MonkeySort

Keith Gallagher

Florida Institute of Technology

An Introduction....

“HAVE YIIIITIIIIEII TURNING UUG]}D'

‘ : .
1’ - = - - ‘1 \ L'
= - . ‘| o ¥
LI
. ~ '-_. -
‘ ey
|- -

AND FLINGING I’EGES AT 1

http://www.guardian.co.uk/science/video/2010/oct/22/murray-gell-mann-quarks

Infinite monkey theorem

A monkey hitting keys at random on a
typewriter keyboard for an infinite amount of
time will almost surely type a given text, such
as the complete works of William Shakespeare.

1 July 2003 .. Sometime around February of
2005 (the last documented total of) characters
24 characters matched from Henry IV part 2.

2,737 billion billion billion billion monkey-years

Infinite monkeysort theorem

A monkey hitting keys at random on a
typewriter keyboard for an infinite amount

of time will almost surely sort an array of
iIntegers!

Specification
of a sorted array

ali] <= ali + 1].....
alperm(i)] <= a[perm(i + 1)] for some perm

b =perm(a) and b(i) <=b(i + 1)

A simple version
for sorting a deck of cards

* Early MonkeySort
—throw cards in tub
— stir
— pick up cards
— until sorted
— this may take a While.. .cumsoineussuane ases o savararianer

ource: http://www.roadsideamerica.com/attract/OHFINbathtub.html

Evolved MonkeySort

* Guessing two array elements to swap
— could be the same one

* Do Not Compare, just exchange
— equivalent to “throw/stir/pick-up”

* Will it ever stop?
— Almost surely!

©

Sort Examples

Not so QED...

QED!

I

OO -1 ANML T

| |

OcNTANML O

ﬂ ﬂ

OO -1 ANML T

I

O NO—AMNMNML T

AN O~

ﬂ ﬂ

OANM<LW N~ 00

main (int argc , char * argv[])

{
inti, n, *a, count =0
srandom(time((time_t *)0));

n = atoi(argv[l]);

a = (int *) malloc(n*sizeof(int));

for(i=0;i<n;i++)

{
a[i] = (intfrandom() ;

}

while (checksort(a,n))
{ count++;

transpose (a, n);
}
printf("%d\n",count);

}

Code

void transpose (int af], int n)

{
int i, j, temp;
i = (int) random() % n;
j = (int) random() % n;
temp = aJi];
a[i] = afj];

a[j] = temp;

}

int checksort (int af], int n)

{

inti,j ;

for(i=0,)=1;j<n;i++ j+t)
if (a[i] > a[j]) return O;
return 1;

}

The Program Itself

* Uses system time and command line
arguments

* |s Partially Correct
— discuss reasoning about programs

* NP, as solution is “guess and test”

MonkeySort
Observations

Simple

Easy (for non-programmers)
to understand

NP

Partially correct

Fun!

Results and Observations:
Things to Talk About

It does halt

Can you guess beforehand about how
guesses it will take?

Time to halt varies

— larger sets may sort faster than smaller
Best-known technigue to solve the

“garbage truck problem” ie. shortest
Hamiltonian circuit.

Screen Shot of “top” Utllity

Eile Edit Yiew Terminal Go |Help
15:29:01 up 29 days, #:13, 3 users, load average: 1.08, 1.04, 1.01 El

68 processes: 65 sleeping, 3 running, O zosmbie, 0 stopped
CPU states: 99.6% usser, D.4% system, 0.0% mice, o.0E idle

Hen: 256864K total, 24344K used, 12420K free, 24952K buffers
Swap : 24B996K total, 13908K used, 235088BK free, 68304K cached
|

PR NI 5IZI FOPU ¥MEM TIME COMMAMD
2633 kbg 17 0 oD S0 283 H 09.4 0.1 B84:44 monkey 13
2819 kKbg 11 0D B64 3564 672 R 0.5 0.3 0:00 top
1 root A D 332 288 278 5 .0 0.1 0:03 init
2 root g 0 a O O SW 0.¢ 0.0 ¢:00 keventd
3 root 19 19 Q 0 OSw¥ 0.¢ 0.0 0:00 ksoftirgd CPUD
4 root a 0 0 O i 0.¢ 0¢.0 0:3% kswapd
5 root a 0 0 0 O SW 0.¢ ¢.0 ©0:00 bdflush
6 root g D 0 0 0 5W 0.0 0.0 ©:04 kupdated
128 root a 0 0 O 0O SW 0.¢ ¢.0 0:00 kKhubd
168 daenon g 0 184 92 g2 S 0.0 ¢.0 0:00 S=bin/portmap
175 root 4 1] ia iy 0 5w .06 0.0 e TP'I:'i'I:Id
176 root a 0 0 O 0 SW 0.¢ 0.0 0:00 lockd
354 root a9 D 48% 472 428 5 0.0 0.1 0:01 Jsbin/syslogd g
367 root g b B868 132 132 S 0.¢ ©¢.0 0:00 Ssbinfklogd | =

Some of Our Big ldeas

* NP Hard

—the ones with best known solutions equivalent
to “Guess and Test”

* Partial Correctness
—the program is correct if it stops!

* Algorithmic and Empirical Analysis

What does
Computer Scientist
Do?

Empirical
Analysis

Permutations as \ / /
Product of Code
Transpositions — Reading
/ \

Integer Overflow Guess and
Test

Algorithm
Analysis

\

N

Reasoning
about
Programs

Processor vs.
Run Time

Code Coverage
Tools Stirling’s
Approximation

Some Bigger ldeas

Stirling’s approximation

Code coverage tools

Integer overflow

Permutations as products of transpositions
Is P == NP?

Comparison of analytical results with
empirical results

What Do Computer Scientists
Do All Day?

Look for “better” solutions

— build

Experimentally determine program
properties

Must carefully consider all solution
properties (overflow, timing, etc)

CPU cycles are cheap; people are
expensive: “work smart, not hard”

Words

Rearrangement Guard
Criteria Indices
Functional Addresses
Specification Algebraically
Implementation Permutation
Pre/Postcondion Correctness

Assertion

istening

thanks for |

