management—Guidelines for Pro-
cess Description

An increasing number of international, national,
and industry standards describe process mod-
els. These models are developed for a range of
purposes including process implementation and
assessment. The terms and descriptions used in
such models vary in format, content, and level
of prescription. ISO/IEC TR 24774:2010 pres-
ents guidelines for the elements used most fre-
quently in describing a process: the title, pur-
pose, outcomes, activities, task, and information
item. Whilst the primary purpose of ISO/IEC TR
24774:2010 is to encourage consistency in stan-
dard process reference models, the guidelines it
provides can be applied to any process model
developed for any purpose.

A very small entity (VSE) is an enterprise, an
organization, a department, or a project having
up to 25 people. The ISO/IEC 29110 series “pro-
files” large standards, such as ISO/IEC 12207 for
software and ISO/IEC 15288 for systems, into
smaller ones for VSEs. ISO 29110 is applicable to
VSEs that do not develop critical systems or criti-
cal software. Profiles provide a roadmap allowing
a start-up to grow a step at a time using the ISO
29110 management and engineering guides.

ISO/IEC 29110 set of standards and technical
reports are targeted by audience such as VSEs,
customers, or auditors. ISO/IEC 29110 is not
intended to preclude the use of different life
cycles approaches such as waterfall, iterative,
incremental, evolutionary, or agile.

A VSE could obtain an ISO/IEC 29110 Certi-
fication. The set of technical reports is available
at no cost on the ISO website. Many ISO 29110
documents are available in English, Spanish, Por-
tuguese, Japanese, and French.

ISO/IEC TR 29110-5-1-2:2011 Software Engineer-
ing—Lifecycle Profiles for Very Small Entities
(VSEs)—Part 5-1-2: Management and Engineering
Guide: Generic Profile Group: Basic Profile

ISO/IEC TR 29110-5-1-2:2011 is applicable to
very small entities (VSEs). A VSE is defined as
an enterprise, organization, department, or proj-
ect having up to 25 people. A set of standards and
guides has been developed according to a set of
VSEs’ characteristics and needs. The guides are
based on subsets of appropriate standards ele-
ments, referred to as VSE profiles. The purpose
of a VSE profile is to define a subset of ISO/IEC
international standards relevant to the VSEs’
context.

ISO/IEC TR 29110-5-1-2:2011 provides the
management and engineering guide to the basic
VSE profile applicable to VSEs that do not
develop critical software. The generic profile
group does not imply any specific application
domain.

The next standard may be viewed as an alterna-
tive to 12207 for individual projects. The 1074
standard explains how to define processes for
use on a given project. The 12207 and 15288
standards, however, focus on defining processes
for organizational adoption and repeated use on
many projects. The current 1074 is the update of
a standard that was a predecessor of 12207.

IEEE Std. 1074-2006 Standard for Developing a
Software Project Life Cycle Process

This standard provides a process for creating a
software project life cycle process (SPLCP). It is
primarily directed at the process architect for a
given software project.

B-16 SWEBOK® Guide V3.0

All of the standards described so far in this sec-
tion provide a basis for defining processes. Some
users are interested in assessing and improving
their processes after implementation. The 15504
series provides for process assessment; it is cur-
rently being revised and renumbered 330xx.

ISO/IEC 15504 [ten parts] Information Technol-
ogy—Process Assessment

ISO/IEC 15504-2:2003 defines the requirements
for performing process assessment as a basis
for use in process improvement and capability
determination.

Process assessment is based on a two-dimen-
sional model containing a process dimension and
a capability dimension. The process dimension is
provided by an external process reference model
(such as 12207 or 15288), which defines a set of
processes characterized by statements of process
purpose and process outcomes. The capability
dimension consists of a measurement framework
comprising six process capability levels and their
associated process attributes.

The assessment output consists of a set of pro-
cess attribute ratings for each process assessed,
termed the process profile, and may also include
the capability level achieved by that process.

ISO/IEC 15504-2:2003 identifies the measure-
ment framework for process capability and the
requirements for

• performing an assessment;
• process reference models;
• process assessment models;
• verifying conformity of process assessment.

The requirements for process assessment
defined in ISO/IEC 15504-2:2003 form a struc-
ture that

• facilitates self-assessment;
• provides a basis for use in process improve-

ment and capability determination;
• takes into account the context in which the

assessed process is implemented;
• produces a process rating;
• addresses the ability of the process to achieve

its purpose;

• is applicable across all application domains
and sizes of organization; and

• may provide an objective benchmark
between organizations.

The minimum set of requirements defined in
ISO/IEC 15504-2:2003 ensures that assessment
results are objective, impartial, consistent, repeat-
able, and representative of the assessed processes.
Results of conformant process assessments may
be compared when the scopes of the assessments
are considered to be similar; for guidance on this
matter, refer to ISO/IEC 15504-4.

Several other standards are mentioned here
because they are written as elaborations of the
processes of 12207 or 15288. They are allocated
to other KAs because each one deals with topics
described in those other KAs.

IEEE Std. 828-2012 Standard for Configuration
Management in Systems and Software Engineering

See Software Configuration Management KA

IEEE Std. 14764-2006 (a.k.a. ISO/IEC 14764:2006)
Standard for Software Engineering—Software Life
Cycle Processes—Maintenance

See Software Maintenance KA

ISO/IEC 15026-4:2012 Systems and Software Engi-
neering—Systems and Software Assurance—Part 4:
Assurance in the Life Cycle

See Software Quality KA

IEEE Std. 15939-2008 Standard Adoption of ISO/
IEC 15939:2007 Systems and Software Engineer-
ing—Measurement Process

See Software Engineering Management KA

ISO/IEC 15940:2006 Information Technology—
Software Engineering Environment Services

See Software Engineering Models and
Methods KA

IEEE Std. 16085-2006 (a.k.a. ISO/IEC 16085:2006)
Standard for Systems and Software Engineering—
Software Life Cycle Processes—Risk Management

See Software Engineering Management KA

Appendix B B-17

ISO/IEC/IEEE 16326:2009 Systems and Soft-
ware Engineering—Life Cycle Processes—Project
Management

See Software Engineering Management KA

ISO/IEC/IEEE 29148:2011 Systems and Software
Engineering—Life Cycle Processes—Requirements
Engineering

See Software Requirements KA

Some users desire process standards usable
for IT operations or IT service management.
The ISO/IEC 20000 series describe IT service
management. The processes are less rigorously
defined than those of the aforementioned engi-
neering standards, but may be preferable for situ-
ations where the risks of failure involve money
or customer satisfaction rather than public health,
safety, and welfare. The ISO/IEC 20000 series
now extend to many parts. The foundation of
the series, ISO/IEC 20000-1, is briefly described
below.

ISO/IEC 20000-1:2011 Information Technology—
Service Management—Part 1: Service Management
System Requirements

ISO/IEC 20000-1:2011 is a service management
system (SMS) standard. It specifies requirements
for the service provider to plan, establish, imple-
ment, operate, monitor, review, maintain, and
improve an SMS. The requirements include the
design, transition, delivery and improvement of
services to fulfill agreed service requirements.

IEEE has adopted the first two parts of the ISO/
IEC 20000 series.

SOFTWARE ENGINEERING MODELS
AND METHODS

Some approaches to software engineering use
methods that cut across large parts of the life
cycle, rather than focusing on specific processes.
“Chief Programmer” was one traditional exam-
ple. “Agile development” (actually an example
of traditional incremental delivery) is a current

example. Neither S2ESC nor SC 7 has a standard
for agile development, but there is a standard
for developing user documentation in an agile
project.

ISO/IEC/IEEE 26515:2012 Systems and Software
Engineering—Developing User Documentation in an
Agile Environment

ISO/IEC/IEEE 26515:2012 specifies the way in
which user documentation can be developed in
agile development projects. It is intended for use
in all organizations that are using agile develop-
ment or are considering implementing their proj-
ects using these techniques. It applies to people
or organizations producing suites of documen-
tation, to those undertaking a single documen-
tation project, and to documentation produced
internally, as well as to documentation contracted
to outside service organizations. ISO/IEC/IEEE
26515:2012 addresses the relationship between
the user documentation process and the life cycle
documentation process in agile development. It
describes how the information developer or proj-
ect manager may plan and manage the user docu-
mentation development in an agile environment.
It is intended neither to encourage nor to discour-
age the use of any particular agile development
tools or methods.

Many methodologies are based on semiformal
descriptions of the software to be constructed.
These range from simple descriptive notations
to models that can be manipulated and tested
and, in some cases, can generate code. Two rela-
tively old techniques start the list; the first has
been widely applied for modeling processes and
workflows.

IEEE Std. 1320.1-1998 Standard for Functional Mod-
eling Language—Syntax and Semantics for IDEF0

IDEF0 function modeling is designed to repre-
sent the decisions, actions, and activities of an
existing or prospective organization or system.
IDEF0 graphics and accompanying texts are pre-
sented in an organized and systematic way to gain

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=51986

B-18 SWEBOK® Guide V3.0

understanding, support analysis, provide logic for
potential changes, specify requirements, and sup-
port system-level design and integration activi-
ties. IDEF0 may be used to model a wide variety
of systems, composed of people, machines, mate-
rials, computers, and information of all varieties,
and structured by the relationships among them,
both automated and nonautomated. For new sys-
tems, IDEF0 may be used first to define require-
ments and to specify the functions to be carried
out by the future system. As the basis of this
architecture, IDEF0 may then be used to design
an implementation that meets these requirements
and performs these functions. For existing sys-
tems, IDEF0 can be used to analyze the functions
that the system performs and to record the means
by which these are done.

IEEE Std. 1320.2-1998 Standard for Conceptual
Modeling Language—Syntax and Semantics for
IDEF1X97 (IDEFobject)

IDEF1X 97 consists of two conceptual modeling
languages. The key-style language supports data/
information modeling and is downward compat-
ible with the US government’s 1993 standard,
FIPS PUB 184. The identity-style language is
based on the object model with declarative rules
and constraints. IDEF1X 97 identity style includes
constructs for the distinct but related components
of object abstraction: interface, requests, and
realization; utilizes graphics to state the interface;
and defines a declarative, directly executable rule
and constraint language for requests and realiza-
tions. IDEF1X 97 conceptual modeling supports
implementation by relational databases, extended
relational databases, object databases, and object
programming languages. IDEF1X 97 is formally
defined in terms of first order logic. A procedure
is given whereby any valid IDEF1X 97 model
can be transformed into an equivalent theory in
first order logic. That procedure is then applied to
a metamodel of IDEF1X 97 to define the valid set
of IDEF1X 97 models.

In recent years, the UML notation has become
popular for modeling software-intensive systems.

The next two standards provide two versions of
the UML language.

ISO/IEC 19501:2005 Information Technology—
Open Distributed Processing—Unified Modeling
Language (UML) Version 1.4.2

ISO/IEC 19501 describes the Unified Model-
ing Language (UML), a graphical language for
visualizing, specifying, constructing, and docu-
menting the artifacts of a software-intensive sys-
tem. The UML offers a standard way to write a
system’s blueprints, including conceptual things
such as business processes and system functions
as well as concrete things such as programming
language statements, database schemas, and reus-
able software components.

ISO/IEC 19505:2012 [two parts] Information Tech-
nology—Object Management Group Unified Model-
ing Language (OMG UML)

ISO/IEC 19505 defines the Unified Modeling
Language (UML), revision 2. The objective of
UML is to provide system architects, software
engineers, and software developers with tools for
analysis, design, and implementation of software-
based systems as well as for modeling business
and similar processes.

Two more standards build on the base of UML
to provide additional modeling capabilities:

ISO/IEC 19506:2012 Information Technology—
Object Management Group Architecture-Driven
Modernization (ADM)—Knowledge Discovery
Meta-Model (KDM)

ISO/IEC 19506:2012 defines a metamodel for rep-
resenting existing software assets, their associa-
tions, and operational environments, referred to as
the knowledge discovery metamodel (KDM). This
is the first in the series of specifications related to
software assurance (SwA) and architecture-driven
modernization (ADM) activities. KDM facilitates

Appendix B B-19

projects that involve existing software systems
by insuring interoperability and exchange of data
between tools provided by different vendors.

ISO/IEC 19507:2012 Information Technology—
Object Management Group Object Constraint Lan-
guage (OCL)

ISO/IEC 19507:2012 defines the Object Con-
straint Language (OCL), version 2.3.1. OCL ver-
sion 2.3.1 is the version of OCL that is aligned
with UML 2.3 and MOF 2.0.

Some organizations invest in software engi-
neering environments (SEE) to assist in the
construction of software. An SEE, per se, is not
a replacement for sound processes. However, a
suitable SEE must support the processes that
have been chosen by the organization.

ISO/IEC 15940:2006 Information Technology—
Software Engineering Environment Services

ISO/IEC 15940:2006 defines software engineering
environment (SEE) services conceptually in a refer-
ence model that can be adapted to any SEEs to auto-
mate one or more software engineering activities.
It describes services that support the process defini-
tions as in ISO/IEC 12207 so that the set of SEE
services is compatible with ISO/IEC 12207. ISO/
IEC 15940:2006 can be used either as a general ref-
erence or to define an automated software process.

The selection of tooling for a software engineering
environment is itself a difficult task. Two standards
provide some assistance. ISO/IEC 14102:2008
defines both a set of processes and a structured set of
computer-aided software engineering (CASE) tool
characteristics for use in the technical evaluation
and the ultimate selection of a CASE tool.

IEEE Std. 14102-2010 Standard Adoption of ISO/
IEC 14102:2008 Information Technology—Guide-
line for the Evaluation and Selection of CASE Tools

Within systems and software engineering, com-
puter-aided software engineering (CASE) tools
represent a major part of the supporting tech-
nologies used to develop and maintain informa-
tion technology systems. Their selection must be
carried out with careful consideration of both the
technical and management requirements.

ISO/IEC 14102:2008 defines both a set of pro-
cesses and a structured set of CASE tool char-
acteristics for use in the technical evaluation and
the ultimate selection of a CASE tool. It follows
the software product evaluation model defined in
ISO/IEC 14598-5:1998.

ISO/IEC 14102:2008 adopts the general model
of software product quality characteristics and
subcharacteristics defined in ISO/IEC 9126-
1:2001 and extends these when the software
product is a CASE tool; it provides product char-
acteristics unique to CASE tools.

The next document provides guidance on how
to adopt CASE tools, once selected.

IEEE Std. 14471-2010 Guide—Adoption of ISO/IEC
TR 14471:2007 Information Technology—Software
Engineering—Guidelines for the Adoption of CASE
Tools

The purpose of ISO/IEC TR 14471:2007 is to
provide a recommended practice for CASE adop-
tion. It provides guidance in establishing pro-
cesses and activities that are to be applied for
the successful adoption of CASE technology.
The use of ISO/IEC TR 14471:2007 will help
to maximize the return and minimize the risk of
investing in CASE technology. However, ISO/
IEC TR 14471:2007 does not establish compli-
ance criteria.

It is best used in conjunction with ISO/IEC
14102 for CASE tool evaluation and selection. It
neither dictates nor advocates particular develop-
ment standards, software processes, design meth-
ods, methodologies, techniques, programming
languages, or life cycle paradigms.

B-20 SWEBOK® Guide V3.0

Within a software engineering environment, it
is important for the various tools to interoperate.
The following standards provide a scheme for
interconnection.

IEEE Std. 1175.1-2002 Guide for CASE Tool Inter-
connections—Classification and Description

IEEE Std. 1175.2-2006 Recommended Practice for
CASE Tool Interconnection—Characterization of
Interconnections

IEEE Std. 1175.3-2004 Standard for CASE Tool
Interconnections—Reference Model for Specifying
Software Behavior

IEEE Std. 1175.4-2008 Standard for CASE Tool
Interconnections—Reference Model for Specifying
System Behavior

The purpose of this family of standards is to spec-
ify a common set of modeling concepts based
on those found in commercial CASE tools for
describing the operational behavior of a software
system. These standards establish a uniform,
integrated model of software concepts related to
software functionality. They also provide a tex-
tual syntax for expressing the common properties
(attributes and relationships) of those concepts as
they have been used to model software behavior.

SOFTWARE QUALITY

One viewpoint of software quality starts with
ISO 9001, Quality  Management  Requirements,
dealing with quality policy throughout an orga-
nization. The terminology of that standard may
be unfamiliar to software professionals, and
quality management auditors may be unfamiliar
with software jargon. The following standard
describes the relationship between ISO 9001 and
ISO/IEC 12207. Unfortunately, the current ver-
sion refers to obsolete editions of both; a replace-
ment is in progress:

IEEE Std. 90003-2008 Guide—Adoption of ISO/
IEC 90003:2004 Software Engineering—Guidelines

for the Application of ISO 9001:2000 to Computer
Software

ISO/IEC 90003 provides guidance for organiza-
tions in the application of ISO 9001:2000 to the
acquisition, supply, development, operation, and
maintenance of computer software and related
support services. ISO/IEC 90003:2004 does not
add to or otherwise change the requirements of
ISO 9001:2000.

The guidelines provided in ISO/IEC
90003:2004 are not intended to be used as assess-
ment criteria in quality management system
registration/certification.

The application of ISO/IEC 90003:2004 is
appropriate to software that is

• part of a commercial contract with another
organization,

• a product available for a market sector,
• used to support the processes of an

organization,
• embedded in a hardware product, or
• related to software services.

Some organizations may be involved in all
the above activities; others may specialize in
one area. Whatever the situation, the organiza-
tion’s quality management system should cover
all aspects (software related and nonsoftware
related) of the business.

ISO/IEC 90003:2004 identifies the issues
which should be addressed and is independent
of the technology, life cycle models, develop-
ment processes, sequence of activities, and
organizational structure used by an organiza-
tion. Additional guidance and frequent ref-
erences to the ISO/IEC JTC 1/SC 7 software
engineering standards are provided to assist in
the application of ISO 9001:2000: in particu-
lar, ISO/IEC 12207, ISO/IEC TR 9126, ISO/
IEC 14598, ISO/IEC 15939, and ISO/IEC TR
15504.

The ISO 9001 approach posits an organiza-
tion-level quality management process paired
with project-level quality assurance planning
to achieve the organizational goals. IEEE 730
describes project-level quality planning. It is

Appendix B B-21

currently aligned with an obsolete edition of
12207, but a revision is being prepared.

IEEE Std. 730-2002 Standard for Software Quality
Assurance Plans

The standard specifies the format and content of
software quality assurance plans.

Another viewpoint of software quality begins
with enumerating the desired characteristics of a
software product and selecting measures or other
evaluations to determine if the desired level of
characteristics has been achieved. The so-called
SQuaRE (software product quality requirements
and evaluation) series of SC 7 standards covers
this approach in great detail.

ISO/IEC 25000 through 25099 Software Engineer-
ing—Software Product Quality Requirements and
Evaluation (SQuaRE)

A few of the SQuaRE standards are selected
below for particular attention. The first is the
overall guide to the series.

ISO/IEC 25000:2005 Software Engineering—Soft-
ware Product Quality Requirements and Evaluation
(SQuaRE)—Guide to SQuaRE

ISO/IEC 25000:2005 provides guidance for the
use of the new series of international standards
named Software product Quality Requirements
and Evaluation (SQuaRE). The purpose of this
guide is to provide a general overview of SQuaRE
contents, common reference models, and defini-
tions, as well as the relationship among the docu-
ments, allowing users of this guide a good under-
standing of those international standards. This
document contains an explanation of the transi-
tion process between the old ISO/IEC 9126 and
the 14598 series and SQuaRE, and also presents
information on how to use the ISO/IEC 9126 and
14598 series in their previous form.

SQuaRE provides

• terms and definitions,
• reference models,
• guides
• standards for requirements specification,

planning and management, measurement,
and evaluation purposes.

The next SQuaRE standard provides a taxon-
omy of software quality characteristics that may
be useful in selecting characteristics relevant to a
specific project:

ISO/IEC 25010:2011 Systems and Software Engi-
neering—Systems and Software Quality Require-
ments and Evaluation (SQuaRE)—System and Soft-
ware Quality Models

ISO/IEC 25010:2011 defines the following:

1. A quality in-use model composed of five
characteristics (some of which are further
subdivided into subcharacteristics) that
relate to the outcome of interaction when a
product is used in a particular context of use.
This system model is applicable to the com-
plete human-computer system, including
both computer systems in use and software
products in use.

2. A product quality model composed of eight
characteristics (which are further subdivided
into subcharacteristics) that relate to static
properties of software and dynamic proper-
ties of the computer system. The model is
applicable to both computer systems and
software products.

The characteristics defined by both models
are relevant to all software products and com-
puter systems. The characteristics and subchar-
acteristics provide consistent terminology for
specifying, measuring, and evaluating system
and software product quality. They also provide
a set of quality characteristics against which
stated quality requirements can be compared for
completeness.

B-22 SWEBOK® Guide V3.0

Although the scope of the product quality
model is intended to be software and computer
systems, many of the characteristics are also rel-
evant to wider systems and services.

ISO/IEC 25012 contains a model for data qual-
ity that is complementary to this model.

The scope of the models excludes purely func-
tional properties, but it does include functional
suitability.

The scope of application of the quality models
includes supporting specification and evaluation
of software and software-intensive computer sys-
tems from different perspectives by those who are
associated with their acquisition, requirements,
development, use, evaluation, support, mainte-
nance, quality assurance and control, and audit.
The models can, for example, be used by devel-
opers, acquirers, quality assurance and control
staff, and independent evaluators, particularly
those responsible for specifying and evaluating
software product quality. Activities during prod-
uct development that can benefit from the use of
the quality models include

• identifying software and system requirements;
• validating the comprehensiveness of a

requirements definition;
• identifying software and system design

objectives;
• identifying software and system testing

objectives;
• identifying quality control criteria as part of

quality assurance;
• identifying acceptance criteria for a software

product and/or software-intensive computer
system;

• establishing measures of quality characteris-
tics in support of these activities.

Some documents in the SQuaRE series deal spe-
cifically with the characteristic of usability. The
Common Industry Format (CIF) for usability report-
ing began at the US National Institute for Standards
and Technology (NIST) and was moved into ISO/
IEC JTC 1/SC 7 for purposes of standardization.

ISO/IEC 25060 through 25064 Software Engineer-
ing—Software Product Quality Requirements and

Evaluation (SQuaRE)—Common Industry Format
(CIF) for Usability

A family of international standards, named the
Common Industry Formats (CIF), documents
the specification and evaluation of the usability
of interactive systems. It provides a general over-
view of the CIF framework and contents, defini-
tions, and the relationship of the framework ele-
ments. The intended users of the framework are
identified, as well as the situations in which the
framework may be applied. The assumptions and
constraints of the framework are also enumerated.

The framework content includes the following:

• consistent terminology and classification of
specification, evaluation, and reporting;

• a definition of the type and scope of formats
and the high-level structure to be used for
documenting required information and the
results of evaluation.

The CIF family of standards is applicable to
software and hardware products used for pre-
defined tasks. The information items are intended
to be used as part of system-level documentation
resulting from development processes such as
those in ISO 9241-210 and ISO/IEC JTC 1/SC 7
process standards.

The CIF family focuses on documenting those
elements needed for design and development of
usable systems, rather than prescribing a specific
process. It is intended to be used in conjunction
with existing international standards, includ-
ing ISO 9241, ISO 20282, ISO/IEC 9126, and
the SQuaRE series (ISO/IEC 25000 to ISO/IEC
25099).

The CIF family of standards does not prescribe
any kind of method, life cycle or process.

Not everyone agrees with the taxonomy of
quality characteristics in ISO/IEC 25010. That
standard has a quality factor called “reliability”
that has subfactors of maturity, availability, fault
tolerance, and recoverability. IEC TC 65, which
has responsibility for standards on “dependabil-
ity,” defines that term as a nonquantitative com-
posite of reliability, maintainability, and mainte-
nance support. Others use the term “reliability”

Appendix B B-23

to denote a measure defined by a mathematical
equation. The disagreement over the use of these
words means that the standards on the subject are
inherently unaligned. A few will be noted below,
but the words like those noted above may mean
different things in different standards.

IEEE Std. 982.1-2005 Standard for Dictionary of
Measures of the Software Aspects of Dependability

A standard dictionary of measures of the soft-
ware aspects of dependability for assessing and
predicting the reliability, maintainability, and
availability of any software system; in particular,
it applies to mission critical software systems.

IEEE Std. 1633-2008 Recommended Practice for
Software Reliability

The methods for assessing and predicting the reli-
ability of software, based on a life cycle approach
to software reliability engineering, are prescribed in
this recommended practice. It provides information
necessary for the application of software reliability
(SR) measurement to a project, lays a foundation
for building consistent methods, and establishes
the basic principle for collecting the data needed to
assess and predict the reliability of software. The
recommended practice prescribes how any user can
participate in SR assessments and predictions.

IEEE has an overall standard for software
product quality that has a scope similar to the
ISO/IEC 250xx series described previously. Its
terminology differs from the ISO/IEC series, but
it is substantially more compact.

IEEE Std. 1061-1998 Standard for Software Quality
Metrics Methodology

A methodology for establishing quality require-
ments and identifying, implementing, analyzing,
and validating the process and product software
quality metrics is defined. The methodology
spans the entire software life cycle.

One approach to achieving software quality is
to perform an extensive program of verification
and validation. IEEE Std. 1012 is probably the
world’s most widely applied standard on this sub-
ject. A revision was recently published.

IEEE Std. 1012-2012 Standard for System and Soft-
ware Verification and Validation

Verification and validation (V&V) processes are
used to determine whether the development prod-
ucts of a given activity conform to the require-
ments of that activity and whether the product
satisfies its intended use and user needs. V&V life
cycle process requirements are specified for differ-
ent integrity levels. The scope of V&V processes
encompasses systems, software, and hardware, and
it includes their interfaces. This standard applies to
systems, software, and hardware being developed,
maintained, or reused [legacy, commercial off-the-
shelf (COTS), nondevelopmental items]. The term
software also includes firmware and microcode,
and each of the terms system, software, and hard-
ware includes documentation. V&V processes
include the analysis, evaluation, review, inspec-
tion, assessment, and testing of products.

There are other standards that support the veri-
fication and validation processes. One describes
techniques for performing reviews and audits
during a software project.

IEEE Std. 1028-2008 Standard for Software Reviews
and Audits

Five types of software reviews and audits,
together with procedures required for the execu-
tion of each type, are defined in this standard.
This standard is concerned only with the reviews
and audits; procedures for determining the neces-
sity of a review or audit are not defined, and the
disposition of the results of the review or audit
is not specified. Types included are management
reviews, technical reviews, inspections, walk-
throughs, and audits.

B-24 SWEBOK® Guide V3.0

In many cases, a database of software anoma-
lies is used to support verification and validation
activities. The following standard suggests how
anomalies should be classified.

IEEE Std. 1044-2009 Standard for Classification for
Software Anomalies

This standard provides a uniform approach to the
classification of software anomalies, regardless
of when they originate or when they are encoun-
tered within the project, product, or system life
cycle. Classification data can be used for a vari-
ety of purposes, including defect causal analy-
sis, project management, and software process
improvement (e.g., to reduce the likelihood of
defect insertion and/or increase the likelihood of
early defect detection).

In some systems, one particular property of the
software is so important that it requires special
treatment beyond that provided by a conven-
tional verification and validation program. The
emerging term for this sort of treatment is “sys-
tems and software assurance.” Examples include
safety, privacy, high security, and ultrareliability.
The 15026 standard is under development to deal
with such situations. The first part of the four-part
standard provides terminology and concepts used
in the remaining parts. It was first written before
the other parts and is now being revised for com-
plete agreement with the others.

IEEE Std. 15026.1-2011 Trial-Use Standard Adop-
tion of ISO/IEC TR 15026-1:2010 Systems and Soft-
ware Engineering—Systems and Software Assur-
ance—Part 1: Concepts and Vocabulary

This trial-use standard adopts ISO/IEC TR
15026-1:2010, which defines terms and estab-
lishes an extensive and organized set of concepts
and their relationships for software and systems
assurance, thereby establishing a basis for shared
understanding of the concepts and principles cen-
tral to ISO/IEC 15026 across its user communi-
ties. It provides information to users of the sub-
sequent parts of ISO/IEC 15026, including the

use of each part and the combined use of multiple
parts. Coverage of assurance for a service being
operated and managed on an ongoing basis is not
covered in ISO/IEC 15026.

The second part of the standard describes the
structure of an “assurance case,” which is intended
as a structured argument that the critical property
has been achieved. It is a generalization of various
domain-specific constructs like “safety cases.”

IEEE Std. 15026.2-2011 Standard Adoption of ISO/
IEC 15026-2:2011 Systems and Software Engineer-
ing—Systems and Software Assurance—Part 2:
Assurance Case

ISO/IEC 15026-2:2011 is adopted by this stan-
dard. ISO/IEC 15026-2:2011 specifies minimum
requirements for the structure and contents of an
assurance case to improve the consistency and
comparability of assurance cases and to facili-
tate stakeholder communications, engineering
decisions, and other uses of assurance cases. An
assurance case includes a top-level claim for a
property of a system or product (or set of claims),
systematic argumentation regarding this claim,
and the evidence and explicit assumptions that
underlie this argumentation. Arguing through
multiple levels of subordinate claims, this struc-
tured argumentation connects the top-level claim
to the evidence and assumptions. Assurance
cases are generally developed to support claims
in areas such as safety, reliability, maintain-
ability, human factors, operability, and security,
although these assurance cases are often called
by more specific names, e.g., safety case or reli-
ability and maintainability (R&M) case. ISO/IEC
15026-2:2011 does not place requirements on
the quality of the contents of an assurance case
and does not require the use of a particular termi-
nology or graphical representation. Likewise, it
places no requirements on the means of physical
implementation of the data, including no require-
ments for redundancy or colocation.

In many systems, some portions are critical to
achieving the desired property while others are only

Appendix B B-25

incidental. For example, the flight control system of
an airliner is critical to safety, but the microwave
oven is not. Conventionally, the various portions
are assigned “criticality levels” to indicate their sig-
nificance to the overall achievement of the property.
The third part of ISO/IEC 15026 describes how that
is done. This part will be revised for better fit with
the remainder of the 15026 standard.

ISO/IEC 15026-3:2011 Systems and Software Engi-
neering—Systems and Software Assurance—Part 3:
System Integrity Levels

ISO/IEC 15026-3:2011 specifies the concept of
integrity levels with corresponding integrity level
requirements that are required to be met in order
to show the achievement of the integrity level. It
places requirements on and recommends meth-
ods for defining and using integrity levels and
their integrity level requirements, including the
assignment of integrity levels to systems, soft-
ware products, their elements, and relevant exter-
nal dependences.

ISO/IEC 15026-3:2011 is applicable to sys-
tems and software and is intended for use by:

• definers of integrity levels such as industry
and professional organizations, standards
organizations, and government agencies;

• users of integrity levels such as developers
and maintainers, suppliers and acquirers,
users, and assessors of systems or software,
and for the administrative and technical sup-
port of systems and/or software products.

One important use of integrity levels is by sup-
pliers and acquirers in agreements; for example,
to aid in assuring safety, economic, or security
characteristics of a delivered system or product.

ISO/IEC 15026-3:2011 does not prescribe a
specific set of integrity levels or their integrity
level requirements. In addition, it does not pre-
scribe the way in which integrity level use is inte-
grated with the overall system or software engi-
neering life cycle processes.

ISO/IEC 15026-3:2011 can be used alone or
with other parts of ISO/IEC 15026. It can be used
with a variety of technical and specialized risk
analysis and development approaches. ISO/IEC

TR 15026-1 provides additional information and
references to aid users of ISO/IEC 15026-3:2011.

ISO/IEC 15026-3:2011 does not require the
use of the assurance cases described by ISO/IEC
15026-2 but describes how integrity levels and
assurance cases can work together, especially in
the definition of specifications for integrity levels
or by using integrity levels within a portion of an
assurance case.

The final part of 15026 provides additional
guidance for executing the life cycle processes of
12207 and 15288 when a system or software is
required to achieve an important property.

ISO/IEC 15026-4:2012 Systems and Software Engi-
neering—Systems and Software Assurance—Part 4:
Assurance in the Life Cycle

This part of ISO/IEC 15026 gives guidance and
recommendations for conducting selected pro-
cesses, activities and tasks for systems and software
products requiring assurance claims for properties
selected for special attention, called critical proper-
ties. This part of ISO/IEC 15026 specifies a prop-
erty-independent list of processes, activities, and
tasks to achieve the claim and show the achieve-
ment of the claim. This part of ISO/IEC 15026
establishes the processes, activities, tasks, guidance,
and recommendations in the context of a defined
life cycle model and set of life cycle processes for
system and/or software life cycle management.

The next standard deals with a property—
safety—that is often identified as critical. It was
originally developed in cooperation with the US
nuclear power industry.

IEEE Std. 1228-1994 Standard for Software Safety
Plans

The minimum acceptable requirements for the
content of a software safety plan are established.
This standard applies to the software safety plan
used for the development, procurement, mainte-
nance, and retirement of safety-critical software.

B-26 SWEBOK® Guide V3.0

This standard requires that the plan be prepared
within the context of the system safety pro-
gram. Only the safety aspects of the software are
included. This standard does not contain special
provisions required for software used in distrib-
uted systems or in parallel processors.

Classical treatments suggest that “verification”
deals with static evaluation methods and that
“testing” deals with dynamic evaluation meth-
ods. Recent treatments, including ISO/IEC draft
29119, are blurring this distinction, though, so
testing standards are mentioned here.

IEEE Std. 829-2008 Standard for Software and Sys-
tem Test Documentation

See Software Testing KA

IEEE Std. 1008-1987 Standard for Software Unit
Testing

See Software Testing KA

IEEE Std. 26513-2010 Standard Adoption of ISO/
IEC 26513:2009 Systems and Software Engineer-
ing—Requirements for Testers and Reviewers of
Documentation

See Software Testing KA

ISO/IEC/IEEE 29119 [four parts] (Draft) Software
and Systems Engineering—Software Testing

See Software Testing KA

SOFTWARE ENGINEERING
PROFESSIONAL PRACTICE

IEEE is a provider of products related to the cer-
tification of professional practitioners of software
engineering. The first has already been described,
the Guide  to  the  Software  Engineering  Body  of 
Knowledge. The SWEBOK Guide has been adopted
by ISO/IEC as an outline of the knowledge that pro-
fessional software engineers should have.

ISO/IEC TR 19759:2005 Software Engineer-
ing—Guide to the Software Engineering Body of

Knowledge (SWEBOK)
See General

An SC 7 standard provides a framework for
comparisons among certifications of software
engineering professionals. That standard states
that the areas considered in certification must be
mapped to the SWEBOK Guide.

ISO/IEC 24773:2008 Software Engineering—Certi-
fication of Software Engineering Professionals

ISO/IEC 24773:2008 establishes a framework for
comparison of schemes for certifying software
engineering professionals. A certification scheme
is a set of certification requirements for software
engineering professionals. ISO/IEC 24773:2008
specifies the items that a scheme is required to
contain and indicates what should be defined for
each item.

ISO/IEC 24773:2008 will facilitate the porta-
bility of software engineering professional cer-
tifications between different countries or orga-
nizations. At present, different countries and
organizations have adopted different approaches
on the topic, which are implemented by means
of regulations and bylaws. The intention of ISO/
IEC 24773:2008 is to be open to these individ-
ual approaches by providing a framework for
expressing them in a common scheme that can
lead to understanding.

SC 7 is currently drafting a guide that will sup-
plement 24773.

SOFTWARE ENGINEERING ECONOMICS

No standards are allocated to this KA.

COMPUTING FOUNDATIONS

No standards are allocated to this KA.

MATHEMATICAL FOUNDATIONS

No standards are allocated to this KA.

Appendix B B-27

ENGINEERING FOUNDATIONS

No standards are allocated to this KA.

STAYING CURRENT

This article was obsolescent the moment it was
drafted. Some readers will need to know how
to get current designations and descriptions of
standards. This section describes some helpful
resources.

WHERE TO FIND STANDARDS

The list of standards published for ISO/IEC JTC
1/SC 7 can be found at www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_tc_browse.
htm?commid=45086.

Because the URL might change, readers might
have to navigate to the list. Begin at www.iso.org/
iso/store.htm, then click on “browse standards
catalogue,” then “browse by TC,” then “JTC 1,”
then “SC 7.”

Finding the current list of standards for S2ESC
is a bit more difficult. Begin at http://standards.
ieee.org/. In the search box under “Find Stan-
dards,” type “S2ESC.” This should produce a
list of published standards for which S2ESC is
responsible.

Keep in mind that the searchable databases
are compilations. Like any such database, they
can contain errors that lead to incomplete search
results.

WHERE TO OBTAIN THE STANDARDS

Some readers will want to obtain standards
described in this article. The first thing to
know is that some international standards are
available free for individual use. The current
list of ISO/IEC standards available under these
terms is located at http://standards.iso.org/ittf/
PubliclyAvailableStandards/index.html.

One of the publicly available standards is the
ISO/IEC adoption of the SWEBOK Guide, ISO/
IEC 19759.

The definitions contained in ISO/IEC/IEEE
24765, System  and  Software  Vocabulary, are
freely available at www.computer.org/sevocab.

However, the vast majority of standards are not
free. ISO/IEC standards are generally purchased
from the national standards organization of the
country in which one lives. For example, in the
US, international standards can be purchased
from the American National Standards Institute
at http://webstore.ansi.org/. Alternatively, stan-
dards can be purchased directly from ISO/IEC
at www.iso.org/iso/store.htm. It should be noted
that each individual nation is free to set its own
prices, so it may be helpful to check both sources.

IEEE standards may be available to you for
free if your employer or library has a subscription
to IEEE Xplore: http://ieeexplore.ieee.org/. Some
subscriptions to Xplore provide access only to
the abstracts of standards; the full text may then
be purchased via Xplore. Alternatively, standards
may be purchased via the IEEE standards store at
www.techstreet.com/ieeegate.html. It should be
noted that IEEE-SA sometimes bundles standards
into groups available at a substantial discount.

Finally, the reader should note that standards
that IEEE has adopted from ISO/IEC, standards
that ISO/IEC has “fast-tracked” from IEEE, and
standards that were jointly developed or revised
are available from both sources. For all standards
described in this article, the IEEE version and the
ISO/IEC version are substantively identical. The
respective versions may have different front and
back matter but the bodies are identical.

WHERE TO SEE THE SWEBOK GUIDE

The SWEBOK Guide is published under an IEEE
copyright. The current version of the SWEBOK
Guide is available free to the public at www.
swebok.org/. The ISO/IEC adoption of the
SWEBOK Guide, ISO/IEC TR 19759, is one of
the freely available standards.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45086
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45086
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45086
http://www.iso.org/iso/store.htm
http://www.iso.org/iso/store.htm
http://standards.ieee.org/
http://standards.ieee.org/
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www.computer.org/sevocab
http://webstore.ansi.org/
http://www.iso.org/iso/store.htm
http://ieeexplore.ieee.org/
http://www.techstreet.com/ieeegate.html
http://www.swebok.org/
http://www.swebok.org/

B-28 SWEBOK® Guide V3.0

SUMMARY LIST OF THE STANDARDS

Number and Title (listed in order of number) Most Relevant KA
IEEE Std. 730-2002 Standard for Software Quality Assurance Plans SW Quality
IEEE Std. 828-2012 Standard for Configuration Management in
Systems and Software Engineering

SW Configuration
Management

IEEE Std. 829-2008 Standard for Software and System Test
Documentation SW Testing

IEEE Std. 982.1-2005 Standard for Dictionary of Measures of the
Software Aspects of Dependability SW Quality

IEEE Std. 1008-1987 Standard for Software Unit Testing SW Testing
IEEE Std. 1012-2012 Standard for System and Software Verification and
Validation SW Quality

IEEE Std. 1016-2009 Standard for Information Technology—Systems
Design—Software Design Descriptions SW Design

IEEE Std. 1028-2008 Standard for Software Reviews and Audits SW Quality
IEEE Std. 1044-2009 Standard for Classification for Software
Anomalies SW Quality

IEEE Std. 1061-1998 Standard for Software Quality Metrics
Methodology SW Quality

IEEE Std. 1062-1998 Recommended Practice for Software Acquisition SW Engineering
Management

IEEE Std. 1074-2006 Standard for Developing a Software Project Life
Cycle Process

SW Engineering
Process

IEEE Std. 1175.1-2002 Guide for CASE Tool Interconnections—
Classification and Description

SW Engineering
Models and Methods

IEEE Std. 1175.2-2006 Recommended Practice for CASE Tool
Interconnection—Characterization of Interconnections

SW Engineering
Models and Methods

IEEE Std. 1175.3-2004 Standard for CASE Tool Interconnections—
Reference Model for Specifying Software Behavior

SW Engineering
Models and Methods

IEEE Std. 1175.4-2008 Standard for CASE Tool Interconnections—
Reference Model for Specifying System Behavior

SW Engineering
Models and Methods

IEEE Std. 1220-2005 (a.k.a. ISO/IEC 26702:2007) Standard for
Application and Management of the Systems Engineering Process

SW Engineering
Process

IEEE Std. 1228-1994 Standard for Software Safety Plans SW Quality
IEEE Std. 1320.1-1998 Standard for Functional Modeling Language—
Syntax and Semantics for IDEF0

SW Engineering
Models and Methods

IEEE Std. 1320.2-1998 Standard for Conceptual Modeling Language—
Syntax and Semantics for IDEF1X97 (IDEFobject)

SW Engineering
Models and Methods

IEEE Std. 1490-2011 Guide—Adoption of the Project Management
Institute (PMI®) Standard, A Guide to the Project Management Body
of Knowledge (PMBOK® Guide)—Fourth Edition

SW Engineering
Management

IEEE Std. 1517-2010 Standard for Information Technology—System
and Software Life Cycle Processes—Reuse Processes

SW Engineering
Process

Appendix B B-29

Number and Title (listed in order of number) Most Relevant KA
IEEE Std. 1633-2008 Recommended Practice for Software Reliability SW Quality
IEEE Std. 12207-2008 (a.k.a. ISO/IEC 12207:2008) Standard for
Systems and Software Engineering—Software Life Cycle Processes

SW Engineering
Process

IEEE Std. 14102-2010 Standard Adoption of ISO/IEC 14102:2008
Information Technology—Guideline for the Evaluation and Selection of
CASE Tools

SW Engineering
Models and Methods

ISO/IEC 14143 [six parts] Information Technology—Software
Measurement—Functional Size Measurement SW Requirements

IEEE Std. 14471-2010 Guide—Adoption of ISO/IEC TR 14471:2007
Information Technology—Software Engineering—Guidelines for the
Adoption of CASE Tools

SW Engineering
Models and Methods

IEEE Std. 14764-2006 (a.k.a. ISO/IEC 14764:2006) Standard for
Software Engineering—Software Life Cycle Processes—Maintenance SW Maintenance

IEEE Std. 15026.1-2011 Trial-Use Standard Adoption of ISO/IEC
TR 15026-1:2010 Systems and Software Engineering—Systems and
Software Assurance—Part 1: Concepts and Vocabulary

SW Quality

IEEE Std. 15026.2-2011 Standard Adoption of ISO/IEC 15026-
2:2011 Systems and Software Engineering—Systems and Software
Assurance—Part 2: Assurance Case

SW Quality

ISO/IEC 15026-3 Systems and Software Engineering—Systems and
Software Assurance—Part 3: System Integrity Levels SW Quality

ISO/IEC 15026-4:2012 Systems and Software Engineering—Systems
and Software Assurance—Part 4: Assurance in the Life Cycle SW Quality

IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for
Systems and Software Engineering—System Life Cycle Processes

SW Engineering
Process

ISO/IEC/IEEE 15289:2011 Systems and Software Engineering—
Content of Life-Cycle Information Products (Documentation)

SW Engineering
Process

ISO/IEC 15504 [ten parts] Information Technology—Process
Assessment

SW Engineering
Process

IEEE Std. 15939-2008 Standard Adoption of ISO/IEC 15939:2007
Systems and Software Engineering—Measurement Process

SW Engineering
Management

ISO/IEC 15940:2006 Information Technology—Software Engineering
Environment Services

SW Engineering
Models and Methods

IEEE Std. 16085-2006 (a.k.a. ISO/IEC 16085:2006) Standard for
Systems and Software Engineering—Software Life Cycle Processes—
Risk Management

SW Engineering
Management

ISO/IEC/IEEE 16326:2009 Systems and Software Engineering—Life
Cycle Processes—Project Management

SW Engineering
Management

ISO/IEC 19501:2005 Information Technology—Open Distributed
Processing—Unified Modeling Language (UML) Version 1.4.2

SW Engineering
Models and Methods

B-30 SWEBOK® Guide V3.0

Number and Title (listed in order of number) Most Relevant KA
ISO/IEC 19505:2012 [two parts] Information Technology—Object
Management Group Unified Modeling Language (OMG UML)

SW Engineering
Models and Methods

ISO/IEC 19506:2012 Information Technology—Object Management
Group Architecture-Driven Modernization (ADM)—Knowledge
Discovery Meta-Model (KDM)

SW Engineering
Models and Methods

ISO/IEC 19507:2012 Information Technology—Object Management
Group Object Constraint Language (OCL)

SW Engineering
Models and Methods

ISO/IEC TR 19759:2005 Software Engineering—Guide to the Software
Engineering Body of Knowledge (SWEBOK) [General]

ISO/IEC 19761:2011 Software Engineering—COSMIC: A Functional
Size Measurement Method SW Requirements

ISO/IEC 20000-1:2011 Information Technology—Service
Management—Part 1: Service management system requirements

SW Engineering
Process

ISO/IEC 20926:2009 Software and Systems Engineering—Software
Measurement—IFPUG Functional Size Measurement Method SW Requirements

ISO/IEC 20968:2002 Software Engineering—Mk II Function Point
Analysis—Counting Practices Manual SW Requirements

ISO/IEC 24570:2005 Software Engineering—NESMA Functional
Size Measurement Method Version 2.1—Definitions and Counting
Guidelines for the Application of Function Point Analysis

SW Requirements

IEEE Std. 24748.1-2011 Guide—Adoption of ISO/IEC TR 24748-1:2010
Systems and Software Engineering—Life Cycle Management—Part 1:
Guide for Life Cycle Management

SW Engineering
Process

IEEE Std. 24748.2-2012 Guide—Adoption of ISO/IEC TR 24748-2:2011
Systems and Software Engineering—Life Cycle Management—Part
2: Guide to the Application of ISO/IEC 15288 (System Life Cycle
Processes)

SW Engineering
Process

IEEE Std. 24748-3:2012 Guide—Adoption of ISO/IEC TR 24748-3:2011
Systems and Software Engineering—Life Cycle Management—Part
3: Guide to the Application of ISO/IEC 12207 (Software Life Cycle
Processes)

SW Engineering
Process

ISO/IEC/IEEE 24765:2010 Systems and Software
Engineering—Vocabulary [General]

ISO/IEC TR 24772:2013 Information technology—Programming
Languages — Guidance to Avoiding Vulnerabilities in Programming
Languages through Language Selection and Use

SW Construction

ISO/IEC 24773:2008 Software Engineering—Certification of Software
Engineering Professionals

SW Engineering
Professional Practice

IEEE Std. 24774:2012 Guide—Adoption of ISO/IEC TR 24474:2010
Systems and Software Engineering—Life Cycle Management—
Guidelines for Process Description

SW Engineering
Process

ISO/IEC 25000:2005 Software Engineering—Software Product Quality
Requirements and Evaluation (SQuaRE)—Guide to SQuaRE SW Quality

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=51986
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61457

Appendix B B-31

Number and Title (listed in order of number) Most Relevant KA
ISO/IEC 25000 through 25099 Software Engineering—Software
Product Quality Requirements and Evaluation (SQuaRE) SW Quality

ISO/IEC 25010:2011 Systems and Software Engineering—Systems and
Software Quality Requirements and Evaluation (SQuaRE)—System
and Software Quality Models

SW Quality

ISO/IEC 25060 through 25064 Software Engineering—Software
Product Quality Requirements and Evaluation (SQuaRE)—Common
Industry Format (CIF) for Usability

SW Quality

ISO/IEC/IEEE 26511:2012 Systems and Software Engineering—
Requirements for Managers of User Documentation

SW Engineering
Management

ISO/IEC/IEEE 26512:2011 Systems and Software Engineering—
Requirements for Acquirers and Suppliers of User Documentation

SW Engineering
Management

IEEE Std. 26513-2010 Standard Adoption of ISO/IEC 26513:2009
Systems and Software Engineering—Requirements for Testers and
Reviewers of Documentation

SW Testing

IEEE Std. 26514-2010 Standard Adoption of ISO/IEC 26514:2008
Systems and Software Engineering—Requirements for Designers and
Developers of User Documentation

SW Design

ISO/IEC/IEEE 26515:2012 Systems and Software Engineering—
Developing User Documentation in an Agile Environment

SW Engineering
Models and Methods

ISO/IEC 29110 [several parts] Software Engineering—Lifecycle
Profiles for Very Small Entities (VSE)

SW Engineering
Process

ISO/IEC/IEEE 29119 [four parts] (Draft) Software and Systems
Engineering—Software Testing SW Testing

ISO/IEC/IEEE 29148:2011 Systems and Software Engineering—Life
Cycle Processes—Requirements Engineering SW Requirements

ISO/IEC/IEEE 42010:2011 Systems and Software Engineering—
Architecture Description SW Design

IEEE Std. 90003:2008 Guide—Adoption of ISO/IEC 90003:2004
Software Engineering—Guidelines for the Application of ISO
9001:2000 to Computer Software

SW Quality

C-1

APPENDIX C

CONSOLIDATED REFERENCE LIST

The Consolidated Reference List identifies all
recommended reference materials (to the level of
section number) that accompany the breakdown
of topics within each knowledge area (KA). This
Consolidated Reference List is adopted by the
software engineering certification and associated
professional development products offered by the
IEEE Computer Society. KA Editors used the ref-
erences allocated to their KA by the Consolidated
Reference List as their Recommended References.

Collectively this Consolidated Reference List is

• Complete: Covering the entire scope of the
SWEBOK Guide.

• Sufficient: Providing enough information to
describe “generally accepted” knowledge.

• Consistent: Not providing contradictory
knowledge nor conflicting practices.

• Credible: Recognized as providing expert
treatment.

• Current: Treating the subject in a manner that
is commensurate with currently generally
accepted knowledge.

• Succinct: As short as possible (both in num-
ber of reference items and in total page
count) without failing other objectives.

[1*] J.H. Allen et al., Software Security 
Engineering: A Guide for Project 
Managers, Addison-Wesley, 2008.

[2*] M. Bishop, Computer Security: Art and 
Science, Addison-Wesley, 2002.

[3*] B. Boehm and R. Turner, Balancing Agility 
and Discipline: A Guide for the Perplexed,
Addison-Wesley, 2003.

[4*] F. Bott et al., Professional Issues in 
Software Engineering, 3rd ed., Taylor &
Francis, 2000.

[5*] J.G. Brookshear, Computer Science: An 
Overview, 10th ed., Addison-Wesley, 2008.

[6*] D. Budgen, Software Design, 2nd ed.,
Addison-Wesley, 2003.

[7*] E.W. Cheney and D.R. Kincaid, Numerical 
Mathematics and Computing, 6th ed.,
Brooks/Cole, 2007.

[8*] P. Clements et al., Documenting Software 
Architectures: Views and Beyond, 2nd ed.,
Pearson Education, 2010.

[9*] R.E. Fairley, Managing and Leading 
Software Projects, Wiley-IEEE Computer
Society Press, 2009.

[10*] D. Galin, Software Quality Assurance: 
From Theory to Implementation, Pearson
Education Limited, 2004.

[11*] E. Gamma et al., Design Patterns: 
Elements of Reusable Object-Oriented 
Software, 1st ed., Addison-Wesley
Professional, 1994.

[12*] P. Grubb and A.A. Takang, Software 
Maintenance: Concepts and Practice, 2nd
ed., World Scientific Publishing, 2003.

[13*] A.M.J. Hass, Configuration Management 
Principles and Practices, 1st ed., Addison-
Wesley, 2003.

C-2 SWEBOK® Guide V3.0

[14*] E. Horowitz et al., Computer Algorithms,
2nd ed., Silicon Press, 2007.

[15*] IEEE CS/ACM Joint Task Force on
Software Engineering Ethics and
Professional Practices, “Software
Engineering Code of Ethics and
Professional Practice (Version 5.2),” 1999;
www.acm.org/serving/se/code.htm.

[16*] IEEE Std. 828-2012, Standard for 
Configuration Management in Systems and 
Software Engineering, IEEE, 2012.

[17*] IEEE Std. 1028-2008, Software Reviews 
and Audits, IEEE, 2008.

[18*] ISO/IEC 14764 IEEE Std. 14764-2006, 
Software Engineering—Software Life Cycle 
Processes—Maintenance, IEEE, 2006.

[19*] S.H. Kan, Metrics and Models in Software 
Quality Engineering, 2nd ed., Addison-
Wesley, 2002.

[20*] S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

[21*] J. McGarry et al., Practical Software 
Measurement: Objective Information 
for Decision Makers, Addison-Wesley
Professional, 2001.

[22*] S.J. Mellor and M.J. Balcer, Executable 
UML: A Foundation for Model-Driven 
Architecture, 1st ed., Addison-Wesley,
2002.

[23*] D.C. Montgomery and G.C. Runger,
Applied Statistics and Probability for 
Engineers, 4th ed., Wiley, 2007.

[24*] J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide, 1st
ed., Wiley-IEEE Computer Society Press,
2006.

[25*] S. Naik and P. Tripathy, Software Testing 
and Quality Assurance: Theory and 
Practice, Wiley-Spektrum, 2008.

[26*] J. Nielsen, Usability Engineering, 1st ed.,
Morgan Kaufmann, 1993.

[27*] L. Null and J. Lobur, The Essentials of 
Computer Organization and Architecture,
2nd ed., Jones and Bartlett Publishers,
2006.

[28*] M. Page-Jones, Fundamentals of Object-
Oriented Design in UML, 1st ed., Addison-
Wesley, 1999.

[29*] K. Rosen, Discrete Mathematics and Its
Applications, 7th ed., McGraw-Hill, 2011.

[30*] A. Silberschatz, P.B. Galvin, and G.
Gagne, Operating System Concepts, 8th
ed., Wiley, 2008.

[31*] H.M. Sneed, “Offering Software
Maintenance as an Offshore Service,” Proc. 
IEEE Int’l Conf. Software Maintenance
(ICSM 08), IEEE, 2008, pp. 1–5.

[32*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[33*] S. Tockey, Return on Software: 
Maximizing the Return on Your Software 
Investment, 1st ed., Addison-Wesley, 2004.

[34*] G. Voland, Engineering by Design, 2nd
ed., Prentice Hall, 2003.

[35*] K.E. Wiegers, Software Requirements, 2nd
ed., Microsoft Press, 2003.

[36*] J.M. Wing, “A Specifier’s Introduction to
Formal Methods,” Computer, vol. 23, no. 9,
1990, pp. 8, 10–23.

http://www.acm.org/serving/se/code.htm

	Table of Contents

	Cover

	Foreword
	Foreword to the 2004 Edition
	Editors
	Coeditors
	Contributing Editors
	Change Control Board
	Knowledge Area Editors
	Knowledge Area Editors
of Previous SWEBOK Versions
	Review Team
	Acknowledgements
	IEEE Computer Society Presidents

	Professional Activities Board, 2013 Membership
	Motions Regarding the Approval of SWEBOK Guide V3.0
	Motions Regarding the Approval of SWEBOK Guide 2004 Version

	Introduction to the Guide
	Chapter 1: Software Requirements
	1. Software Requirements Fundamentals
	1.1. Definition of a Software Requirement
	1.2. Product and Process Requirements
	1.3. Functional and Nonfunctional Requirements
	1.4. Emergent Properties
	1.5. Quantifiable Requirements
	1.6. System Requirements and Software Requirements

	2. Requirements Process
	2.1. Process Models
	2.2. Process Actors
	2.3. Process Support and Management
	2.4. Process Quality and Improvement

	3. Requirements Elicitation
	3.1. Requirements Sources
	3.2. Elicitation Techniques

	4. Requirements Analysis
	4.1. Requirements Classification
	4.2. Conceptual Modeling
	4.3. Architectural Design and Requirements Allocation
	4.4. Requirements Negotiation
	4.5. Formal Analysis

	5. Requirements Specification
	5.1. System Definition Document
	5.2. System Requirements Specification
	5.3. Software Requirements Specification

	6. Requirements Validation
	6.1. Requirements Reviews
	6.2. Prototyping
	6.3. Model Validation
	6.4. Acceptance Tests

	7. Practical Considerations
	7.1. Iterative Nature of the Requirements Process
	7.2. Change Management
	7.3. Requirements Attributes
	7.4. Requirements Tracing
	7.5. Measuring Requirements

	8. Software Requirements Tools
	Matrix of Topics vs. Reference Material

	Chapter 2: Software Design
	1. Software Design Fundamentals
	1.1. General Design Concepts
	1.2. Context of Software Design
	1.3. Software Design Process
	1.4. Software Design Principles

	2. Key Issues in Software Design
	2.1. Concurrency
	2.2. Control and Handling of Events
	2.3. Data Persistence
	2.4. Distribution of Components
	2.5. Error and Exception Handling and Fault Tolerance
	2.6. Interaction and Presentation
	2.7. Security

	3. Software Structure and Architecture
	3.1. Architectural Structures and Viewpoints
	3.2. Architectural Styles
	3.3. Design Patterns
	3.4. Architecture Design Decisions
	3.5. Families of Programs and Frameworks

	4. User Interface Design
	4.1. General User Interface Design Principles
	4.2. User Interface Design Issues
	4.3. The Design of User Interaction Modalities
	4.4. The Design of Information Presentation
	4.5. User Interface Design Process
	4.6. Localization and Internationalization
	4.7. Metaphors and Conceptual Models

	5. Software Design Quality Analysis and Evaluation
	5.1. Quality Attributes
	5.2. Quality Analysis and Evaluation Techniques
	5.3. Measures

	6. Software Design Notations
	6.1. Structural Descriptions (Static View)
	6.2. Behavioral Descriptions (Dynamic View)

	7. Software Design Strategies and Methods
	7.1. General Strategies
	7.2. Function-Oriented (Structured) Design
	7.3. Object-Oriented Design
	7.4. Data Structure-Centered Design
	7.5. Component-Based Design (CBD)
	7.6. Other Methods

	8. Software Design Tools
	Matrix of Topics vs. Reference Material

	Chapter 3: Software Construction
	1. Software Construction Fundamentals
	1.1. Minimizing Complexity
	1.2. Anticipating Change
	1.3. Constructing for Verification
	1.4. Reuse
	1.5. Standards in Construction

	2. Managing Construction
	2.1. Construction in Life Cycle Models
	2.2. Construction Planning
	2.3. Construction Measurement

	3. Practical Considerations
	3.1. Construction Design
	3.2. Construction Languages
	3.3. Coding
	3.4. Construction Testing
	3.5. Construction for Reuse
	3.6. Construction with Reuse
	3.7. Construction Quality
	3.8. Integration

	4. Construction Technologies
	4.1. API Design and Use
	4.2. Object-Oriented Runtime Issues
	4.3. Parameterization and Generics
	4.4. Assertions, Design by Contract, and Defensive Programming
	4.5. Error Handling, Exception Handling, and Fault Tolerance
	4.6. Executable Models
	4.7. State-Based and Table-Driven Construction Techniques
	4.8. Runtime Configuration and Internationalization
	4.9. Grammar-Based Input Processing
	4.10. Concurrency Primitives
	4.11. Middleware
	4.12. Construction Methods for Distributed Software
	4.13. Constructing Heterogeneous Systems
	4.14. Performance Analysis and Tuning
	4.15. Platform Standards
	4.16. Test-First Programming

	5. Software Construction Tools
	5.1. Development Environments
	5.2. GUI Builders
	5.3. Unit Testing Tools
	5.4. Profiling, Performance Analysis, and Slicing Tools

	Matrix of Topics vs. Reference Material

	Chapter 4: Software Testing
	1. Software Testing Fundamentals
	1.1. Testing-Related Terminology
	1.2. Key Issues
	1.3. Relationship of Testing to Other Activities

	2. Test Levels
	2.1. The Target of the Test
	2.2. Objectives of Testing

	3. Test Techniques
	3.1. Based on the Software Engineer’s Intuition and Experience
	3.2. Input Domain-Based Techniques
	3.3. Code-Based Techniques
	3.4. Fault-Based Techniques
	3.5. Usage-Based Techniques
	3.6. Model-Based Testing Techniques
	3.7. Techniques Based on the Nature of the Application
	3.8. Selecting and Combining Techniques

	4. Test-Related Measures
	4.1. Evaluation of the Program Under Test
	4.2. Evaluation of the Tests Performed

	5. Test Process
	5.1. Practical Considerations
	5.2. Test Activities

	6. Software Testing Tools
	6.1. Testing Tool Support
	6.2. Categories of Tools

	Matrix of Topics vs. Reference Material

	Chapter 5: Software Maintenance
	1. Software Maintenance Fundamentals
	1.1. Definitions and Terminology
	1.2. Nature of Maintenance
	1.3. Need for Maintenance
	1.4. Majority of Maintenance Costs
	1.5. Evolution of Software
	1.6. Categories of Maintenance

	2. Key Issues in Software Maintenance
	2.1. Technical Issues
	2.2. Management Issues
	2.3. Maintenance Cost Estimation
	2.4. Software Maintenance Measurement

	3. Maintenance Process
	3.1. Maintenance Processes
	3.2. Maintenance Activities

	4. Techniques for Maintenance
	4.1. Program Comprehension
	4.2. Reengineering
	4.3. Reverse Engineering
	4.4. Migration
	4.5. Retirement

	5. Software Maintenance Tools
	Matrix of Topics vs. Reference Material

	Chapter 6: Software Configuration Management
	1. Management of the SCM Process
	1.1. Organizational Context for SCM
	1.2. Constraints and Guidance for the SCM Process
	1.3. Planning for SCM
	1.4. SCM Plan
	1.5. Surveillance of Software Configuration Management

	2. Software Configuration Identification
	2.1. Identifying Items to Be Controlled
	2.2. Software Library

	3. Software Configuration Control
	3.1. Requesting, Evaluating, and Approving Software Changes
	3.2. Implementing Software Changes
	3.3. Deviations and Waivers

	4. Software Configuration Status Accounting
	4.1. Software Configuration Status Information
	4.2. Software Configuration Status Reporting

	5. Software Configuration Auditing
	5.1. Software Functional Configuration Audit
	5.2. Software Physical Configuration Audit
	5.3. In-Process Audits of a Software Baseline

	6. Software Release Management and Delivery
	6.1. Software Building
	6.2. Software Release Management

	7. Software Configuration Management Tools
	Matrix of Topics vs. Reference Material

	Chapter 7: Software Engineering Management
	1. Initiation and Scope Definition
	1.1. Determination and Negotiation of Requirements
	1.2. Feasibility Analysis
	1.3. Process for the Review and Revision of Requirements

	2. Software Project Planning
	2.1. Process Planning
	2.2. Determine Deliverables
	2.3. Effort, Schedule, and Cost Estimation
	2.4. Resource Allocation
	2.5. Risk Management
	2.6. Quality Management
	2.7. Plan Management

	3. Software Project Enactment
	3.1. Implementation of Plans
	3.2. Software Acquisition and Supplier Contract Management
	3.3. Implementation of Measurement Process
	3.4. Monitor Process
	3.5. Control Process
	3.6. Reporting

	4. Review and Evaluation
	4.1. Determining Satisfaction of Requirements
	4.2. Reviewing and Evaluating Performance

	5. Closure
	5.1. Determining Closure
	5.2. Closure Activities

	6. Software Engineering Measurement
	6.1. Establish and Sustain Measurement Commitment
	6.2. Plan the Measurement Process
	6.3. Perform the Measurement Process
	6.4. Evaluate Measurement

	7. Software Engineering Management Tools
	Matrix of Topics vs. Reference Material

	Chapter 8: Software Engineering Process
	1. Software Process Definition
	1.1. Software Process Management
	1.2. Software Process Infrastructure

	2. Software Life Cycles
	2.1. Categories of Software Processes
	2.2. Software Life Cycle Models
	2.3. Software Process Adaptation
	2.4. Practical Considerations

	3. Software Process Assessment and Improvement
	3.1. Software Process Assessment Models
	3.2. Software Process Assessment Methods
	3.3. Software Process Improvement Models
	3.4. Continuous and Staged Software Process Ratings

	4. Software Measurement
	4.1. Software Process and Product Measurement
	4.2. Quality of Measurement Results
	4.3. Software Information Models
	4.4. Software Process Measurement Techniques

	5. Software Engineering Process Tools
	Matrix of Topics vs. Reference Material

	Chapter 9: Software Engineering Models
and Methods
	1. Modeling
	1.1. Modeling Principles
	1.2. Properties and Expression of Models
	1.3. Syntax, Semantics, and Pragmatics
	1.4. Preconditions, Postconditions, and Invariants

	2. Types of Models
	2.1. Information Modeling
	2.2. Behavioral Modeling
	2.3. Structure Modeling

	3. Analysis of Models
	3.1. Analyzing for Completeness
	3.2. Analyzing for Consistency
	3.3. Analyzing for Correctness
	3.4. Traceability
	3.5. Interaction Analysis

	4. Software Engineering Methods
	4.1. Heuristic Methods
	4.2. Formal Methods
	4.3. Prototyping Methods
	4.4. Agile Methods

	Matrix of Topics vs. Reference Material

	Chapter 10: Software Quality
	1. Software Quality Fundamentals
	1.1. Software Engineering Culture and Ethics
	1.2. Value and Costs of Quality
	1.3. Models and Quality Characteristics
	1.4. Software Quality Improvement
	1.5. Software Safety

	2. Software Quality Management Processes
	2.1. Software Quality Assurance
	2.2. Verification & Validation
	2.3. Reviews and Audits

	3. Practical Considerations
	3.1. Software Quality Requirements
	3.2. Defect Characterization
	3.3. Software Quality Management Techniques
	3.4. Software Quality Measurement

	4. Software Quality Tools
	Matrix of Topics vs. Reference Material

	Chapter 11: Software Engineering Professional Practice
	1. Professionalism
	1.1. Accreditation, Certification, and Licensing
	1.2. Codes of Ethics and Professional Conduct
	1.3. Nature and Role of Professional Societies
	1.4. Nature and Role of Software Engineering Standards
	1.5. Economic Impact of Software
	1.6. Employment Contracts
	1.7. Legal Issues
	1.8. Documentation
	1.9. Tradeoff Analysis

	2. Group Dynamics and Psychology
	2.1. Dynamics of Working in Teams/Groups
	2.2. Individual Cognition
	2.3. Dealing with Problem Complexity
	2.4. Interacting with Stakeholders
	2.5. Dealing with Uncertainty and Ambiguity
	2.6. Dealing with Multicultural Environments

	3. Communication Skills
	3.1. Reading, Understanding, and Summarizing
	3.2. Writing
	3.3. Team and Group Communication
	3.4. Presentation Skills

	Matrix of Topics vs. Reference Material

	Chapter 12: Software Engineering Economics
	1. Software Engineering Economics Fundamentals
	1.1. Finance
	1.2. Accounting
	1.3. Controlling
	1.4. Cash Flow
	1.5. Decision-Making Process
	1.6. Valuation
	1.7. Inflation
	1.8. Depreciation
	1.9. Taxation
	1.10. Time-Value of Money
	1.11. Efficiency
	1.12. Effectiveness
	1.13. Productivity

	2. Life Cycle Economics
	2.1. Product
	2.2. Project
	2.3. Program
	2.4. Portfolio
	2.5. Product Life Cycle
	2.6. Project Life Cycle
	2.7. Proposals
	2.8. Investment Decisions
	2.9. Planning Horizon
	2.10. Price and Pricing
	2.11. Cost and Costing
	2.12. Performance Measurement
	2.13. Earned Value Management
	2.14. Termination Decisions
	2.15. Replacement and Retirement Decisions

	3. Risk and Uncertainty
	3.1. Goals, Estimates, and Plans
	3.2. Estimation Techniques
	3.3. Addressing Uncertainty
	3.4. Prioritization
	3.5. Decisions under Risk
	3.6. Decisions under Uncertainty

	4. Economic Analysis Methods
	4.1. For-Profit Decision Analysis
	4.2. Minimum Acceptable Rate of Return
	4.3. Return on Investment
	4.4. Return on Capital Employed
	4.5. Cost-Benefit Analysis
	4.6. Cost-Effectiveness Analysis
	4.7. Break-Even Analysis
	4.8. Business Case
	4.9. Multiple Attribute Evaluation
	4.10. Optimization Analysis

	5. Practical Considerations
	5.1. The “Good Enough” Principle
	5.2. Friction-Free Economy
	5.3. Ecosystems
	5.4. Offshoring and Outsourcing

	Matrix of Topics vs. Reference Material

	Chapter 13: Computing Foundations
	1. Problem Solving Techniques
	1.1. Definition of Problem Solving
	1.2. Formulating the Real Problem
	1.3. Analyze the Problem
	1.4. Design a Solution Search Strategy
	1.5. Problem Solving Using Programs

	2. Abstraction
	2.1. Levels of Abstraction
	2.2. Encapsulation
	2.3. Hierarchy
	2.4. Alternate Abstractions

	3. Programming Fundamentals
	3.1. The Programming Process
	3.2. Programming Paradigms

	4. Programming Language Basics
	4.1. Programming Language Overview
	4.2. Syntax and Semantics of Programming Languages
	4.3. Low-Level Programming Languages
	4.4. High-Level Programming Languages
	4.5. Declarative vs. Imperative Programming Languages

	5. Debugging Tools and Techniques
	5.1. Types of Errors
	5.2. Debugging Techniques
	5.3. Debugging Tools

	6. Data Structure and Representation
	6.1. Data Structure Overview
	6.2. Types of Data Structure
	6.3. Operations on Data Structures

	7. Algorithms and Complexity
	7.1. Overview of Algorithms
	7.2. Attributes of Algorithms
	7.3. Algorithmic Analysis
	7.4. Algorithmic Design Strategies
	7.5. Algorithmic Analysis Strategies

	8. Basic Concept of a System
	8.1. Emergent System Properties
	8.2. Systems Engineering
	8.3. Overview of a Computer System

	9. Computer Organization
	9.1. Computer Organization Overview
	9.2. Digital Systems
	9.3. Digital Logic
	9.4. Computer Expression of Data
	9.5. The Central Processing Unit (CPU)
	9.6. Memory System Organization
	9.7. Input and Output (I/O)

	10. Compiler Basics
	10.1. Compiler/Interpreter Overview
	10.2. Interpretation and Compilation
	10.3. The Compilation Process

	11. Operating Systems Basics
	11.1. Operating Systems Overview
	11.2. Tasks of an Operating System
	11.3. Operating System Abstractions
	11.4. Operating Systems Classification

	12. Database Basics and Data Management
	12.1. Entity and Schema
	12.2. Database Management Systems (DBMS)
	12.3. Database Query Language
	12.4. Tasks of DBMS Packages
	12.5. Data Management
	12.6. Data Mining

	13. Network Communication Basics
	13.1. Types of Network
	13.2. Basic Network Components
	13.3. Networking Protocols and Standards
	13.4. The Internet
	13.5. Internet of Things
	13.6. Virtual Private Network (VPN)

	14. Parallel and Distributed Computing
	14.1. Parallel and Distributed Computing Overview
	14.2. Difference between Parallel and Distributed Computing
	14.3. Parallel and Distributed Computing Models
	14.4. Main Issues in Distributed Computing

	15. Basic User Human Factors
	15.1. Input and Output
	15.2. Error Messages
	15.3. Software Robustness

	16. Basic Developer Human Factors
	16.1. Structure
	16.2. Comments

	17. Secure Software Development and Maintenance
	17.1. Software Requirements Security
	17.2. Software Design Security
	17.3. Software Construction Security
	17.4. Software Testing Security
	17.5. Build Security into Software Engineering Process
	17.6. Software Security Guidelines

	Matrix of Topics vs. Reference Material

	Chapter 14: Mathematical Foundations
	1. Set, Relations, Functions
	1.1. Set Operations
	1.2. Properties of Set
	1.3. Relation and Function

	2. Basic Logic
	2.1. Propositional Logic
	2.2. Predicate Logic

	3. Proof Techniques
	3.1. Methods of Proving Theorems

	4. Basics of Counting
	5. Graphs and Trees
	5.1. Graphs
	5.2. Trees

	6. Discrete Probability
	7. Finite State Machines
	8. Grammars
	8.1. Language Recognition

	9. Numerical Precision, Accuracy, and Errors
	10. Number Theory
	10.1. Divisibility
	10.2. Prime Number, GCD

	11. Algebraic Structures
	11.1. Group
	11.2. Rings

	Matrix of Topics vs. Reference Material

	Chapter 15: Engineering Foundations
	1. Empirical Methods and Experimental Techniques
	1.1. Designed Experiment
	1.2. Observational Study
	1.3. Retrospective Study

	2. Statistical Analysis
	2.1. Unit of Analysis (Sampling Units), Population, and Sample
	2.2. Concepts of Correlation and Regression

	3. Measurement
	3.1. Levels (Scales) of Measurement
	3.2. Direct and Derived Measures
	3.3. Reliability and Validity
	3.4. Assessing Reliability

	4. Engineering Design
	4.1. Engineering Design in Engineering Education
	4.2. Design as a Problem Solving Activity
	4.3. Steps Involved in Engineering Design

	5. Modeling, Simulation, and Prototyping
	5.1. Modeling
	5.2. Simulation
	5.3. Prototyping

	6. Standards
	7. Root Cause Analysis
	7.1. Techniques for Conducting Root Cause Analysis

	Matrix of Topics vs. Reference Material

	Appendix A: Knowledge Area Description Specifications
	Appendix B: IEEE and ISO/IEC Standards Supporting the Software Engineering Body of Knowledge (SWEBOK)
	Appendix C: Consolidated Reference List

