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Abstract

Until recently the state of the at in losdess data
compresson was prediction by m@rtia maich (PAM). A
PAM  model estimates the next-symbol probability
distribution by combining satistics from the longest
matching contiguous contexts in which ead symbal value
is found We introduce acontext mixing model which
improves on PAM by alowing contexts which are abitrary
functions of the history. Each mode independently
estimates a probability and confidence that the next bit of
data will be 0 or 1. Predictions are mmbined by weighted
averaging. After a bit is arithmetic coded, the weights are
adjusted alongthe st gradient in weight spaceto favor the
most acarrate models. Context mixing compresors, as
implemented by the open source PAQ projed, are now top
ranked onsevera independent benchmarks.

1. Introduction

The principle of Occam's Razor, applied to macine
leaning, states that one shoud choose the simplest
hypahesis that fits the observed data. Hutter (2003,
building on the work of Solomondf (1986, formalized
and proved this very general principle. Define an agent
and an environment as a pair of interading Turing
macdhines. At ead step, the agyent sends a symbad to the
environment, and the environment sends a symbol and also
a reward signal to the agent. The goal of the aent is to
maximize the acemulated reward. Hutter proved that the
optimal behavior of the agent is to guessat ead step that
the most likely program controlli ng the environment is the
shortest one mnsistent with the interadion otserved so far.

Unfortunately, this does not solve the general machine
leaning poblem. The dgorithmic, or Kolmogarov,
complexity of astring, defined as the length of the shortest
program that outputs it, is not computable (Chaitin 1977.
Thus, madiine leaning is an art: approximate solutions
and heuristic methods are required..

Losdess data compresson is equivalent to madine
leaning. In bah cases, the fundamental problem is to
estimate the probability p(x) of event x (coded as a string)
drawn from a randam variable with an unknown (but
presumably computable) probability distribution. Shannon
and Weaver (1949 proved that the minimum expeded
code length of x given p(x) is log, Y/p(x) bits. Nea-

optimal codes (within ore bit) are known and can be
generated efficiently, for example Huffman codes
(Huffman 1952 and arithmetic codes (Howard and Vitter
1992.

1.1. Text Compression and Natural Language
Processing

An important subproblem of machine leaning is natural
language processng. Humans apply complex language
rules and vast red-world knowledge to implicitly model
natural language. For example, most English spe&king
people will reagrizethat p(recognize speech) > p(reckon
eyes peach). Unfortunately we do nd know any algorithm
that estimates these probabiliti es as acairately as a human.
Shannon (1950 estimated that the entropy a information
content of written English is abou one bit per charader
(between 0.6 and 13) based on hav well humans can
predict successve caraders in text. The best data
compresson programs achieve éou 1.5 hits per charader.

Language models can be used to improve the acaracy
of speed remgntion and language trandation (Knight
1997, opticd charader recogntion (Teehan et al. 1998,
and for spell cheding and solving substitution ciphers
(Teéhan and Cleay 1997. In ead case, the problem isto
find ouput string y that maximizes p(y[x) for some inpu x.
By Bayes law, this is equivalent to maximizing p(x|y)p(y)
where p(xly) is the inverse model (e.g. speed synthesis)
and p(y) isthe language model.

Compresgon ratio can be used to evaluate alanguage
model becaise it is minimized when the goal of matching
the modeled distribution to the true distribution is met.
However it is not the only function with this property.
Chen, Bederman, and Rosenfeld (1998 tested a number
of proposed functions and did find that compresson ratio
(spedficdly, word perplexity) is among the best predictors
of word error rate in speed recognition systems.

1.2. Online Modeling

Data @mpresson aught to be a straightforward
supervised classficaion problem. We ae given a stream
of symbos from an unknavn (but presumably
computable) source. Thetask isto predict the next symbol
(so that the most likely symbols can be asgned the



shortest codes). The training set consists of al of the
symbols arealy seen. This can be reduced to a
clasdficdion poblem in which ead instance is the
context, some function of the string o previousy seen
symbals (for example, asuffix of length n).

There ae many well known tedhniques for solving such
problems, for example, clustering, dedsion trees, neura
networks, genetic dgorithms, suppat vedor madines,
and so on However, most data compresors do nd use
these techniques because they require offline training, i.e.
multiple passes over the training set. A general purpose
data compresor must be online. The inpu is arbitrary, so
in general there caana be any training dcata before the test
data beginsto arrive.

Until recently the best data cmpressors were based on
PPM, prediction by martial match (Bell, Witten and Cleay
1989 with arithmetic coding d the symbadls. In PRAM,
contexts consisting d suffixes of the history with lengths
from O up to n (typicdly 5 to 8 bytes) are mapped to
occurrence courts for ead symbal in the dphabet.
Symbals are assgned probabiliti es in propattion to their
counts. If a count in the n-th order context is zero, then
PPAM falls bad to lower order models until a norzero
probability can be assgned. PRV variants differ mainly in
how much code spaceis reserved at ead level for unseen
symbols. The best programs use a variant of PPMZ
(Bloom 1998 which estimates the "zero frequency"
probability adaptively based onasmall context.

One drawback of PPM is that contexts must be
contiguows. For some data types such as images, the best
predictor is the non-contiguous context of the surroundng
pixels both haizontaly and werticdly. For audio it might
be useful to discard the low order (noisy) bits of the
previous samples from the wntext. For text, we might
consider case-insensitive . whole-word contexts.
Unfortunately, PPEM does not provide a mechanism for
combining statistics from contexts which could be abitrary
functions of the history.

This is the problem we aldressin this paper. A context
mixing agorithm combines the predictions of a large
number of independent models by weighted averaging.
The weights are aljusted orline to favor the most acairate
models. Compressors based oncontext mixing algorithms
are now top ranked onmost pubished benchmarks.

2. Context Mixing Models

A context mixing model works as follows. The inpu data
is represented as a bit strean. For ead hit, ead model
independently outputs two numbers, n, n, = 0, which can
be though of as measures of evidencethat the next bit will
be a0 or 1, respedively. Taken together, it is an assertion
by the model that the next bit will be 0 with probability
n/n or 1 with probability n/n, where n = n, + n,_is the
model's relative confidencein this prediction.

Since models are independent, confidence is only
meaningful when comparing two predictions by the same
model, and nd for comparing models. Instead we
combine models by weighted summation d n, and n, over
all of the models asfollows:

S,=€+Z wn, =evidenceforO (1)
S, =g+ Z wn, =evidencefor 1

S=S§, + S, =tota evidence

p, = S/S = probability that next bit isO

p, = S/S = probability that next bit is1

where w = 0 is the weight of the i'th model, n, and n, are

the outputs n, and n, by the i-th model, and € > O isa small
constant to gueranteethat S, S, > 0 and 0<p,, p, < 1.

2.1. Updating the Mixing Weights

After coding ead bit, the weights are aljusted alongthe
cost gradient in weight space to favor the models that
acarrately predicted this bit. Let x be the bit just coded.
The st of optimally coding x islog, 1/p, bits. Taking the
partial derivative of the st with resped to ead w, in (1),
with the restriction that weights cannat be negative, we
obtain the following weight adjustment:

W, — max{0, W+ (x- p)(Sn, - Sn) / S;S] @

where n = n; + n,. The term (X - p,) is the prediction
error.

Experimentally, equation (2) was found to be
remarkably robust. The only tuning parameter is €, and
even this has very little dfed on compresson ratio over a
wide range. Weights tend to grow at most logarithmicdly
becaise the term SS, in the denominator of (2) grows
aong with the weights. The weights can either be
initialized to favor a-priori known better models, or smply
be set to 0to alow rapid initial training.

2.2. Arithmetic Coding

The predictions from equation (1) are aithmetic coded.
The aithmetic code of a string x is the length of x together
with a number in the half-open interva [p_, p<, + P(X)),
where p_, is the probability that a string picked at random
islexicographicdly lessthan Xx. Thereis guaranteed to be
a number in this interval with a base B encoding d not
more than 1+ log, 1/p(x) digits (Howard and Vitter 1992).

When p(x) is expresed as a product of condtional
probabilities, p(xx,..x) = M. px | XX..x,) and the
aphabet is binary, then the aithmetic code may be
computed efficiently as follows. Begin with the range
[0,1). For eath bit x, divide the range into two parts in
propation to p, and p, from equation (1) and replacethe
range with the subrange wrrespondng to p,. In ather
words, if the range is [low, high) and the probability that x
isQisp, then the range is upcated as foll ows:



mid = low + p,(high — low) 3
[low, high) ~ [low, mid) if x, =0
[mid, high) if x =1

As the range shrinks, the leading dgits of the base B
representations of low and high will match. These digits
may be output immediately. It is convenient to use base B
=256 and represent ead digit as a byte.

3. Modeling Nonstationary Data

Suppase that a cetain context is observed n = 15timesand
the next-bit sequencein this context is 000000000011111
What is the probability p, that the next bit will be al?

The answer depends on what we asaume @ou the
source. If we @ume that the source is gationary
(stetistics do nd change over time) and that the trials are
independent (which seems unlikely from the given data)
then we would court n, = 10 zeros and n, = 5 ores and
guessp, = n/(n,+ n,) =n/n =1/3. Wedefine astationary
update rule for a ontext model as foll ows:

Sationary Update Rule
Initializen,=n, = 0.
If bit x is observed then increment n..

A simpler explanation (as demanded by Occan's Razor)
might be that the source is not stationary, and that a state
change occurred after 10 Hts. We will mode
norstationary sources as follows. We will predict that the
last outcome will repea, with confidence propartiona to
the number of conseautive repetitions. Esentialy, we
discard any hit courts that disagree with the most recent
observation.

Nonstationary Update Rule
Initializen,=n,=0.
If bit x is observed then increment n_andsetn,, = 0.

In the example @owe, n,=0andn, =5. Wewould predict
p, = 1 with confidence5.

In general, a source might or might not be stationary.
For example, a document may contain pue text
(stationary) or have embedded images (norstationary). We
define the following semi-stationary update rule & a
compromise which empiricdly works well on awide range
of data. Rather than keep al counts, or discard al courts
that disagree with the last observation, we discard about
half of the counts. Spedficdly, we ke at least two and
discard half of the rest, which has the dfead of starting df
as a stationary model and becoming more norstationary as
the courts grow.

Semi-stationary Update Rule
Initializen,=n, =0.
If bit x occurs then

increment n,

if n,>2thensetn, = floor(n,/2+1).

For example, given the sequence 000000000011111the
state (n,, n,) would be updated as foll ows:

0000000000 (10,0) p,=0,n=10
00000000001 6,1) p,=U7,n=7
000000000011 4,2 p=13n=6
0000000000111 3,3 p,=12n=6
00000000001111  (2,4) p,=2/3,n=6
000000000011111 (2,5) p,=5/7,n=7

4. Implementation: The PAQ Project

The PAQ series of context mixing compresors were
developed as an open source projed released under the
GNU genera pulic license. Source ®mde is available &
http://cs.fit.edwW~mmahorey/compressonr/

4.1. PAQ1

Thefirst version, PAQ1, was developed in Jan. 2002 byM.

Mahorey. It usesthe following contexts:

 Eight contexts of length O to 7 byes as genera
purpose models. All contexts also include the O to 7
bits of the arrent byte that precale the bit being
predicted.

e Two word-oriented contexts of length O a 1 whale
words precaling the arrently predicted word (i.e.
unigram and bigram models). A word is a ca&e-
insensitive sequence of the letters a-z.

 Two fixed-length record models for modeling two-
dimensional data such as images and catabases. One
context is the awlumn number and the other is the byte
above. Thereoord length is determined by ceteding a
series of 4 conseautive identicd byte values with a
uniform stride.

¢ One match context, which finds the last matching
context of length 8 bytes or longer, and predicts
whatever bit followed the match.

All models except match use semi-stationary update. A
state (n,Nn,) is represented as an 8 ht value using
probabili stic updates to estimate large wurns. Models are
mixed as in equation (1) but the weights are fixed
constants tuned empiricdly. The dght general purpose
contexts of length n are weighted w = (n + 1)°.

4.2. Secondary Symbol Estimation (PAQ?2)

In May 2003S. Osnach wrote PAQ1SSE (or PAQ2) which
added SE (semndary symbal estimation) after the mixer.
S is a 2-D table which inpus the probability from the



mixer (quantized to 64 values non-uniformly with smaller
steps near 0 and 1) and a small 10-bit context (the partially
coded byte and match prediction) and outputs an improved
probability. After the bit is coded, the SSE table entry is
adjusted in proportion to the prediction error..

In Sept. 2003, M. Mahoney wrote PAQ3, which
improved SSE by quantizing the input probability to 32
values with linear interpolation between adjacent table
entries.

In Oct. 2003 S. Osnach wrote PAQ3N, adding three
sparse models - two byte contexts that skip over
intermediate bytes. Additional context was added to SSE.

4.3. Adaptive Model Mixing (PAQ4-PAQ6)

PAQ4 by M. Mahoney in Oct. 2003 introduced adaptive
model weighting of 18 contexts as in Equation (2). The
mixer uses 8 sets of weights, selected by a 3 bit context
consisting of the 3 most significant bits of the previous
whole byte.

PAQ5 in Dec. 2003 added a second mixer whose
weights were selected by a 4-bit context consisting of the
two most significant bits of the last two bytes. In addition,
six new models were added for analog data (8 and 16 hit
mono and stereo audio, 24-bit color images and 8-bit data).
These contexts discard low order (noisy) bits.

PAQ6 in Dec. 2003 added nonstationary models (called
run-length models) in addition to the semi-stationary
updates for all models. A model was added for Intel
executable code that trandlates relative CALL operands to
absolute addresses in the context. There are also 10
general purpose contexts, 4 match models for long
contexts, 5 record models, 9 sparse models, 7 analog
models (including one for FAX images), and 6 word
models including sparse bigrams.

In the first five months of 2004 there were 12 variations
of PAQ6 by Berto Destasio, which included additional
models, and changes to the semi-stationary update rule to
discard counts more quickly and give greater weight to
models in which one of the counts is 0. There were 7
versions by Fabio Buffoni, 2 by Johan De Bock, and 8 by
Jason Schmidt, primarily optimizations for speed, and 3 by
David A. Scott which improved the arithmetic coder.
Eugene Shelwein and Jason Schmidt provided optimized
compiles.

4.4. PAQAR

Between May and July 2004, Alexander Ratushnyak
released 7 versions of PAQAR which greatly improved
compression by vastly increasing the number of models at
the expense of speed and memory. The latest version,
PAQAR 4.0, uses 12 mixers with weights selected by
different contexts. Each mixer has its own SSE stage.
Those outputs are mixed by fixed weight averaging and
passed through 5 more parallel SSE units whose outputs
are again averaged. There are 10 general purpose contexts
of length 0 to 9, 4 match models, 12 record contexts, 17

sparse contexts, 9 analog contexts, 13 word contexts, and
34 contexts for FAX images (for pic in the Calgary
corpus). Models may be turned on or off when certain file
types are detected. The Intel executable context model
was replaced by a transform (filter) to change relative
CALL and JMP operands to absolute addresses.

4.5. Dictionary Preprocessing (PAsQDa)

Between Jan. and July 2005, Przemydlaw Skibinski
released 7 versions of PAsQDa which integrate a Word
Reducing Transform (WRT) (Skibinski, Grabowski and
Deorowicz 2005) into PAQ6 and PAQAR. WRT replaces
English words with a 1 to 3 byte code from a dictionary.
There are additiona transforms to model punctuation,
capitalization, and end of lines.

Malcolm Taylor added an independently implemented
context mixing algorithm called PWCM (PAQ Weighted
Context Mixing) to his commercial program, WinRK, in
2004, surpassing PAQAR and PAsQDa in many
benchmarks.

5. Experimental Results

Table 1 shows compression results for major releases of
PAQ and some popular and top ranked compressors (as of
Oct. 2005) on the 14 file Calgary corpus, a widely used
benchmark. The compression agorithm is shown in
parenthesis with "+d" to indicate dictionary preprocessing.
Options are selected for maximum compression. Files are
compressed into a single archive if possible, which alows
for modeling across files (solid mode). Compression times
are in seconds on a 750 MHz Duron with 256 MB memory
running Windows Me. Times marked with an asterisk are
for programs that exceeded 256 MB and are estimated as
3.6 times the actual time (based on empirical timing
comparisons) on an AMD 2800 with 1 GB memory.

Table 1 includes compress, pkzip, gzip, and winrar
because of their popularity, sbhc (S. Markinen,
http://sbcarchiver.netfirms.com/) as the top ranked BWT
COMpressor, and slim (S V oskoboynikov,
http:/iwww.bars.|g.ua/slim/) and durilca (D. Shkarin,
http://compression.ru/ds) as the top ranked PPM
compressors without and with dictionary preprocessing,
respectively. WinRK is the only compressor besides PAQ
to use context mixing. The other compression algorithms
are explained in the next section. Decompression times
for LZW, LZ77 and BWT are considerably faster than
compression, but are about the same for PPM and CM.



Table 1. Calgary corpus compression results

Program (type) Options | Size Time
Original size 3,141,622
compress(LZW) 1272772 | 1.5
pkzip 204e (LZ77) 1,032290 | 1.5
gzip (LZ77) -9 1,017,624 | 2
winrar 3.20 b3(PPM) | best 754270 7

sbc 0.970r2 (BWT) -b8-m3 | 738253 55
dim 0.021 (PRAM) 658494 156
durilcav.03a (PPM+d) | readme | 647,028 35
pagl (CM) 716,704 68
pag2 (CM) adds SE 702382 93
pag4 (CM) adds eq.(2) 672134 222
pag6 (CM) -6 648892 635
pagar 4.0 (CM) -6 604,254 2127*
pasqda 4.1 (CM+d) -5 571127 1586*

WinRK 2.0.1 (CM) pwcm
WinRK 2.0.1 (CM+d) | & dict

617,240 1275
593348 1107

5.1. Independent Benchmarks

Context mixing programs are top ranked by compresson
ratio (but not speed) in five adively maintained,
independent benchmarks of genera purpose losdess data
compresson pograms. Results change rapidly but are
current as of Nov. 14, 2005 All benchmarks below have
been upchted within the last month.

5.1.1. Calgary Challenge. The Cagary challenge
(http://mailcom.com/challenge/) is a wntest sporsored
since 1996 by Leonid A. Broukhis with namina prize
money to compressthe Calgary corpus. The sizeincludes
the dewmmpresson pogram (contained in a standard
archive) in order to dscourage dictionary preprocessng,
which otherwise atificially inflates a ranking by moving
information from the cmpressed data to the program. The
current record of 596314 byes is held by A. Ratushnyak
using a variant of PAsQDa with a tiny dictionary of abou
200 words, set Oct. 25, 2005 The decompressor is Emi-
obfusticated C++ source mde.

5.1.2. Maximum Compression Benchmark. (W.
Bergmans, http://www.maximumcompresgon.com). This
tests 142 compresson programs on 10 files of various
types totaling abou 52 MB, with options st for best
compresson. The top ranked compressor for nine of the
ten files were @ntext mixing compressors (PAsQDa 4.1b
or WinRK 2.0.6/pwcm).

5.1.3. UCLC Benchmark. (J. de Bock, http://uclc.info).
This tests 92 programs on 8 data sets totaling abou 172
MB. WinRK is top ranked onfour and PAsQDa on two.
The other two data sets, grayscde images and audio, are
topped by spedalized compressors.

5.1.4. Squeeze Chart Benchmark. (S. Busch
(http://www.maximumcompresgon.com/benchmarks/Squ-

eez8620Chart%202005pdf). This tests 156 pograms
(including versions) on 16 dita sets totaling abou 2.5 GB.
Unlike the other benchmarks, the data was not released
(except for the Cagary and Canterbury corpora), to
discourage tuning compressors to the benchmarks. On this
set, WinRK 2.1.6 was top ranked onsix, PAQAR on four,
PAsQDaonthreg and slimon ore.

5.1.5. EmilCont Benchmark. (B. Destasio
(http:/Avww.freevebs.com/emil cont/).  This evaluates 393
compresson programs (including different versions) on 12
unreleased files (text, images, audio, exeautable mde)
totaling 13MB. By total size the top 29 pograms are
WinRK and PAQ variants, followed by slim. Context
mixing programs are top ranked on 10 & the 12 files.

6. Related Work

Losdess data mmpresson aiginated in the 1830s with
Morse mde, which assgns the shortest codes to the letters
occurring most frequently in English. Huffman (1952
devised an algorithm for asggning code lengths to symbals
optimally given a probability distribution, athough this
code is not optimal in the sense of Shannon and Weaver
(1949 because mde lengths must be integers. Arithmetic
coding (Howard and Vitter 1992 overcomes this
limitation byasggning a mde to the entire string.

The LZ family of codes (Ziv and Limpel 1978 Baell,
Witten and Cleay 1989 are popuar in spite of poar
compresson relative to PAM and context mixing becaise
of their high speed, espedally for decompresson. The two
main variants are LZ77, used in gzip and zip, and LZW
used in GIF and UNIX compress. In LZ77, a repeaed
substring is replaced with a pointer to a previous
occaurrence. In LZW, arepeded substring is replaced with
anindex into adictionary of previously seen substrings.

Compresors based on the Burrows-Wheder transform
(BWT) (Burrows and Wheder 1994 are dmost as fast as
LZ and compress amost as well as PRM. A BWT
compresor sorts the input charaders by context and
compresses the resulting strean with an adaptive order-0
model. A BWT model is equivalent to unbounéd context
length PPM (Cleay, Teéhan, and Witten 1995.

PAQL1 isderived from an ealier compresor, P12, which
predicts a bit stream using a 2 layer neura network with
various contexts as inpus (Mahorey 2000. P12 is based
on an ealier 3-layer neura network model which was
trained ofline by badk propagation to predict text
(Schmidhuker and Heil 1996. P12 and PAQ incorporated
whole-word contexts based onan olservation byJiang and
Jones (1992 that using whole words rather than letters as
symbols improves text compresson.

Model mixing and sparse word contexts are based on
offline language models for speed recognition (Rosenfeld
1996. Order-2 and sparse word contexts were mixed
using the maximum entropy approad), an iterative
agorithm which converges to the most general distribution



that fits the training data. Kala et a. (1999 describe
online agorithms for combining language models by
weighted averaging d probabilities. Weights are tuned
online to favor better models. PAQ differs in that the
submodels output a mnfidencein addition to a probability.

7. Conclusion and Future Work

In this paper we describe an orline dgorithm for
combining arbitrary context models for binary strings that
output both a prediction and a @nfidence We dso
introduce a"semi-stationary” model which favors recent
history over older evidence ad expreses a high
confidencein a prediction after alongstring o al zeros or
al ones. These techniques have been implemented in
context mixing data mpressors, which have now
replaced PPM-based compresors at the top o the rankings
of al of the major benchmarks.

Context mixing agorithms alow compressors to push
the three way tradeoff between compresson, speed, and
memory to the extreme. The top ranked compressors,
PAQAR, PAsQDa, and WinRK/pwcm, are 500 to 1000
times dower than popuar compressors such as gzip, and
require hundeds of megabytes of memory. The reasonis
the large number of models. Implementing context mixing
algorithms efficiently remains a major chall enge.
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