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Abstract

We describe an experimental packet header anomaly detector (PHAD) that learns the normal range of values for 33
fields of the Ethernet, IP, TCP, UDP, and ICMP protocols.  On the 1999 DARPA off-line intrusion detection
evaluation data set (Lippmann et al. 2000), PHAD detects 72 of 201 instances (29 of 59 types) of attacks, including
all but 3 types that exploit the protocols examined, at a rate of 10 false alarms per day after training on 7 days of
attack-free internal network traffic.  In contrast to most other network intrusion detectors and firewalls, only 8 attacks
(6 types) are detected based on anomalous IP addresses, and none by their port numbers.  A number of variations of
PHAD were studied, and the best results were obtained  by examining packets and fields in isolation, and by using
simple nonstationary models that estimate probabilities based on the time since the last event rather than the average
rate of events.

1.  Introduction

Most network intrusion detection systems (IDS) that use anomaly detection look for anomalous or
unusual port number and IP addresses, where "unusual" means any value not observed in training on
normal (presumably nonhostile) traffic.  They use the firewall paradigm; a packet addressed to a
nonexistent host or service must be hostile, so we reject it.  The problem with the firewall model is that
attacks addressed to legitimate services will still get through, even though the packets may differ from
normal traffic in ways that we could detect.

Sasha and Beetle (2000) argue for a strict anomaly model to detect attacks on the TCP/IP stack.  Attacks
such as queso, teardrop, and  land (Kendall 1999) exploit vulnerabilities in stacks that do not know how
to handle unusual data.  Queso is a fingerprinting probe that determines the operating system using
characteristic responses to unusual packets, such as packets with the TCP reserved flags set.  Teardrop
crashes stacks that cannot cope with overlapping IP fragments.  Land crashes stacks that cannot cope
with a spoofed IP source address equal to the destination.  Attacks are necessarily different from normal
traffic because they exploit bugs, and bugs are most likely to be found in the parts of the software that
were tested the least during normal use.

Horizon (1998) and Ptacek and Newsham (1998) describe techniques for attacking or evading an
application layer IDS that would produce anomalies at the layers below.  Techniques include the
deliberate use of bad checksums, unusual TCP flags or IP options, invalid sequence numbers, spoofed
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addresses, duplicate TCP packets with differing payloads, packets with short TTLs that expire between
the target and IDS, and so on.

A common theme of attacks is that they exploit software bugs, either in the target or in the IDS.  Bugs are
inevitable in all software, so we should not be surprised to find them in attacking software as well.  For
example, in the DARPA intrusion detection data set (Lippmann et al. 2000), we found that smurf and
udpstorm do not compute correct ICMP and UDP checksums.  Smurf is a distributed ICMP echo reply
flood, initiated by sending an echo request (ping) to a broadcast address with the spoofed source IP
address of the target.  UDPstorm sets up a flood between the echo and chargen servers on two victims by
sending a request to one with the spoofed source address of the other.

A fourth source of anomalies might be the response from the victim of a successful attack.  Forrest et al.
(1996) has shown that victimized programs make unusual sequences of system calls, so we might expect
them to produce unusual output as well.  In any case, there are a wide variety of anomalies across many
different fields of various network protocols, so an IDS ought to check them all.

The rest of the paper is organized as follows.  In Section 2, we discuss related work in anomaly detection.
In Section 3, we describe a packet header anomaly detector (PHAD) that looks at all fields except the
application payload.  In Section 4, we train PHAD on attack-free traffic from the DARPA data set and
test it with 201 simulated attacks.  In Section 5, we simulate PHAD in an on-line environment where the
training data is not guaranteed to be attack-free.  In Section 6 we compare various PHAD models.  In
Section 7 we compare PHAD with the intrusion detection systems that were submitted to the DARPA
evaluation in 1999.  We summarize the results in section 8.

2.  Related Work

Network intrusion detection systems like snort (2001) or Bro (Paxson, 1998) typically use signature
detection, matching patterns in network traffic to the patterns of known attacks.  This works well, but has
the obvious disadvantage of being vulnerable to novel attacks.  An alternative approach is anomaly
detection, which models normal traffic and signals any deviation from this model as suspicious.  The idea
is based on work by Forrest et al. (1996), who found that most UNIX processes make (mostly) highly
predictable sequences of system calls in normal use.  When a server or suid root program is compromised
(by a buffer overflow, for example), it executes code supplied by the attacker, and deviates from its
normal calling sequence.

It is not possible to observe every possible legitimate pattern in training, so an anomaly detector requires
some type of machine learning algorithm in order to generalize from the training set.  Forrest uses an n-
gram model, allowing any sequence as long as all subsequences of length n (about 3 to 6) have been
previously observed.   Sekar et al. (2000) uses a state machine model, where a state is defined as the
value of the program counter when the system call is made, and allows any sequence as long as all of the
state transitions have been observed in training.  Ghosh et al. (1999) use a neural network trained to
accept observed n-grams and reject randomly generated training sequences.

Network anomaly detectors look for unusual traffic rather than unusual system calls.  ADAM (Audit
Data and Mining) (Barbará, Wu, and Jajodia, 2001) is an anomaly detector trained on both attack-free
traffic and traffic with labeled attacks.  It monitors port numbers, IP addresses and subnets, and TCP
state.  The system learns rules such as "if the first 3 bytes of the source IP address is X, then the
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destination port is Y with probability p".  It also aggregates packets over a time window.  ADAM uses a
naive Bayes classifier, which means that the probability that a packet belongs to some class (normal,
known attack, or unknown) depends on the a-priori probability of the class, and the combined
probabilities of a large collection of rules under the assumption that they are independent.  ADAM has
separate training modes and detection modes.

NIDES (Anderson et. al. 1995), like ADAM, monitors ports and addresses.  Instead of using explicit
training data, it builds a model of long term behavior over a period of hours or days, which is assumed to
contain few or no attacks.  If short term behavior (seconds, or a single packets) differs significantly, then
an alarm is raised.  NIDES does not model known attacks; instead it is used as a component of
EMERALD (Neumann and Porras, 1998), which includes host and network based signature detection for
known attacks.

Spade is a snort (2001) plug-in that detects anomalies in network traffic.  Like NIDES and ADAM, it is
based on port numbers and IP addresses.  It uses several user selectable statistical models, including a
Bayes classifier, and no explicit training period.  It is supplemented by snort rules that use signature
detection for known attacks.  Snort rules are more powerful, in that they can test any part of the packet
including string matching in the application payload.  To allow examination of the application layer,
snort includes plug-ins that reassemble IP fragments and TCP streams.

3.  Packet Header Anomaly Detection (PHAD)

We developed an anomaly detection algorithm (PHAD) that learns the normal ranges of values for each
packet header field at the data link (Ethernet), network (IP), and transport/control layers (TCP, UDP,
ICMP).  PHAD does not currently examine application layer protocols like DNS, HTTP or SMTP, so it
would not detect attacks on servers, although it might detect attempts to hide them from an application
layer monitor like snort by manipulating the TCP/IP protocols.

An important shortcoming of all anomaly detection systems is that they cannot discern intent; they can
only detect when an event is unusual, which may or may not indicate an attack.  Thus, a system should
have a means of ranking alarms by how unusual or unexpected they were, with the assumption that the
rarer the event, the more likely it is to be hostile.  If this assumption holds, the user can adjust the
threshold to trade off between a high detection rate or a low false alarm rate.  PHAD is based on the
assumption that events that occur with probability p should receive a score of 1/p.

PHAD uses the rate of anomalies during training to estimate the probability of an anomaly while in
detection mode.  If a packet field is observed n times with r distinct values, there must have been r
"anomalies" during the training period.  If this rate continues, the probability that the next observation
will be anomalous is approximated by r/n.  This method is probably an overestimate, since most
anomalies probably occur early during training, but it is easy to compute, and it is consistent with the
PPMC method of estimating the probability of novel events used by data compression programs (Bell,
Witten, and Cleary, 1989).

To consider the dynamic behavior of real-time traffic, PHAD uses a nonstationary model while in
detection mode.  In this model, if an event last occurred t seconds ago, then the probability that it will
occur in the next one second is approximated by 1/t.  Often, when an event occurs for the first time, it is
because of some change of state in the network, for example, installing new software or starting a process
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that produces a particular type of traffic.  Thus, we assume that events tend to occur in bursts.  During
training, the first anomalous event of a burst is added to the model, so only one anomaly is counted.  This
does not happen in detection mode, so we discount the subsequent events by the factor t, the time since
the previous anomaly in the current field.  Thus each packet header field containing an anomalous value
is assigned a score inversely proportional to the probability,

scorefield = tn/r

Finally, we add up the scores to score the packet.  Since each score is an inverse probability, we could
assume that the fields are independent and multiply them to get the inverse probability of the packet.  But
they are not independent.  Instead, we use a crude extension of the stationary model where we treat the
fields as occurring sequentially.  If all the tn/r are equal, then the probability of observing k consecutive
anomalies in a nonstationary model is (r/tn)(1/2)(2/3)(3/4)...((k-1)/k) = (1/k)r/tn.  This is consistent with
the score ktn/r that we would obtain by summation.  Thus, we assign a packet score of

scorepacket = Σi ∈ anomalous fields tini/ri

where anomalous fields are the fields with values not found in the training model.  In PHAD, the packet
header fields range from 1 to 4 bytes, allowing 28 to 232 possible values, depending on the field.  It is not
practical to store a set of 232 values for two reasons.  First, the memory cost is prohibitive, and second,
we want to allow generalization to reasonable values not observed in the limited training data.  The
approach we have used is to store a list of ranges or clusters, up to some limit C = 32.  If C is exceeded
during training, then we find the two closest ranges and merge them.  For instance, if we have the set {1,
3-5, 8}, then merging the two closest clusters yields {1-5, 8}.  There are other possibilities, which we
discuss in section 5, but clustering is appropriate for fields representing continuous values, and this
method (PHAD-C32) gives the best results on the test data that we used.

PHAD examines 33 packet header fields, mostly as defined in the protocol specifications.  Fields smaller
than 8 bits (such as the TCP flags) are grouped into a single byte field.  Fields larger than 4 bytes (such
as the 6 byte Ethernet addresses) are split in half.  The philosophy behind PHAD is to build as little
protocol-specific knowledge as possible into the algorithm, but we felt it was necessary to compute the
checksum fields (IP, TCP, UDP, ICMP), because it would be unreasonable for a machine learning
algorithm to figure out how to do this on its own.  Thus, we replace the checksum fields with their
computed values (normally FFFF hex) prior to processing.

4.  Experimental Results on the 1999 DARPA IDS Evaluation Data Set

We evaluated PHAD on the 1999 DARPA off-line IDS evaluation data set (Lippmann et al. 2000).  The
set consists of network traffic (tcpdump files) collected at two points, BSM logs, audit logs, and file
system dumps from a simulated local network of an imaginary air force base over a 5 week period.  The
simulated system consists of four real "victim" machines running SunOS, Solaris, Linux, and Windows
NT, a Cisco router, and a simulation of a local network with hundreds of other hosts and thousands of
users and an Internet connection without a firewall.  We trained PHAD on 7 days of attack free network
traffic (week 3) collected from a sniffer between the router and victim machines (inside.tcpdump), and
tested it on 9 days of traffic from the same point (weeks 4 and 5, except week 4 day 2, which is missing),
during which time there were 201 attacks (183 in the available data).  The attacks were mostly published
exploits from rootshell.com and the bugtraq mailing list, and are described by (Kendall, 1999), with a



5

few developed in-house.  The test set includes a list of all attacks, labeled with the victim IP address,
time, type, and a brief description.  Table 4.1 shows the PHAD-C32 model after training.

The model lists all values observed in training, clustered if necessary.  The values r/n show the number
of anomalies that occurred in training (resulting in an addition to the list) out of the total number of
packets in which the field is present.  It can be observed that port numbers and IP addresses are not
among the fields with a small value of r/n, and so should not generate large anomaly scores.

Field name      r/n           Values
Ether Size      508/12814738  42 60-1181 1182...
Ether Dest Hi   9/12814738    x0000C0 x00105A x00107B...
Ether Dest Lo   12/12814738   x000009 x09B949 x13E981..
Ether Src Hi    6/12814738    x0000C0 x00105A x00107B...
Ether Src Lo    9/12814738    x09B949 x13E981 x17795A...
Ether Protocol  4/12814738    x0136 x0800 x0806 x9000
IP Header Len   1/12715589    x45
IP TOS          4/12715589    x00 x08 x10 xC0
IP Length       527/12715589  38-1500
IP Frag ID      4117/12715589 0-65461 65462 65463...
IP Frag Ptr     2/12715589    x0000 x4000
IP TTL          10/12715589   2 32 60 62-64 127-128 254-255
IP Protocol     3/12715589    1 6 17
IP Checksum     1/12715589    xFFFF
IP Src          293/12715589  12.2.169.104-12.20.180.101...
IP Dest         287/12715589  0.67.97.110 12.2.169.104-12.20.180.101...
TCP Src Port    3546/10617293 20-135 139 515...
TCP Dest Port   3545/10617293 20-135 139 515...
TCP Seq         5455/10617293 0-395954185 395969583-396150583...
TCP Ack         4235/10617293 0-395954185 395969584-396150584...
TCP Header Len  2/10617293    x50 x60
TCP Flg UAPRSF  9/10617293    x02 x04 x10...
TCP Window Sz   1016/10617293 0-5374 5406-10028 10069-10101...
TCP Checksum    1/10617293    xFFFF
TCP URG Ptr     2/10617293    0 1
TCP Option      2/611126      x02040218 x020405B4
UCP Src Port    6052/2091127  53 123 137-138...
UDP Dest Port   6050/2091127  53 123 137-138...
UDP Len         128/2091127   25 27 29...
UDP Checksum    2/2091127     x0000 xFFFF
ICMP Type       3/7169        0 3 8
ICMP Code       3/7169        0 1 3
ICMP Checksum   1/7169        xFFFF

Table 4.1. The PHAD-C32 model after training on week 3.

4.1.  Top 20 alarms generated by PHAD-C32

The top 20 scoring alarms are shown in Table 4.2.  Eight of these correctly identify an attack according
to DARPA criteria, which requires the destination IP address of a packet involved in the attack (either the
victim or a response to the attacker), and the time of the attack within 60 seconds. Another three alarms
detect arppoison from anomalous ARP packets, but since these do not have an IP address, they do not
meet the criteria for detection.  The other 9 alarms are false positives (FP).  The most anomalous field
column shows which field contributes the most to the anomaly score, the value of that field, and the
percentage contribution to the total score. The score is displayed on a logarithmic scale (using 0.1 log10

(Σ tn/r) - 0.6) to fit in the range 0 to 1. The machines under attack are on the net 172.16.112-118.xxx.
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The router is 192.168.1.1, but since the sniffer is between the router and the local network, only inside
attacks on it can be detected.

Date  Time     Dest. IP Addr.  Score   Det Attack        Most anomalous field
04/06 08:59:16 172.016.112.194 0.748198 FP               TCP Checksum=x6F4A 67%
04/01 08:26:16 172.016.114.050 0.697083 TP teardrop      IP Frag Ptr=x2000 100%
04/01 11:00:01 172.016.112.100 0.689305 TP dosnuke       TCP URG Ptr=49 100%
03/31 08:00:28 192.168.001.030 0.664309 FP               IP TOS=x20 100%
03/31 11:35:13 000.000.000.000 0.664225 FP (arppoison)   Ether Src Hi=xC66973 68%
03/31 11:35:18 172.016.114.050 0.653956 FP               Ether Dest Hi=xE78D76 57%
04/08 08:01:20 172.016.113.050 0.644237 FP               IP Frag Ptr=x2000 35%
04/05 08:39:50 172.016.112.050 0.639134 TP pod           IP Frag Ptr=x2000 89%
04/05 20:00:27 172.016.113.050 0.628749 TP udpstorm      UDP Checksum=x90EF 100%
04/09 08:01:26 172.016.113.050 0.626455 FP               TCP Checksum=x77F7 48%
04/05 11:45:27 172.016.112.100 0.626234 TP dosnuke       TCP URG Ptr=49 100%
03/29 11:15:08 192.168.001.001 0.615842 TP portsweep     TCP Flg UAPRSF=x01 99%
03/29 09:15:01 172.016.113.050 0.612167 TP portsweep     IP TTL=44 100%
04/08 23:10:00 000.000.000.000 0.601878 FP (arppoison)   Ether Src Hi=xC66973 60%
04/06 11:57:55 206.048.044.050 0.601356 FP               IP TOS=xC8 100%
04/05 11:17:50 000.000.000.000 0.597209 FP (arppoison)   Ether Src Hi=xC66973 60%
04/07 08:39:42 172.016.114.050 0.592460 FP               TCP Checksum=x148C 94%
04/08 23:11:04 172.016.112.010 0.586338 TP mscan         Ether Dest Hi=x29CDBA 57%
04/08 08:01:21 172.016.113.050 0.583140 FP               TCP URG Ptr=34757 98%
04/05 11:18:45 172.016.118.020 0.581669 FP               Ether Dest Hi=xE78D76 57%

Table 4.2.  Top 20 scoring alarms on weeks 4 (3/29-4/2) and 5 (4/5-4/9).

4.2.  Attacks detected

By DARPA criteria, PHAD-C32 detects 67 of the 201 attack instances at a rate of 10 false alarms per day
(100 total).  These are listed in the Table 4.3 (plus arppoison, which does not identify the IP address).
The det column shows the number of detections out of the total number of instances of the attack
described.  DARPA classifies attacks as probes, denial of service (DOS), remote to local (R2L), user to
root (U2R), and other violations of a security policy (Data).  The how detected column describes the
anomaly that led to detection, based on the field or fields that contribute the most to the anomaly score.
The numbers in parentheses indicate how many instances are detected with each field when there is a
difference in the way that the instances are detected.  For example, all of the dosnuke attacks all generate
two alarms each (URG pointer and TCP flags), but the ipsweep attacks generate only one alarm each.
Two ipsweep attacks are detected by an anomalous value of 253 in the TTL field of the attacking packet,
two by an anomalous packet size in the response from the victim, and three are not detected.

Attack Description Det How detected
apache2 DOS, HTTP overflow in apache web server 2/3 outgoing TCP window, TCP

options, incoming TTL=253
(arppoison) DOS, spoofed ARP with bad IP/Ethernet map 0/5 Ethernet source address
casesen U2R, NT bug exploit 1/3 TTL=253
crashiis DOS, HTTP bug in IIS web server 1/8 TTL=253
dosnuke DOS, URG data to netbios port crashes NT 4/4 URG ptr, TCP flags
guessftp R2L, FTP password guessing 1/2 TTL=253
guesstelnet R2L, telnet password guessing 2/2 TTL=253
insidesniffer Probe, detected by reverse DNS lookups 1/2 Bad TCP checksum
ipsweep Probe, tests for valid IP addresses 4/7 outgoing packet size (2),

incoming TTL=253 (2)
mailbomb DOS, mail server flood 2/4 TTL=253
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mscan Probe, tests many R2L vulnerabilities 1/1 Ethernet dest. addr.
named R2L, DNS buffer overflow 1/3 TTL=253
neptune DOS, SYN flood 1/4 TTL=253
netbus R2L, backdoor 3/3 TTL=126
netcat_breakin R2L, backdoor install 1/2 TTL=126
ntinfoscan Probe, test for NT vulnerabilities 1/3 TTL=126
pod DOS, oversize IP packet (ping of death) 4/4 Fragmented IP
portsweep Probe, test for listening ports 13/15 FIN w/o ACK (3), IP src/dest

(1), packet size (1),
TTL=36...52 (8)

ppmacro R2L, Powerpoint macro trojan 1/3 TTL=253
processtable DOS, server request flood 1/4 IP source address
queso Probe, stack fingerprint for operating system 3/4 FIN without ACK
satan Probe, test for many R2L vulnerabilities 2/2 packet size (1), TTL (1)
sechole U2R, NT bug exploit 1/3 TTL=253
sendmail R2L, SMTP buffer overflow 1/2 outgoing IP dest addr, incoming

IP src addr
smurf DOS, distributed ICMP echo reply flood 5/5 ICMP checksum (2), IP src

addr (1), TTL=253 (2)
teardrop DOS, overlapping IP fragments 3/3 fragmented IP
udpstorm DOS, echo/chargen loop using spoofed request 2/2 UDP checksum
warez Data, unauthorized files on FTP server 1/4 outgoing IP dest. address
xlock R2L, fake screensaver captures password 1/2 IP source address

Table 4.3.  Attacks detected by PHAD.

4.3.  Contributions of fields to detection

Table 4.4 lists the attacks detected and false alarms generated by each field.  TP is the number of
detections, dup is the number of duplicate detections of an attack already detected by a higher  scoring
alarm, and FP is the number of false alarms generated by the field.  Outgoing indicates that the attack
was detected on a packet responding to the attack.

Field             TP Dup FP  Detected attacks
Ethernet Size      1  2  1   ipsweep (outgoing)
Ethernet Dest Hi   1  0  6   mscan
Ethernet Src Hi    0  0  7   (arppoison)
IP TOS             0  0  7
IP Packet Length   2  2  1   teardrop, portsweep, satan
IP TTL            33  8 20   netcat_breakin, netbus, ntinfoscan, dosnuke, queso
                             casesen, satan, apache2, mscan, mailbomb, ipsweep,
                             ppmacro, guesstelnet, neptune, sechole, crashiis,
                             named, smurf, portsweep
IP Frag Ptr        7  0  2   teardrop, pod
IP Source Address  4  1  0   smurf, xlock, portsweep, processtable, sendmail
IP Dest Address    2  1  7   portsweep, warez (outgoing), sendmail (outgoing)
TCP Acknowledgment 0  0  1
TCP Flags UAPRSF   7  3  2   queso, portsweep, dosnuke
TCP Window Size    0  1  2   apache2 (outgoing)
TCP Checksum       1  0 29   insidesniffer
TCP URG Ptr        3  0  5   dosnuke
TCP Options        2  0  4   apache2 (outgoing)
UDP Length         0  0  5
UDP Checksum       2  0  0   udpstorm
ICMP Checksum      2  0  0   smurf
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Table 4.4.  Packet header fields that generate alarms in PHAD.

Fifteen of the 33 fields did not generate any anomalies.  These are the lower 3 bytes of the Ethernet
source and destination addresses, IP header length, IP fragment ID, IP protocol, IP checksum, TCP source
and destination ports, TCP sequence number, TCP header length, UDP source and destination ports and
length, and the ICMP type and code fields.  Of the 67 attacks, only 8 were detectable by their IP
addresses, and none by their port numbers.

The 30 TCP checksum errors are mostly due to fragmented IP packets that fragment the TCP header.
This is one of the techniques described by Horizon (1998) to thwart an IDS.  There is no legitimate
reason for using such small fragments, but no attack is listed by DARPA.  We believe that PHAD is
justified in reporting this anomaly.  The error (accounting for 36% of the total score in most cases)
occurs because PHAD makes no attempt to reassemble IP fragments and mistakenly computes a TCP
checksum on an incomplete packet.  The detection of insidesniffer is a coincidence.

The TTL field generates 33 detections of 19 types of attacks, and 20 false alarms.  TTL is an 8-bit
counter (0-255) which is decremented with each router hop until it reaches zero, in order to prevent
infinite routing loops.   Most of the detections and all of the false alarms due to TTL result from the
anomalous values 126 or 253, which are absent in the training data.  We believe that this is not realistic.
The 12 million packets in the DARPA training set contain only 8 distinct TTL values (2, 32, 60, 62-64,
127-128, 254-255), but in real life, we observed 80 distinct TTL values in one million packets collected
on a department web server over a 9 hour period.  It is possible that an attacker might manipulate the
TTL field to thwart an IDS using methods described by Horizon (1998) or Ptacek and Newsham (1998),
but these techniques involve using small values in order to expire packets between the target and the IDS.
A more likely explanation is that the attacks were launched from a real machine that was 2 hops away
from the sniffer in the simulation, but all of the other machines were at most one hop away.  It is
extremely difficult to simulate Internet traffic correctly (Floyd and Paxson, 2001), so such artifacts are to
be expected.  When we run PHAD-C32 without the TTL field, it detects 48, instead of 67, attack
instances.

4.4.  Attacks not detected

Table 4.5 lists all attacks not detected by PHAD.  All of the undetected attacks except land, resetscan,
and syslogd either exploit bugs at the application layer, which PHAD does not monitor, or are U2R or
data attacks where the attacker already has a shell.  In the latter case, the attacks are difficult to detect
because they require interpretation of user commands, and could be hidden by running them from a local
script or through an encrypted SSH session.  A better way to detect such attacks might be to use anomaly
detection at the system call level, for example, as described by Forrest et al. (1996).

Attack Description Det
anypw U2R, NT backdoor 0/1
back DOS, HTTP overflow 0/4
dict R2L, password guessing using dictionary 0/1
eject U2R, Solaris buffer overflow in suid root prog. 0/2
fdformat U2R, Solaris buffer overflow in suid root prog. 0/3
ffbconfig U2R, Solaris buffer overflow in suid root prog. 0/2
framespoofer R2L, hostile web page hidden in invisible frame 0/1
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guesspop R2L, password guessing to POP3 mail server 0/1
httptunnel R2L, backdoor (uses HTTP to evade firewalls) 0/3
imap R2L (root), buffer overflow to IMAP server 0/2
land DOS, IP with source = destination crashes SunOS 0/2
loadmodule U2R, SunOS, set IFS to call trojan suid program 0/3
ls Probe, download DNS map 0/3
ncftp R2L, FTP exploit 0/5
netcat R2L, backdoor 0/2
ntfsdos Data, copy NT disk at console 0/3
perl U2R, Linux exploit 0/4
phf R2L, Apache default CGI exploit 0/4
ps U2R, Solaris exploit using race conditions 0/4
resetscan Probe, test for listening ports 0/1
secret Data, unauthorized copying 0/5
selfping DOS, Solaris, ping localhost from shell crashes 0/3
snmpget R2L, Cisco router password guessing 0/4
sqlattack U2R, escape from SQL database shell 0/3
sshtrojan U2R, fake SSH login screen captures password 0/3
syslogd DOS, Solaris, crash audit logger w/ spoofed IP 0/4
tcpreset DOS, sniff connections, spoof RST to close 0/3
xsnoop R2L, intercept keystrokes on open X servers 0/3
xterm U2R, Linux buffer overflow in suid root prog. 0/3
yaga U2R, NT 0/4

Table 4.5.  Attacks not detected by PHAD.

Land crashes SunOS by sending a spoofed IP packet with identical source and destination addresses, but
PHAD misses it because it only looks at one field at a time.  Resetscan probes for ports by sending a RST
packet on an unopened TCP port, but PHAD misses it because it doesn't track TCP connection states, and
doesn't know that the connection is not open.  Syslogd crashes the syslogd server on Solaris by sending a
packet with a spoofed source IP that cannot be resolved to a hostname.  If the threshold is increased from
10 false alarms per day to 30, PHAD does indeed detect all four instances of this attack, two by their
source IP address, and two by an anomalous IP packet length (of 32).

4.5.  Run-time overhead in time and space

Our implementation of PHAD-C32 processes 2.9 gigabytes of training data and 4.0 gigabytes of test data
in 364 seconds (310 user + 54 system), or 95,900 packets per second on a Sparc Ultra 60 with a 450 MHz
64-bit processor, 512 MB memory and 4 MB cache.  The overhead is 23 seconds of CPU time per
simulated day, or 0.026% at the simulation rate.  The wall time in our test was 465 seconds (78% usage),
consisting of 165 seconds of training (77,665 packets per second) and 300 seconds of testing (73,560
packets per second).  The PHAD model uses negligible memory: 34 fields times 32 pairs of 4-byte
integers to represent the bounds of each cluster, or 8 kilobytes total.

5.  Attacks in the Training Data

In a practical system, known attack-free training data will not always be available as it is in the DARPA
set.  If the training data contains attacks, then the anomalies that it generates will be added to the model
of "normal" traffic, so that future attacks of the same type will be missed.  We could use a shorter
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training period to reduce the probability of training on an attack, but this could also reduce the set of
allowed values, resulting in more false alarms.  We performed experiments to answer two questions.
First, how much is performance degraded by using a shorter training period?  Second, how much is
performance degraded due to the masking effect, where training on one attack type masks the detection
of other attacks.

To answer the first question, we reduced the training period from 7 days (week 3, days 1-7), to 1 or 5
days.  To answer the second question, we ran PHAD in on-line mode.  For each test day, we used the
previous day's traffic for training.  On all but the first test day, the training data therefore contained
attacks.  The results are shown in Table 5.1 (for 10 FP/day).

Training set Detections
Days 1-7 (no attacks) 67
Days 1-5 66
Day 1 55
Day 2 51
Day 3 55
Day 4 51
Day 5 53
Day 6 64
Day 7 34
Average of days 1-7 52.3
Previous day (on-line with attacks) 35

Table 5.1.  Attacks detected by PHAD using various training sets

First, we observe almost no loss in going from 7 training days to 5, but a significant 22% loss on average
in going to one day.  Second, we observe a loss of 17 detections, or 33% when we use the previous day's
data as training for the next in on-line mode, compared to using one day of attack free training data.  Out
of 201 total attacks, there are 59 types (tables 4.3 and 4.5), so each attack type occurs on average 3.4
times during the 10 day test period, or 0.34 times per day.  If we assume that each attack has a 34%
chance of having occurred on the previous day, then the observed loss (33%) suggests that there is little
or no masking effect.  It is possible that there is a masking effect, but it is compensated by using more
recent (better) training data in on-line mode than in the other 1-day tests.  But if this is so, we should
observe improved performance as we go from day 1 to day 7 of the training data, and no such trend is
apparent.

6.  Tuning PHAD

We investigated a number of ideas and performed experiments with PHAD to improve its performance
on the DARPA evaluation data set, obtaining the best result with the variation we denote PHAD-C32
described in the previous sections.   The results for the other versions are shown in Table 6.1.  We
describe the idea behind each variation briefly.

For each variation, we also applied a postprocessing step where we remove duplicate alarms (within 60
seconds of each other) that identify the same IP address.  This step almost always improves the results
because it reduces the number of false alarms (which would be counted twice) without reducing the
number of detections (which would be counted only once).  Also, in the rare case of tie scores, we rank
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them in order of the time since the previous alarm indicating the same IP address with the longest
intervals first.  For instance, if there are alarms at times 5, 6, and 8 minutes, then we rank them 5, 8, 6
(intervals of 5, 2, and 1 minute) and discard 6 because it occurs within one minute of 5.  Time-ranking
has the same effect as the factor t in the PHAD-C32 score tn/r.

For PHAD-C32, postprocessing increases the number of detections from 67 to 72, the best result we
could obtain from any system we tried.

PHAD variation Detections Postprocessed
PHAD-C, values stored in C = 32, 1000 clusters, score = tn/r 67, 64 72, 70
PHAD-H, values hashed modulo H = 1000 64 67
PHAD-B, one byte fields, all values stored (H = 256) 19 not tested
PHAD-S, stationary model, score = 1/p based on counts, H = 1000 8 27
PHAD-KL, stationary KL divergence of 60 sec. windows, H = 1000 16 16
PHAD-KL0, KL without fields where all H = 1000 values > 0 22 38
PHAD-Kt, score = time t since last anomaly in nearest of K = 16, 32, 64
clusters in 34-dimensional packet space

28, 38, 14 28, 38, 14

PHAD-Kt/r, score = t/r of nearest of K = 16, 32 clusters, containing r elements 38, 46 39, 47
PHAD-Kt/a, Score = t/a of nearest of K = 16, 32, 64 clusters expanded a times
during training

35, 53, 12 37, 53, 12

PHAD-1H, PHAD-H1000 but score = t/r (not tn/r) 58 62
PHAD-2H, H = 1000 over all pairs of fields, score = t/r 56 62
PHAD-C32-TTL, PHAD-C32 without TTL field 48 54

Table 6.1.  Number of detections for various PHAD versions.

6.1.  Increasing number of clusters

PHAD-C32 stores the observed values for each field in a list of 32 ranges or clusters.  When C is
increased to 1000, we have a more accurate representation of the training data, but lose some
generalization when the training set is small.  The models differs only when r > 32, which means that it
affects only low scoring fields.  In our experiments, the postprocessed detection rate decreased slightly
from 72 to 70 postprocessed.

6.2.  Storing hashed values

PHAD-H stores a set of H = 1000 hashes (mod H) of the observed values.  This is faster to look up (O(1)
vs. O(log C)), but loses the ability to generalize over continuous fields (such as packet size).  There is a
slight decrease in detection rate from 72 to 67.  In our implementation, we did not see a noticeable
increase in speed.

6.3.  One byte fields

A simplified version of PHAD is to parse the header into 1 byte fields and simply store the set of 256
possible values.  However, the detection rate was severely degraded from 64 to 19 (not postprocessed),
suggesting that it is worthwhile to find "meaningful" boundaries in the data.
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6.4.  Stationary models

PHAD makes no distinction between a training value that occurs once and a value that occurs millions of
times.  It is a nonstationary model: the probability of an event depends only on the time since it last
occurred.  We built a stationary model, PHAD-S, in which the probability of an event depends on its
average rate during training, and independent of recent events.  Specifically, if a value is observed r times
in n trials, then we assign a score of 1/p, where p = (r + 1)/(n + H), where there are H possible (hashed)
values.  This is the Laplace approximation of the probability p, allowing for nonzero probabilities for
novel values.  The result (8 detections) suggests that a stationary model is a poor one.  This model
generates a large number of tie scoring alarms, so postprocessing (which makes the model nonstationary)
increases the number of detections to 27.

All of the PHAD models so far rate individual packets independently, but we know that many attacks can
be recognized by a short term change of rate of some event over many packets (for example, a flooding
attack).  PHAD-KL assigns a score to a field over a set of packets in a 60 second time window based on
how much the distribution of values differs from the distribution in training.  The normal way to measure
the divergence of some probability distribution q (the 1 minute window) from a reference distribution p
(the training data) is the Kullback-Liebler divergence,  D(q || p) = Σi qi log qi/pi.  pi is measured using a
Laplacian approximation as before, but qi = ri /n where the i'th value is observed ri times out of n during
the one minute window.  We do not use Laplacian estimation for q because otherwise a window with no
packets would generate a uniform distribution and a large KL score, rather than a score of 0).  PHAD-KL
is a stationary model over the window, but the detections increase from 8 to 16 compared to considering
single packets.

A variant, PHAD-KL0, is to remove those fields which do not contribute to the other models, specifically
those fields in PHAD-H1000 where all H possible values are observed.  PHAD-KL should be able to
collect a distribution (and therefore, useful information) from these fields, so we might expect the
number of detections to drop in PHAD-KL0.  Instead, the detections increase from 16 to 22 (16 to 38
postprocessed), suggesting that these fields probably added more noise than useful data.

6.5.  Examining combinations of fields

Every version of PHAD so far looks at each field in isolation, but we know that some fields may or may
not be anomalous depending on the values of other fields.  For example, a TCP destination port of 21
(FTP) is only anomalous when the destination IP address is that of a host not running an FTP server.  We
would like a model that allows port 21 only in some range of IP addresses, and possibly restricts other
fields at the same time.  PHAD-K clusters all training packets into K clusters, each defined by a lower
and upper bound on each field, or equivalently, a 34-dimensional volume (33 fields plus time) in packet-
space, where each field is a dimension.  The clustering algorithm is to add each packet to the packet
space as a cluster of size 134 (1 by 1 by 1...) and if the number of clusters exceeds K, to combine the two
closest ones, where the distance is defined as the increase in volume that results from enclosing them
both in a new cluster.  The goal of this algorithm  is to keep the model specific by minimizing the total
cluster volume.  Missing field values (such as the UDP checksum in a TCP packet) are assumed to be 0.

There are three variants of PHAD-K, depending on how the score is computed for packets that fall
outside of all clusters.  In the PHAD-Kt variant, the score is t, where t is the time since the last anomaly
in the nearest cluster (defining distance as before).  This is a nonstationary model, and it assumes that
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consecutive anomalies are likely to be close together, and therefore closest to the same cluster.  We
tested K = 16, 32, and 64 clusters, with the best result of 38 detections at K = 32.

PHAD-Kt is based on the assumption that the expected rates of anomalies near each cluster are initially
equal.  We can do better than that, by measuring the anomaly rate during training.  We first estimate this
rate by counting the number of packets, r, in each cluster, and assigning a packet score of t/r.  This was
tested with K = 16 and 32, and detects 47 attacks with K = 32.  A better way to measure the anomaly rate
is to count the number of times a cluster was expanded (due to an anomalous training event).  A new
packet gets a count of 1.  If two clusters have counts of c1 and c2, then when merged the count is c1 + c2 +
1.  This method, PHAD-Kt/a, was tested with K = 16, 32, and 64, with a best result of 53 detections at K
= 32.

PHAD-K variants are computationally expensive (O(K) to find the closest cluster by linear search), and
no better than PHAD-C or PHAD-H in the number of detections.  PHAD-2H considers only pairs of
fields, rather than combining them all at once, storing a hash (mod H = 1000) of both fields in a set of
size H.  There are (34)(33)/2 = 560 such pairs, plus the original 34 fields.  In PHAD-H and PHAD-C, we
use a score of tn/r, where n is the number of times the field is observed.  Since we now have two fields
with possibly different n, we have to eliminate n from the score.  To test the effect of doing this, we
modified PHAD-H to PHAD-1H (with H = 1000) using the score t/r, where there are r allowed values,
and the last anomaly was t seconds ago.  The effect of removing n is to effectively assign higher scores to
the fields of seldom-used protocols such as UDP and ICMP.  This baseline detects 62 attacks
postprocessed (compared to 67 for PHAD-H).  Extending this to PHAD-2H with 560 field pairs results in
no change, 62 detections.

6.6.  PHAD without TTL

We mentioned in Section 4.3 that many of the detections (and false alarms) are due to anomalies in the
TTL field, which is probably a simulation artifact.  When we remove this field (PHAD-C32-TTL), the
number of detections drops from 72 to 54 postprocessed.

6.7.  Conclusions

To summarize, our experiments suggest that:
• Nonstationary models (C, H, 1H, 2H, K), where the probability of an event depends on the time since

it last occurred, outperform stationary models (S, KL), where the probability depends on the average
rate during training.

• There is an optimal model size (C32, Kt32, Kt/r32, Kt/a32) which performs better than models that
overfit the training data (C1000, Kt64, Kt/a64) or underfit (Kt16, KT/r16, KT/a16).

• Models that consider fields individually (C, H) outperform models that combine fields (2H, K), but
these fields should be larger than one byte (B).  (This could be an example of
overfitting/underfitting).

• Models that treat values as continuous (C) outperform discrete models (H).
• Postprocessing by removing duplicate alarms or ranking by time interval never hurts.
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7.  A Note on Results from DARPA Participants in 1999

Lippmann et al. (2000) reports that the detection rates for the best 4 of 18 systems evaluated on the
DARPA set in 1999 had detection rates of 40% to 55% on the types of attacks that they were designed to
detect (Table 7.1).  However, we caution that unlike the original test, we had access to the test data
during development and did our own unofficial evaluation of the results.  Also, the original participants
could only categorize their systems according to the type of attacks they are to detect (probe, DOS, R2L,
U2R, data), operating system (SunOS, Solaris, Linux, NT, Cisco), and type of data examined (inside or
outside traffic, BSM, audit logs, and file system dumps).  We use a finer distinction when we classify
attacks by protocol.

System Detections
Expert 1 85/169 (50%)
Expert 2 81/173 (47%)
Dmine 41/102 (40%)
Forensics 15/27 (55%)

Table 7.1.  Official detection rates (out of the total number of attacks that the system is designed to
detect) at 10 FA/day for top systems in the 1999 DARPA evaluation (Lippmann et al. 2000, Table 6).

PHAD-C32 with postprocessing unofficially detects 72 of the 201 attacks in the DARPA evaluation.  If
we consider only probe and DOS attacks, and exclude the attacks in the missing data (week 4 day 2),
then PHAD-C32 detects 59 of 99 instances, or 60%.  It detects at least one instance of 17 of 24 probe and
DOS types, and 29 of 59 types altogether.  Of the 30 types missed, only 3 (resetscan, land, and syslogd)
produce anomalies at the transport layer or below, and one of them (syslogd) is detectable at a lower
threshold.  Twelve of the 29 attack types that PHAD-C32 detects are detected solely by the TTL field,
which we suspect is a simulation artifact.  But if we remove this field, only neptune would be added to
the list of attacks that we could reasonably detect.  In contrast to the firewall model, only 8 instances (6
types) of attacks are detected by their IP addresses, and none by their port numbers.

Lippmann reports that several types of attacks were hard to detect by every system tested.  PHAD-C32
outperforms the official results on four of these: dosnuke, queso, and the stealthy (slow scan) versions of
portsweep and ipsweep.  These are summarized in Table 7.2.  PHAD is relatively immune to slow scans,
since it examines each packet in isolation rather than correlate events over an arbitrary time period.

Attack Best detection (Lippmann 2000) PHAD-C32 (unofficial)
stealthy ipsweep 0/3 1/3
stealthy portsweep 3/11 11/11
queso 0/4 3/4
dosnuke 2/4 4/4

Table 7.2.  Unofficial detection rates by PHAD-C32 for some hard to detect attacks.
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8.  Concluding Remarks

Intrusions generate anomalies because of bugs in the victim program, the attacking program, or the IDS,
or because the victim generates anomalous output after an attack.  We have seen examples of all four
types of anomalies:

1.  Strange input to poorly tested software, e.g. the corrupted packets used by teardrop, pod, dosnuke.
2.  Strange data from poorly written attacks, e.g. bad checksums in smurf and udpstorm.
3.  Strange data used to hide an attack from layers above, e.g. FIN scanning by portsweep.
4.  Strange responses from the victim, e.g. unusual TCP options generated by apache2.

We proposed an anomaly detection algorithm (PHAD) based on examining packet header fields other
than just the normal IP addresses and port numbers.  We found that these fields play only a minor role in
detecting most attacks.  PHAD detects most of the attacks in the DARPA data set that involve exploits at
the transport layer and below, including four that eluded most of the systems in the original evaluation.

We experimented with a number of models, and the best results are obtained by nonstationary models
that examine each field and each packet separately.  PHAD-C32 gets slightly better results than C1000,
probably because it avoids overfitting the training data, and better than H1000 because it is able to
generalize to reasonable values for continuous variables.  All three get similar results because they are
equivalent for small r, those fields that contribute most to the anomaly score.  They outperform stationary
models (S, KL, KL0), and slightly outperform models that consider combinations of fields (2H, Kt, Kt/r,
KT/a).  PHAD-C32 is among the simplest models tested.  It incurs low time and space overhead.

PHAD was relatively more successful in detecting four of the hard-to-detect attacks identified by
Lippmann et al. (2000).  This indicates that PHAD could cover an attack space different from the
other detectors.  Hence, a combination of the detectors could increase the overall coverage of detectable
attacks.

All of the PHAD models require no a-priori knowledge of any attacks and very little a-priori knowledge
about the protocols they model.  The models are learned from data which can have different
characteristics in diverse environments.  Moreover, new models can be learned and adapt to new traffic
characteristics in the same environment.  However, PHAD is not intended to be a standalone IDS.  It
should be component in a system that includes signature detection for known attacks, system call
monitoring for novel R2L and U2R attacks, and file system integrity checking for backdoors.

As expected, we observed some degradation in PHAD's performace when attacks are present in the
training data.  One remedy is to employ misuse signature detectors to filter out known attacks from the
data before supplying the data to PHAD for training.  Another approach is to make PHAD more noise-
tolerant (attacks, usually in small amounts, in the presumably attack-free data can be considered as
noise). Currently, PHAD does not consider the frequency of each value observed during training,
however, values of low frequency could be noise.

PHAD-C32 already detects most attacks in the protocols it examines.  We suspect that in order to yield
any significant improvements, it will be necessary to examine the application layer.  There are systems
that do this now, but they are mostly rule-based, matching strings to known attacks.  We have detected a
small number of attacks using anomaly models based on n-gram statistics in some preliminary



16

experiments, but there are great variety of application layer protocols, some far more complex than
TCP/IP, and there is much work to be done.
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