
Learning Rules for Anomaly Detection of Hostile Network Traffic

Matthew V. Mahoney and Philip K. Chan
Department of Computer Sciences

Florida Institute of Technology
Melbourne, FL 32901

{mmahoney,pkc}@cs.fit.edu

Abstract

 We introduce an algorithm called LERAD that learns
rules for finding rare events in nominal time-series data
with long range dependencies. We use LERAD to find
anomalies in network packets and TCP sessions to detect
novel intrusions. We evaluated LERAD on the 1999
DARPA/Lincoln Laboratory intrusion detection evaluation
data set and on traffic collected in a university
departmental server environment.

1. Introduction and Related Work

 An important component of computer security is
intrusion detection--knowing whether a system has been
compromised or if an attack is occurring. Hostile activity
can sometimes be inferred by examining inbound network
traffic, operating system events, or changes to the file
system, either for patterns signaling known attacks
(signature detection), or for unusual events signaling
possible novel attacks (anomaly detection). Anomaly
detection has the advantage that it can sometimes detect
previously unknown attacks, but has the disadvantage that
it issues false alarms, because unusual events are not
always hostile. Often both approaches are used. For
example, a virus detector might scan files for strings
signaling known viruses, and might also test for
modifications of executable files as indications of possible
new viruses.
 Network anomaly detection is a particularly difficult
problem because higher level (application) protocols are
complex and difficult to model, and because data must be
processed at high speed. A common approach is to use a
firewall with rules programmed by a network
administrator to block and/or log packets based on lower
level features such as IP addresses and port numbers. This
technique can detect or block port scans and unauthorized
access to private services (e.g. ssh) from untrusted clients.
However, detection of attacks on public services such as

HTTP (web), SMTP (email), and DNS (host name lookup)
currently rely on signature detection systems such as
SNORT [10] or Bro [8] to scan for strings signaling
known attacks. The rule set is quite large (SNORT has
over 1800) and must be updated frequently. This would
not be an effective defense against novel attacks or fast
spreading worms. Network anomaly detection systems
such as ADAM [2], SPADE [3], and eBayes [11], use
machine learning approaches to model normal network
traffic in order to identify unusual events as suspicious,
but they model low-level (firewall-like) features such as
addresses and port numbers, rather than application
protocols.
 We introduce an efficient, randomized algorithm called
LERAD (Learning Rules for Anomaly Detection), which
can discover relationships among attributes in order to
model application protocols. LERAD differs from
association mining approaches such as APRIORI [1] in
that it finds enough rules with a small set of allowed
values in the consequent to describe the data, rather than
all rules (allowing only one value) above a
support/confidence threshold. We believe this form is
more appropriate for "bursty" (non-Poisson) time series
data with long range dependencies, a characteristic of
network traffic [4, 9].

2. Rule Learning Algorithm

 LERAD learns conditional rules over nominal
attributes in a time series (e.g. a sequence of inbound
client packets or TCP sessions), in which the antecedent is
a conjunction of equalities, and the consequent is a set of
allowed values, e.g. if port = 80 and word3 = HTTP/1.0
then word1 = GET or POST. A value is allowed if it is
observed in at least one training instance satisfying the
antecedent. If in testing a disallowed value is observed,
then an anomaly score of tn/r is generated, where t is the
time since the last anomaly by this rule, n is the support
(number of training instances satisfying the antecedent),
and r is the number of allowed values (2 in this example).
The idea is to identify rare events: those which have not

occurred for a long time (large t) and where the average
rate of "anomalies" in training is low (small r/n). If the
total anomaly score summed over all violated rules
exceeds a threshold, then an alarm is generated.
 LERAD is a two pass algorithm. In the first pass, a
candidate rule set is generated from a random sample S of
the training data (attack-free network traffic). In the
second pass, the rules are trained by collecting the set of
allowed values for each antecedent. After training the
rules are validated on a portion of the training data (e.g.
the last 10%) to remove "poor" rules where the training
data is not representative of the test data (Fig. 1). For
example, the set of client IP addresses contacting a web
server would be expected to grow steadily over time, so
we would not wish to restrict the set to only those clients
observed during a training period. On the other hand, a set
of local server addresses or ports would not be expected to
grow after a short training period, so this would be a
"good" rule.

Figure 1. Growth of r for "good" and "poor" rules

 The LERAD rule algorithm is as follows:

1. Rule generation. Randomly sample L pairs of training
instances from a random subset S of the training data, and
generate up to M rules per pair that satisfy both instances
with n/r = 2/1, generating rule set R.
2. Coverage test. Discard rules from R to find a minimal
(but not optimal) subset of rules that cover all i nstance-
values in S, favoring rules with higher n/r over S.
3. Training, pass 2. Set the consequent of each rule in R
to all values observed at least once in the training data
when the antecedent is satisfied.
4. Validation. If a validation instance satisfies the
antecedent but not the consequent of a rule (a violation),
then remove the rule from R.
5. Test. For each instance, assign an anomaly score of
Σ tn/r summed over the violations.

 LERAD requires two passes over the training data, one
to sample S uniformly prior to generating rule antecedents,

and a second pass to assign the consequents. We cannot
simply use the beginning of the training data for S because
attribute values are not Poisson distributed, so S would not
representative of the rest of the training data.
 In the rule generation step, we pick pairs of training
samples and suggest rules based on the matching values.
The algorithm is as follows:

 Repeat L times
 Randomly pick two instances S1 and S2 from S
 Set A = { a: S1[a] = S2[a]} (matching attributes)
 For m = 1 to M and A not empty do
 Randomly remove a from A
 If m = 1 then create rule ri = "a = S1[a]"
 Else add S1[a] = a to ri's antecedent
 Add ri to rule set R

 For example, suppose that we randomly pick the first
two instances of Table 1 as S1 and S2. Then the set of
matching attributes is A = { word1, port, word3} . Suppose
M = 4 and we randomly choose the attributes a in the
order listed above. Then we generate the following rules:

• R1: word1 = GET
• R2: if port = 80 then word1 = GET
• R3: if port = 80 and word3 = HTTP/1.0 then

word1 = GET

Table 1. Example training sample S

Port Word1 Word2 Word3
80 GET / HTTP/1.0
80 GET /index.html HTTP/1.0
25 HELO pascal

 In the coverage test (step 2), we remove "redundant"
rules, those which predict values in S already predicted by
another rule with higher n/r over S (i.e. a rule which would
probably generate higher anomaly scores in testing). The
procedure is as follows:

 Update the consequents in R over S
 Sort R by decreasing n/r
 For each rule Ri in R in decreasing order of r/n
 Mark the values predicted by Ri
 If no new values can be marked, remove Ri

 For example, consider the rules above. After training
over S and sorting by n/r these become:

• R2: if port = 80 then word1 = GET (n/r = 2/1)
• R3: if port = 80 and word3 = HTTP/1.0 then

word1 = GET (n/r = 2/1)
• R1: word1 = GET or HELO (n/r = 3/2)

r (number of
observed
values)

"Poor" rule
(Removed)

"Good"
rule

Time

Training Validation Test

 (Note that the ordering of R2 and R3 is arbitrary, and R1
has changed). R2 marks the two GET values in S. R3
would mark the same two values and no new values, so we
remove it. R1 marks the HELO in the third instance, in
addition to the previously marked values, so we retain this
rule.

3. Experimental Evaluation

 Evaluation details are available from [7] and source
code from [6]. To summarize, we tested LERAD using
two attribute sets, one for IP packets and one for TCP
connections. For packets, the attributes were the first 24
byte pairs (as 16-bit nominal values), beginning with the
10 pairs of bytes from the IP header. For TCP
connections, the attributes were the source and destination
port numbers, the individual bytes of the source and
destination addresses, the connection length (in bytes),
duration (in seconds), the TCP flags of the first and last
two packets, and the first 8 words of the application
payload (delimited by white space). We used a sample
size of |S| = 100 (20 to 500 work well) and drew L = 1000
sample pairs, generating up to M = 4 candidate rules per
pair, which are sufficient to generate 50 to 100 final rules
for good results. Using larger L and M do not add
significantly more rules.
 We tested LERAD using two data sets: the 1999
DARPA/Lincoln Laboratory intrusion detection evaluation
(IDEVAL) [5], and 623 hours of traffic collected from a
university departmental server over 10 weeks in which we
previously identified six attacks. We examine only
inbound client (unsolicited) traffic, rate limited to 16
packets per connection per minute, and further truncated
TCP connections after 256 bytes of the first payload
packet. This filtering removes 98-99% of traffic, greatly
speeding up LERAD with minimal effect on detection
accuracy.
 For IDEVAL, we trained LERAD on 7 days of attack-
free traffic from inside sniffer week 3, and tested on 9
days of traffic from weeks 4 and 5, which contains
evidence of 146 simulated probes, denial of service, and
remote to local (R2L) attacks against four "victim"
machines running SunOS, Solaris, Linux, and Windows
NT. We evaluated LERAD according to the same criteria
used in the 1999 blind evaluation, which requires only that
we identify the target address and the attack time within
60 seconds at a threshold allowing 100 false alarms (10
per day). We exclude U2R (user to root) attacks, as
allowed by the evaluation criteria, because these attacks
exploit operating system weaknesses rather than network
protocols, and would be difficult to detect in network
traffic.
 The second test was on switched Ethernet traffic
collected on a Sun Ultra-AX i2 running Solaris 5.9 as a
file, web, and mail server. We used SNORT and manual

inspection to identify six attacks that eluded the university
firewall: an inside port/security scan, three HTTP worms
(Code Red II, Nimda, and Scalper), an HTTP proxy scan
and a DNS version probe.
 We used a stricter evaluation criteria: LERAD must
identify at least one packet or TCP session involved in the
attack. We counted multiple instances of a worm probe
from different sources as a single attack, since a detection
is likely to lead to a rule being added to an accompanying
signature detection system. Lacking attack-free training
data, we tested LERAD by dividing the traffic into 10 one-
week periods and tested each week after training on the
previous week. An attack in the training or validation data
might mask a similar attack in the test data, but at least the
first attack ought to be detected in the previous
training/test pair. We allowed 250 false alarms, or 10 per
24 hours. Results averaged over 5 runs with different
random number seeds are shown in Table 2.

Table 2. Number and percent of attacks detected

at 10 false alarms per day in IDEVAL and
university traffic

Data Packets TCP
IDEVAL 48.2 (33%) 95.2 (64%)
Univ. 1.4 (23%) 2.4 (40%)

 LERAD using TCP attributes detects 64% of 146
attacks in IDEVAL, compared to 40% to 55% detected by
the top four (of 18) systems in the original blind 1999
evaluation [5], even though most of those systems
combined both signature and anomaly detection using both
host and network based attributes. However, the
comparison is biased in our favor because we had access
to all of the test data during development. In the 1999
evaluation, participants were provided only with the first
three weeks of data, containing a subset of the labeled
attacks for development.
 In IDEVAL we identified five categories of anomalies
in the detected attacks.

• User behavior anomalies, e.g. unusual destination
ports as part of a port scan, or client IP address
anomalies in a password guessing attack.

• Anomalies due to exploitation of bugs in legal
but seldom used (and therefore poorly tested)
features of the protocol, for example, IP
fragmentation in teardrop and land, which
exploit bugs in IP reassembly code in a denial of
service attack.

• Anomalies due to the failure to reproduce the
idiosyncrasies of normal clients, for example,
omitting the opening SMTP HELO/EHLO
handshake (which is not required) in the sendmail
buffer overflow root shell exploit.

• Anomalies deliberately introduced in an attempt
to hide the attack signature at a higher protocol
level, for example, scanning with FIN packets
(with a missing ACK flag) to avoid having the
probe logged by the server.

• Anomalies from the victim after a successful
attack, for example, interrupted TCP connections
from a crashed host.

 In the university traffic, all of the anomalies are due to
idiosyncratic variations, mostly at the application layer, for
example, generic values in the HTTP host field for Nimda,
Scalper, and the proxy scan, and an unusual backslash in
the port/security scan: GET / HTTP\1.0. The one anomaly
at the network layer was the unusual TCP segmentation in
the Code Red HTTP command GET
default.ida?NNNNN... in which GET appears in its own
packet. The actual buffer overflow exploit code was
truncated during filtering.
 Our implementations process 10,000 packets or 3500
TCP sessions per second (after filtering) on a 750 MHz
PC. The 8.9 GB of IDEVAL traffic was filtered in 7
minutes and processed by LERAD in under two minutes.

4. Concluding Remarks

 LERAD differs from conventional network anomaly
detection in that it models application protocols, allowing
it to detect novel attacks on public servers. Application
protocols are complex, but LERAD is able to learn
important relationships between attributes given only
rudimentary syntactic knowledge (e.g. tokens are
separated by white space). It detects both simulated and
real attacks, although there is a tradeoff between detection
accuracy and a low false alarm rate. The false alarm
problem is fundamental to anomaly detection because
unusual events are not necessarily hostile.
 Many of the anomalies detected by LERAD are not due
to hostile code, but rather to legal but unusual protocol
implementations. Unfortunately, this makes it difficult to
understand the nature of the attack from the anomaly
alone, or even to decide if an alarm should be dismissed as
false. We could identify no consistent differences between
true and false alarms.
 One may argue that many attacks could be trivially
modified to elude detection. Nevertheless, idiosyncratic
anomalies are common in attacks in both of the data sets
we used. We argue that writing an attack to elude
detection is difficult because an attacker would not be able
to test it in the target environment prior to launching it.
 Future work includes a single-pass version of LERAD,
research into better tokenization techniques in order to
parse binary protocols such as DNS, and testing on
additional data sets.

Acknowledgments

 This work is partially funded by DARPA (F30602-00-
1-0603).

References

[1] R. Agrawal & R. Srikant, "Fast Algorithms for Mining
Association Rules", Proc. 20th Intl. Conf. Very Large
Data Bases, 1994.

[2] D. Barbara, J. Couto, S. Jajodia, L. Popyack, & N. Wu,
"ADAM: Detecting Intrusions by Data Mining", Proc.
IEEE Workshop on Information Assurance and Security,
2001, pp. 11-16.

[3] J. Hoagland, SPADE, Silicon Defense,
http://www.silicondefense.com/software/spice/, 2000.

[4] W. E. Leland, M. S. Taqqu, W. Willinger, & D. W.
Wilson, "On the Self-Similar Nature of Ethernet Traffic",
Proc. ACM SIGComm, 1993.

[5] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, & K.
Das (2000), "The 1999 DARPA Off-Line Intrusion
Detection Evaluation", Computer Networks 34(4), 2000,
pp. 579-595.

[6] M. Mahoney. Source code for PHAD, ALAD,
LERAD, NETAD, SAD, EVAL3, EVAL4, EVAL and
AFIL.PL is available at http://cs.fit.edu/~mmahoney/dist/

[7] M. Mahoney & P. K. Chan, " Learning Rules for
Anomaly Detection of Hostile Network Traffic", Florida
Tech. technical report CS-2003-16, 2003.

[8] V. Paxson, "Bro: A System for Detecting Network
Intruders in Real-Time", Proc. 7'th USENIX Security
Symposium, 1998.

[9] V. Paxson, S. Floyd, "The Failure of Poisson
Modeling", IEEE/ACM Transactions on Networking (3) ,
1995, pp. 226-244.

[10] M. Roesch, "Snort - Lightweight Intrusion Detection
for Networks", Proc. USENIX Lisa, 1999.

[11] A. Valdes & K. Skinner, "Adaptive, Model-based
Monitoring for Cyber Attack Detection", Proc. RAID,
2000, pp. 80-92.

