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Abstract 
Until recently the state of the art in lossless data 
compression was prediction by partial match (PPM).  A 
PPM model estimates the next-symbol probabilit y 
distribution by combining statistics from the longest 
matching contiguous contexts in which each symbol value 
is found.  We introduce a context mixing model which 
improves on PPM by allowing contexts which are arbitrary 
functions of the history.  Each model independently 
estimates a probabilit y and confidence that the next bit of 
data will be 0 or 1.  Predictions are combined by weighted 
averaging.  After a bit is arithmetic coded, the weights are 
adjusted along the cost gradient in weight space to favor the 
most accurate models.  Context mixing compressors, as 
implemented by the open source PAQ project, are now top 
ranked on several independent benchmarks. 

1. Introduction 

The principle of Occam's Razor, applied to machine 
learning, states that one should choose the simplest 
hypothesis that fits the observed data.  Hutter (2003), 
building on the work of Solomonoff (1986), formalized 
and proved this very general principle.  Define an agent 
and an environment as a pair of interacting Turing 
machines.  At each step, the agent sends a symbol to the 
environment, and the environment sends a symbol and also 
a reward signal to the agent.  The goal of the agent is to 
maximize the accumulated reward.  Hutter proved that the 
optimal behavior of the agent is to guess at each step that 
the most likely program controlli ng the environment is the 
shortest one consistent with the interaction observed so far. 
 Unfortunately, this does not solve the general machine 
learning problem.  The algorithmic, or Kolmogorov, 
complexity of a string, defined as the length of the shortest 
program that outputs it, is not computable (Chaitin 1977).  
Thus, machine learning is an art: approximate solutions 
and heuristic methods are required.. 
 Lossless data compression is equivalent to machine 
learning.  In both cases, the fundamental problem is to 
estimate the probabilit y p(x) of event x (coded as a string) 
drawn from a random variable with an unknown (but 
presumably computable) probabilit y distribution.  Shannon 
and Weaver (1949) proved that the minimum expected 
code length of x given p(x) is log2 1/p(x) bits.  Near-

optimal codes (within one bit) are known and can be 
generated eff iciently, for example Huffman codes 
(Huffman 1952) and arithmetic codes (Howard and Vitter 
1992). 

1.1. Text Compression and Natural Language 
Processing 
 An important subproblem of machine learning is natural 
language processing.  Humans apply complex language 
rules and vast real-world knowledge to implicitly model 
natural language.  For example, most English speaking 
people will recognize that  p(recognize speech) > p(reckon 
eyes peach).  Unfortunately we do not know any algorithm 
that estimates these probabiliti es as accurately as a human.  
Shannon (1950) estimated that the entropy or information 
content of written English is about one bit per character 
(between 0.6 and 1.3) based on how well humans can 
predict successive characters in text.  The best data 
compression programs achieve about 1.5 bits per character. 
 Language models can be used to improve the accuracy 
of speech recognition and language translation (Knight 
1997), optical character recognition (Teahan et al. 1998), 
and for spell checking and solving substitution ciphers 
(Teahan and Cleary 1997).  In each case, the problem is to 
find output string y that maximizes p(y|x) for some input x.  
By Bayes law, this is equivalent to maximizing p(x|y)p(y) 
where p(x|y) is the inverse model (e.g. speech synthesis) 
and  p(y) is the language model. 
 Compression ratio can be used to evaluate a language 
model because it is minimized when the goal of matching 
the modeled distribution to the true distribution is met.  
However it is not the only function with this property.  
Chen, Beeferman, and Rosenfeld (1998) tested a number 
of proposed functions and did find that compression ratio 
(specifically, word perplexity) is among the best predictors 
of word error rate in speech recognition systems. 

1.2. Online Modeling 
 Data compression ought to be a straightforward 
supervised classification problem.  We are given a stream 
of symbols from an unknown (but presumably 
computable) source.  The task is to predict the next symbol 
(so that the most likely symbols can be assigned the 



shortest codes).  The training set consists of all of the 
symbols already seen.  This can be reduced to a 
classification problem in which each instance is the 
context, some function of the string of previously seen 
symbols (for example, a suff ix of length n). 
 There are many well known techniques for solving such 
problems, for example, clustering, decision trees, neural 
networks, genetic algorithms, support vector machines, 
and so on.  However, most data compressors do not use 
these techniques because they require off line training, i.e. 
multiple passes over the training set.  A general purpose 
data compressor must be online.  The input is arbitrary, so 
in general there cannot be any training data before the test 
data begins to arrive. 
 Until recently the best data compressors were based on 
PPM, prediction by partial match (Bell , Witten and Cleary 
1989) with arithmetic coding of the symbols.  In PPM, 
contexts consisting of suff ixes of the history with lengths 
from 0 up to n (typically 5 to 8 bytes) are mapped to 
occurrence counts for each symbol in the alphabet.  
Symbols are assigned probabiliti es in proportion to their 
counts.  If a count in the n-th order context is zero, then 
PPM falls back to lower order models until a nonzero 
probabilit y can be assigned.  PPM variants differ mainly in 
how much code space is reserved at each level for unseen 
symbols.  The best programs use a variant of PPMZ 
(Bloom 1998) which estimates the "zero frequency" 
probabilit y adaptively based on a small context. 
 One drawback of PPM is that contexts must be 
contiguous.  For some data types such as images, the best 
predictor is the non-contiguous context of the surrounding 
pixels both horizontally and vertically.  For audio it might 
be useful to discard the low order (noisy) bits of the 
previous samples from the context.  For text, we might 
consider case-insensitive whole-word contexts.  
Unfortunately, PPM does not provide a mechanism for 
combining statistics from contexts which could be arbitrary 
functions of the history. 
 This is the problem we address in this paper.  A context 
mixing algorithm combines the predictions of a large 
number of independent models by weighted averaging.  
The weights are adjusted online to favor the most accurate 
models.  Compressors based on context mixing algorithms 
are now top ranked on most published benchmarks. 

2. Context Mixing Models 

A context mixing model works as follows.  The input data 
is represented as a bit stream.  For each bit, each model 
independently outputs two numbers, n0, n1 ≥ 0, which can 
be thought of as measures of evidence that the next bit will 
be a 0 or 1, respectively.  Taken together, it is an assertion 
by the model that the next bit will be 0 with probabilit y 
n0/n or 1 with probabilit y n1/n, where n = n0 + n1 is the 
model's relative confidence in this prediction. 

 Since models are independent, confidence is only 
meaningful when comparing two predictions by the same 
model, and not for comparing models.  Instead we 
combine models by weighted summation of n0 and n1 over 
all of the models as follows: 
 
 S0 = ε + Σi win0i = evidence for 0        (1) 
 S1 = ε + Σi win1i  = evidence for 1 
 S = S0 + S1 = total evidence 
 p0 = S0/S = probabilit y that next bit is 0 
 p1 = S0/S = probabilit y that next bit is 1 
 
where wi ≥ 0 is the weight of the i'th model, n0i and n1i are 
the outputs n0 and n1 by the i-th model, and ε > 0 is a small 
constant to guarantee that S0, S1 > 0 and 0 < p0, p1 < 1. 

2.1. Updating the Mixing Weights 
 After coding each bit, the weights are adjusted along the 
cost gradient in weight space to favor the models that 
accurately predicted this bit.  Let x be the bit just coded.  
The cost of optimally coding x is log2 1/px bits.  Taking the 
partial derivative of the cost with respect to each wi in (1), 
with the restriction that weights cannot be negative, we 
obtain the following weight adjustment: 
 
 wi ← max[0, wi + (x --- p1)(Sn1i --- S1ni) / S0S1]    (2) 
 
where ni = n0i + n1i.  The term (x --- p1)  is the prediction 
error. 
 Experimentally, equation (2) was found to be 
remarkably robust.  The only tuning parameter is ε, and 
even this has very littl e effect on compression ratio over a 
wide range.  Weights tend to grow at most logarithmically 
because the term S0S1 in the denominator of (2) grows 
along with the weights.  The weights can either be 
initialized to favor a-priori known better models, or simply 
be set to 0 to allow rapid initial training. 

2.2. Arithmetic Coding 
The predictions from equation (1) are arithmetic coded.  
The arithmetic code of a string x is the length of x together 
with a number in the half-open interval [p<x, p<x + p(x)), 
where p<x is the probabilit y that a string picked at random 
is lexicographically less than  x.  There is guaranteed to be 
a number in this interval with a base B encoding of not 
more than 1 + logB 1/p(x) digits (Howard and Vitter 1992). 
 When p(x) is expressed as a product of conditional 
probabiliti es, p(x1x2...xn) = Πi p(xi | x1x2...xi-1) and the 
alphabet is binary, then the arithmetic code may be 
computed eff iciently as follows.  Begin with the range 
[0,1).  For each bit xi, divide the range into two parts in 
proportion to p0 and p1 from equation (1) and replace the 
range with the subrange corresponding to pxi.  In other 
words, if the range is [low, high) and the probabilit y that xi 
is 0 is p0, then the range is updated as follows: 



 
 mid = low + p0(high --- low)           (3) 
 [low, high) ← [low, mid) if xi = 0 
       [mid, high) if xi = 1 
 
As the range shrinks, the leading digits of the base B 
representations of low and high will match.  These digits 
may be output immediately.  It is convenient to use base B 
= 256 and represent each digit as a byte. 

3. Modeling Nonstationary Data 

Suppose that a certain context is observed n = 15 times and 
the next-bit sequence in this context is 000000000011111.  
What is the probabilit y p1 that the next bit will be a 1? 
 The answer depends on what we assume about the 
source.  If we assume that the source is stationary 
(statistics do not change over time) and that the trials are 
independent (which seems unlikely from the given data) 
then we would count n0 = 10 zeros and n1 = 5 ones and 
guess p1 = n1/(n0 + n1) = n1/n  = 1/3.  We define a stationary 
update rule for a context model as follows: 
 
 Stationary Update Rule 
 Initialize n0 = n1 = 0. 
 If bit x is observed then increment nx. 
 
A simpler explanation (as demanded by Occam's Razor) 
might be that the source is not stationary, and that a state 
change occurred after 10 bits.  We will model 
nonstationary sources as follows.  We will predict that the 
last outcome will repeat, with confidence proportional to 
the number of consecutive repetitions.  Essentially, we 
discard any bit counts that disagree with the most recent 
observation. 
  
 Nonstationary Update Rule 
 Initialize n0 = n1 = 0. 
 If bit x is observed then increment nx and set n1-x = 0. 
 
In the example above, n0 = 0 and n1 = 5.  We would predict 
p1 = 1 with confidence 5. 
 In general, a source might or might not be stationary.  
For example, a document may contain pure text 
(stationary) or have embedded images (nonstationary).  We 
define the following semi-stationary update rule as a 
compromise which empirically works well on a wide range 
of data.  Rather than keep all counts, or discard all counts 
that disagree with the last observation, we discard about 
half of the counts.  Specifically, we keep at least two and 
discard half of the rest, which has the effect of starting off 
as a stationary model and becoming more nonstationary as 
the counts grow. 
 
 

 Semi-stationary Update Rule  
 Initialize n0 = n1 = 0. 
 If  bit x occurs then 
  increment nx 
  if n1-x > 2 then set n1-x =  floor(n1-x / 2 + 1). 
 
For example, given the sequence 000000000011111 the 
state (n0, n1) would be updated as follows: 
 
 0000000000     (10, 0)  p1 = 0, n = 10 
 00000000001     (6, 1)  p1 = 1/7, n = 7 
 000000000011    (4, 2)  p1 = 1/3, n = 6 
 0000000000111    (3, 3)  p1 = 1/2, n = 6 
 00000000001111   (2, 4)  p1 = 2/3, n = 6 
 000000000011111   (2, 5)  p1 = 5/7, n = 7 

4. Implementation: The PAQ Project 

The PAQ series of context mixing compressors were 
developed as an open source project released under the 
GNU general public license.  Source code is available at 
http://cs.fit.edu/~mmahoney/compression/ 

4.1. PAQ1 
The first version, PAQ1, was developed in Jan. 2002 by M. 
Mahoney.  It uses the following contexts: 
•  Eight contexts of length 0 to 7 bytes as general 

purpose models.  All contexts also include the 0 to 7 
bits of the current byte that precede the bit being 
predicted. 

•  Two word-oriented contexts of length 0 or 1 whole 
words preceding the currently predicted word (i.e. 
unigram and bigram models).  A word is a case-
insensitive sequence of the letters a-z. 

•  Two fixed-length record models for modeling two-
dimensional data such as images and databases.  One 
context is the column number and the other is the byte 
above.  The record length is determined by detecting a 
series of 4 consecutive identical byte values with a 
uniform stride. 

•  One match context, which finds the last matching 
context of length 8 bytes or longer, and predicts 
whatever bit followed the match. 

All models except match use semi-stationary update.  A 
state (n0,n1) is represented as an 8 bit value using 
probabili stic updates to estimate large counts.  Models are 
mixed as in equation (1) but the weights are fixed 
constants tuned empirically.  The eight general purpose 
contexts of length n are weighted w = (n + 1)2. 

4.2.  Secondary Symbol Estimation (PAQ2) 
In May 2003 S. Osnach wrote PAQ1SSE (or PAQ2) which 
added SSE (secondary symbol estimation) after the mixer.  
SSE is a 2-D table which inputs the probabilit y from the 



mixer (quantized to 64 values non-uniformly with smaller 
steps near 0 and 1) and a small 10-bit context (the partially 
coded byte and match prediction) and outputs an improved 
probability.  After the bit is coded, the SSE table entry is 
adjusted in proportion to the prediction error.. 
 In Sept. 2003, M. Mahoney wrote PAQ3, which 
improved SSE by quantizing the input probability to 32 
values with linear interpolation between adjacent table 
entries. 
 In Oct. 2003 S. Osnach wrote PAQ3N, adding three 
sparse models --- two byte contexts that skip over 
intermediate bytes.  Additional context was added to SSE. 

4.3.  Adaptive Model Mixing (PAQ4-PAQ6) 
PAQ4 by M. Mahoney in Oct. 2003 introduced adaptive 
model weighting of 18 contexts as in Equation (2).  The 
mixer uses 8 sets of weights, selected by a 3 bit context 
consisting of the 3 most significant bits of the previous 
whole byte. 
 PAQ5 in Dec. 2003 added a second mixer whose 
weights were selected by a 4-bit context consisting of the 
two most significant bits of the last two bytes.  In addition, 
six new models were added for analog data (8 and 16 bit 
mono and stereo audio, 24-bit color images and 8-bit data).  
These contexts discard low order (noisy) bits. 
 PAQ6 in Dec. 2003 added nonstationary models (called 
run-length models) in addition to the semi-stationary 
updates for all models.  A model was added for Intel 
executable code that translates relative CALL operands to 
absolute addresses in the context.  There are also 10 
general purpose contexts, 4 match models for long 
contexts, 5 record models, 9 sparse models, 7 analog 
models (including one for FAX images), and 6 word 
models including sparse bigrams. 
 In the first five months of 2004 there were 12 variations 
of PAQ6 by Berto Destasio, which included additional 
models,  and changes to the semi-stationary update rule to 
discard counts more quickly and give greater weight to 
models in which one of the counts is 0.  There were 7 
versions by Fabio Buffoni, 2 by Johan De Bock, and 8 by 
Jason Schmidt, primarily optimizations for speed, and 3 by 
David A. Scott which improved the arithmetic coder.  
Eugene Shelwein and Jason Schmidt provided optimized 
compiles. 

4.4. PAQAR 
Between May and July 2004, Alexander Ratushnyak 
released 7 versions of PAQAR which greatly improved 
compression by vastly increasing the number of models at 
the expense of speed and memory.  The latest version, 
PAQAR 4.0, uses 12 mixers with weights selected by 
different contexts.  Each mixer has its own SSE stage.  
Those outputs are mixed by fixed weight averaging and 
passed through 5 more parallel SSE units whose outputs 
are again averaged.  There are 10 general purpose contexts 
of length 0 to 9, 4 match models, 12 record contexts, 17 

sparse contexts, 9 analog contexts, 13 word contexts, and 
34 contexts for FAX images (for pic in the Calgary 
corpus).  Models may be turned on or off when certain file 
types are detected.  The Intel executable context model 
was replaced by a transform (filter) to change relative 
CALL and JMP operands to absolute addresses. 

4.5.  Dictionary Preprocessing (PAsQDa) 
Between Jan. and July 2005, Przemyslaw Skibinski 
released 7 versions of PAsQDa which integrate a Word 
Reducing Transform (WRT) (Skibinski, Grabowski and 
Deorowicz 2005) into PAQ6 and PAQAR.  WRT replaces 
English words with a 1 to 3 byte code from a dictionary.  
There are additional transforms to model punctuation, 
capitalization, and end of lines. 
 Malcolm Taylor added an independently implemented 
context mixing algorithm called PWCM (PAQ Weighted 
Context Mixing) to his commercial program, WinRK, in 
2004, surpassing PAQAR and PAsQDa in many 
benchmarks. 

5. Experimental Results 

Table 1 shows compression results for major releases of 
PAQ and some popular and top ranked compressors (as of 
Oct. 2005) on the 14 file Calgary corpus, a widely used 
benchmark.  The compression algorithm is shown in 
parenthesis with "+d" to indicate dictionary preprocessing.  
Options are selected for maximum compression.  Files are 
compressed into a single archive if possible, which allows 
for modeling across files (solid mode).  Compression times 
are in seconds on a 750 MHz Duron with 256 MB memory 
running Windows Me.  Times marked with an asterisk are 
for programs that exceeded 256 MB and are estimated as 
3.6 times the actual time (based on empirical timing 
comparisons) on an AMD 2800 with 1 GB memory. 
 Table 1 includes compress, pkzip, gzip, and winrar 
because of their popularity, sbc (S. Markinen, 
http://sbcarchiver.netfirms.com/) as the top ranked BWT 
compressor, and slim (S. Voskoboynikov, 
http://www.bars.lg.ua/slim/) and durilca (D. Shkarin, 
http://compression.ru/ds) as the top ranked PPM 
compressors without and with dictionary preprocessing, 
respectively.  WinRK is the only compressor besides PAQ 
to use context mixing.  The other compression algorithms 
are explained in the next section.   Decompression times 
for LZW, LZ77 and BWT are considerably faster than 
compression, but are about the same for PPM and CM. 
 
 
 
 
 
 
 
 



Table 1.  Calgary corpus compression results 
 

Program (type) Options Size Time 
Original size  3,141,622  
compress (LZW)  1,272,772 1.5 
pkzip 2.04e (LZ77)  1,032,290 1.5 
gzip (LZ77) -9 1,017,624 2 
winrar 3.20 b3 (PPM) best 754,270 7 
sbc 0.970r2 (BWT) -b8 ---m3 738,253 5.5 
slim 0.021 (PPM)  658,494 156 
durilca v.03a (PPM+d) readme 647,028 35 
paq1 (CM)  716,704 68 
paq2 (CM) adds SSE  702,382 93 
paq4 (CM) adds eq.(2)  672,134 222 
paq6 (CM) -6 648,892 635 
paqar 4.0 (CM) -6 604,254 2127* 
pasqda 4.1 (CM+d) -5 571,127 1586* 
WinRK 2.0.1 (CM) pwcm 617,240 1275 
WinRK 2.0.1 (CM+d) & dict 593,348 1107 

5.1.  Independent Benchmarks 
Context mixing programs are top ranked by compression 
ratio (but not speed) in five actively maintained, 
independent benchmarks of general purpose lossless data 
compression programs.  Results change rapidly but are 
current as of Nov. 14, 2005.  All benchmarks below have 
been updated within the last month. 

5.1.1. Calgary Challenge.  The Calgary challenge 
(http://mailcom.com/challenge/) is a contest sponsored 
since 1996 by Leonid A. Broukhis with nominal prize 
money  to compress the Calgary corpus.  The size includes 
the decompression program (contained in a standard 
archive) in order to discourage dictionary preprocessing, 
which otherwise artificially inflates a ranking by moving 
information from the compressed data to the program.  The 
current record of 596,314 bytes is held by A. Ratushnyak 
using a variant of PAsQDa with a tiny dictionary of about 
200 words, set Oct. 25, 2005.  The decompressor is semi-
obfusticated C++ source code. 

5.1.2.  Maximum Compression Benchmark.   (W. 
Bergmans, http://www.maximumcompression.com).  This 
tests 142 compression programs on 10 files of various 
types totaling about 52 MB, with options set for best 
compression.  The top ranked compressor for nine of the 
ten files were context mixing compressors (PAsQDa 4.1b 
or WinRK 2.0.6/pwcm).  

5.1.3.  UCLC Benchmark.  (J. de Bock, http://uclc.info).  
This tests 92 programs on 8 data sets totaling about 172 
MB.  WinRK is top ranked on four and PAsQDa on two.  
The other two data sets, grayscale images and audio, are 
topped by specialized compressors. 

5.1.4. Squeeze Chart Benchmark.  (S. Busch 
(http://www.maximumcompression.com/benchmarks/Squ-

eeze%20Chart%202005.pdf).  This tests 156 programs 
(including versions) on 16 data sets totaling about 2.5 GB.  
Unlike the other benchmarks, the data was not released 
(except for the Calgary and Canterbury corpora), to 
discourage tuning compressors to the benchmarks.  On this 
set, WinRK 2.1.6 was top ranked on six, PAQAR on four, 
PAsQDa on three, and slim on one. 

5.1.5. EmilCont Benchmark.  (B. Destasio 
(http://www.freewebs.com/emilcont/).  This evaluates 393 
compression programs (including different versions) on 12 
unreleased files (text, images, audio, executable code) 
totaling 13 MB.  By total size, the top 29 programs are 
WinRK and PAQ variants, followed by slim.  Context 
mixing programs are top ranked on 10 of the 12 files. 

6. Related Work 

Lossless data compression originated in the 1830's with 
Morse code, which assigns the shortest codes to the letters 
occurring most frequently in English.  Huffman (1952) 
devised an algorithm for assigning code lengths to symbols 
optimally given a probabilit y distribution, although this 
code is not optimal in the sense of Shannon and Weaver 
(1949) because code lengths must be integers.  Arithmetic 
coding (Howard and Vitter 1992) overcomes this 
limitation by assigning a code to the entire string. 
 The LZ family of codes (Ziv and Limpel 1978; Bell , 
Witten and Cleary 1989) are popular in spite of poor 
compression relative to PPM and context mixing because 
of their high speed, especially for decompression.  The two 
main variants are LZ77, used in gzip and zip, and LZW 
used in GIF and UNIX compress.  In LZ77, a repeated 
substring is replaced with a pointer to a previous 
occurrence.  In LZW, a repeated substring is replaced with 
an index into a dictionary of previously seen substrings. 
 Compressors based on the Burrows-Wheeler transform 
(BWT) (Burrows and Wheeler 1994) are almost as fast as 
LZ and compress almost as well as PPM.  A BWT 
compressor sorts the input characters by context and 
compresses the resulting stream with an adaptive order-0 
model.  A BWT model is equivalent to unbounded context 
length PPM (Cleary, Teahan, and Witten 1995). 
 PAQ1 is derived from an earlier compressor, P12, which 
predicts a bit stream using a 2 layer neural network with 
various contexts as inputs (Mahoney 2000).  P12 is based 
on an earlier 3-layer neural network model which was 
trained off line by back propagation to predict text 
(Schmidhuber and Heil 1996).  P12 and PAQ incorporated 
whole-word contexts based on an observation by Jiang and 
Jones (1992) that using whole words rather than letters as 
symbols improves text compression. 
 Model mixing and sparse word contexts are based on 
off line language models for speech recognition (Rosenfeld 
1996).  Order-2 and sparse word contexts were mixed 
using the maximum entropy approach, an iterative 
algorithm which converges to the most general distribution 



that fits the training data.  Kalai et al. (1999) describe 
online algorithms for combining language models by 
weighted averaging of probabiliti es. Weights are tuned 
online to favor better models.  PAQ differs in that the 
submodels output a confidence in addition to a probabilit y. 

7.  Conclusion and Future Work 

In this paper we describe an online algorithm for 
combining arbitrary context models for binary strings that 
output both a prediction and a confidence.  We also 
introduce a "semi-stationary" model which favors recent 
history over older evidence and expresses a high 
confidence in a prediction after a long string of all zeros or 
all ones.  These techniques have been implemented in 
context mixing data compressors, which have now 
replaced PPM-based compressors at the top of the rankings 
of all of the major benchmarks. 
 Context mixing algorithms allow compressors to push 
the three way tradeoff between compression, speed, and 
memory to the extreme.  The top ranked compressors, 
PAQAR, PAsQDa, and WinRK/pwcm, are 500 to 1000 
times slower than popular compressors such as gzip, and 
require hundreds of megabytes of memory.  The reason is 
the large number of models.  Implementing context mixing 
algorithms eff iciently remains a major challenge. 
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