
Network Traffic Anomaly Detection Based on Packet Bytes

Matthew V. Mahoney
Florida Institute of Technology, Melbourne, Florida

mmahoney@cs.fit.edu

ABSTRACT
Hostile network traff ic is often "different" from benign traff ic

in ways that can be distinguished without knowing the nature of
the attack. We describe a two stage anomaly detection system for
identifying suspicious traff ic. First, we filter traff ic to pass only
the packets of most interest, e.g. the first few packets of incoming
server requests. Second, we model the most common protocols
(IP, TCP, telnet, FTP, SMTP, HTTP) at the packet byte level to
flag events (byte values) that have not been observed for a long
time. This simple system detects 132 of 185 attacks in the 1999
DARPA IDS evaluation data set [5] with 100 false alarms, after
training on one week of attack-free traffic.

1. INTRODUCTION
Network intrusion detection systems are classified as

signature based or anomaly based. A signature detector, such as
SNORT [12] or Bro [9] examines traff ic for known attacks using
rules written by security experts. When a new type of attack is
discovered, new rules must be written and distributed. An
anomaly detection system such as SPADE [14], ADAM [13], or
NIDES [1] models normal traff ic, usually the distribution of IP
addresses and ports. Hostile traff ic often falls outside this
distribution. Anomaly detection has the advantage that no rules
need to be written, and that it can detect novel attacks. But it has
the disadvantages that it cannot say anything about the nature of
the attack (since it is novel), and because normal traff ic may also
deviate from the model, generating false alarms. An anomaly
detector can only bring the suspicious traff ic to the attention of a
network security expert, who must then figure out what, if
anything, needs to be done.

Mahoney and Chan [6, 7, 8] identify five types of anomalies
in hostile traffic.
• User Behavior. Hostile traff ic may have a novel source

address because it comes from an unauthorized user of a
restricted (password protected) service. Also, probes such as
ipsweep and portsweep [4] may attempt to access nonexistent
hosts and services, generating anomalies in the destination
addresses and port numbers.

• Bug Exploits. Attacks often exploit errors in the target
software, for example, a buffer overflow vulnerabilit y. Such
errors are most likely to be found in the least-used features of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2003, Melbourne, Florida, USA
© 2003 ACM 1-58113-624-2/03/03...$5.00

the program, because otherwise the error is li kely to have
been discovered during normal use and fixed in a later
version. Thus, any remaining errors are invoked only with
unusual inputs (e.g. a very long argument to a seldom used
command), which are not likely to occur during normal use.

• Response Anomalies. Sometimes a target will generate
anomalous outgoing traff ic in response to a successful attack,
for example, a victimized mail server passing root shell
command responses back to an attacker. This is analogous to
Forrest's host based detection method [2], where a server
compromise can be detected because it makes unusual
sequences of system calls.

• Bugs in the attack. Attackers typically must implement
client protocols themselves, and will fail to duplicate the
target environment either out of carelessness or because it is
not necessary. For example, many text based protocols such
as FTP, SMTP and HTTP allow either uppercase or
lowercase commands. An attacker may use lowercase for
convenience, even though normal clients might always use
uppercase.

• Evasion. Attackers may deliberately manipulate network
protocols to hide an attack from an improperly coded
intrusion detection system (IDS) monitoring the application
layer [3, 11]. Such methods include IP fragmentation,
overlapping TCP segments that do not match, deliberate use
of bad checksums, short TTL values, and so on. Such events
must be rare in normal traff ic, or else the IDS would have
been written to handle them properly.

Given the variety of anomalies, it makes sense to examine as
many attributes as possible, not just the packet ports and
addresses, as many systems now do. Also, because the rates of
many types of network events vary unpredictably over a wide
range of time scales [10], we use a time-dependent model, in
which the probabilit y of an event depends on the time since it last
occurred, instead of on its average rate. The idea is that if an
attribute takes on a novel value, or at least one not seen recently,
then the data is suspicious.

The rest of this paper is organized as follows. In Section 2,
we describe related work in network anomaly detection. In
Section 3, we describe our Network Traff ic Anomaly Detector
(NETAD), which flags suspicious packets based on unusual byte
values in network packets. In Section 4, we evaluate NETAD on
the 1999 DARPA evaluation data set [5]. In Section 5, we
summarize.

2. RELATED WORK
Network intrusion detection systems such as SNORT and Bro

use hand written rules to detect signatures of known attacks, such
as a specific string in the application payload, or suspicious
behavior, such as server requests to unused ports. Anomaly
detection systems such as SPADE, ADAM, and NIDES learn a
statistical model of normal network traff ic, and flag deviations

from this model. Models are usually based on the distribution of
source and destination addresses and ports per transaction (TCP
connections, and sometimes UDP and ICMP packets). For
example, SPADE offers four probability models (estimated by
average frequency) of incoming TCP connections:
• P(destination-address, destination-port)
• P(source-address, destination-address, destination-port)
• P(source-address, source-port, destination-address,

destination-port)
• Bayes network approximation of the above.
Lower probabilities result in higher anomaly scores, since these
are presumably more likely to be hostile.

ADAM is a classifier which can be trained on both known
attacks and on (presumably) attack-free traffic. Patterns which do
not match any learned category are flagged as anomalous. ADAM
also models address subnets (prefixes) in addition to ports and
individual addresses. NIDES, like SPADE and ADAM, models
ports and addresses, flagging differences between short and long
term behavior.

SPADE, ADAM, and NIDES use frequency-based models, in
which the probability of an event is estimated by its average
frequency during training. PHAD [6], ALAD [8], and LERAD
[7] use time-based models, in which the probability of an event
depends instead on the time since it last occurred. For each
attribute, they collect a set of allowed values (anything observed
at least once in training), and flag novel values as anomalous.
Specifically, they assign a score of tn/r to a novel valued attribute,
where t is the time since the attribute was last anomalous (during
either training or testing), n is the number of training
observations, and r is the size of the set of allowed values. Note
that r/n is the average rate of anomalies in training; thus attributes
with high n/r are not likely to generate anomalies in testing and
ought to score high. The factor t makes the model time-
dependent, yielding higher scores for attributes for which there
have been no anomalies for a long time.

PHAD, ALAD, and LERAD differ in the attributes that they
monitor. PHAD (Packet Header Anomaly Detector) has 34
attributes, corresponding to the Ethernet, IP, TCP, UDP, and
ICMP packet header fields. It builds a single model of all
network traffic, incoming or outgoing. ALAD (Application Layer
Anomaly Detector) models incoming server TCP requests: source
and destination addresses and ports, opening and closing TCP
flags, and the list of commands (the first word on each line) in the
application payload. Depending on the attribute, it builds
separate models for each target host, port number (service), or
host/port combination. LERAD (LEarning Rules for Anomaly
Detection) also models TCP connections, but samples the training
data to suggest large subsets to model. For example, if it samples
two HTTP port requests to the same host, then it might suggest a
rule that all requests to this host must be HTTP, and it builds a
port model for this host.

PHAD, ALAD, and LERAD were tested on the 1999 DARPA
off-line intrusion detection evaluation data set, by training on one
week of attack free traffic (inside sniffer, week 3) and testing on
two weeks of traffic (weeks 4 and 5) containing 185 detectable
instances of 58 attacks. The DARPA data set uses variations of
exploits taken from public sources, which are used to attack
systems running SunOS, Solaris, Linux, Windows NT, and a
Cisco router on an Ethernet network with a simulated Internet
connection and background traffic. At a threshold allowing 100
false alarms, PHAD detects 54 attack instances, ALAD detects 60,

or 70 when the results were merged with PHAD, and LERAD
detects 114, or 62%.

Table 1 shows the results for the top 4 systems of the 18
(submitted by 8 organizations) that participated in the original
1999 evaluation. These systems used a variety of techniques, both
host and network based, and both signature and anomaly
detection. The number of detections is shown out of the total
number of instances that the system was designed to detect. This
counts only attacks visible in the examined data, and only those of
the types specified by the developer: probe, denial of service
(DOS), remote to local (R2L), or user to root (U2R). PHAD,
ALAD, and LERAD were evaluated later under similar criteria by
the authors, but the evaluations were not blind or independent.
The developers were able to tune their systems on the test data.

System Detections
Expert 1 85/169 (50%)
Expert 2 81/173 (47%)
Dmine 41/102 (40%)
Forensics 15/27 (55%)

Table 1. Top four percentage of attacks detected in the 1999
DARPA IDS evaluation at 100 false alarms, out of the total
number of attacks they were designed to detect [5, Table 6].

3. THE NETAD MODEL
NETAD (Network Traffic Anomaly Detector), like PHAD,

detects anomalies in network packets. However, it differs as
follows:
1. The traffic is filtered, so only the start of incoming server

requests are examined.
2. Starting with the IP header, we treat each of the first 48 bytes

as an attribute for our models--we do not parse the packet
into fields.

3. There are 9 separate models corresponding to the most
common protocols (IP, TCP, HTTP, etc.).

4. The anomaly score tn/r is modified to (among other things)
score rare, but not necessarily novel, events.

3.1. Traffic Filtering
The first stage of NETAD is to filter out uninteresting traffic.

Most attacks are initiated against a target server or operating
system, so it is usually sufficient to examine only the first few
packets of incoming server requests. This not only filters out
traffic likely to generate false alarms, but also speeds up
processing. NETAD removes the following data.
• Non IP packets (ARP, hub test, etc.).
• All outgoing traffic (which means that response anomalies

cannot be detected).
• All TCP connections starting with a SYN-ACK packet,

indicating the connection was initiated by a local client.
Normally, attacks are initiated remotely against a server.
(However, ACK scans would be missed).

• UDP to high numbered ports (>1023). Normally this is to a
client (e.g. a DNS resolver).

• TCP starting after the first 100 bytes (as determined by the
sequence number). A 4K hash table is used to store the
starting TCP SYN sequence number for each
source/destination address/port combination. There is a
small amount of packet loss due to hash collisions.

• Packets to any address/port/protocol combination (TCP,
UDP, or ICMP) if more than 16 have been received in the
last 60 seconds. Again, a 4K hash table (without collision
detection) is used to index a queue of the last 16 packet
times. This limits packet floods.

• Packets are truncated to 250 bytes (although NETAD uses
only the first 48 bytes).

3.2. NETAD Attributes
NETAD models 48 attributes, consisting of the first 48 bytes

of the packet starting with the IP header. Each byte is treated as a
nominal attribute with 256 possible values. For a TCP packet, the
attributes are usually the 20 bytes of the IP header, 20 bytes of the
TCP header, and the first 8 bytes of application payload. A TCP
SYN (request to open) packet usually contains TCP options in the
first 4 bytes where the application data would go. If the packet is
less than 48 bytes long, then the extra attributes are set to 0.

3.3. NETAD Models
NETAD separately models 9 subsets of the filtered traffic

corresponding to 9 common packet types, as follows.
• All IP packets (including TCP, UDP, and ICMP).
• All TCP packets.
• All TCP SYN packets (with no other flags set, normally the

first packet, usually containing TCP options and no payload).
• All TCP ACK packets (normally the second and subsequent

packets, which contain a payload).
• TCP ACK packets to ports 0-255.
• TCP ACK to port 21 (FTP).
• TCP ACK to port 23 (telnet).
• TCP ACK to port 25 (SMTP mail).
• TCP ACK to port 80 (HTTP).
A packet may belong to more than one subset. For instance, an
HTTP data packet is also TCP ports 0-255, TCP ACK, TCP, and
IP. For each model, an anomaly score is computed, and the sum
is assigned to the packet.

The reason for modeling ports 0-255 is for ease of
implementation. Each packet type can be distinguished from
some other by examining only one attribute (byte). For instance,
ports 0-255 can be distinguished from other TCP ACK packets by
examining only the upper byte of the destination port number.

3.4. NETAD Anomaly Score
Recall that PHAD, ALAD, and LERAD use the anomaly

score Σ tn/r (summed over the attributes) where t is the time since
the attribute was last anomalous (in training or testing), n is the
number of training instances, and r is the number of allowed
values (up to 256 for NETAD).

We make three improvements to the tn/r anomaly score. First,
we reset n (the number of training examples) back to 0 when an
anomaly occurs during training. Because the training data
contains no attacks, we know that any such anomaly must be a
false alarm. The effect is to reduce the weight of this attribute.
We call this new score tna/r, where na is the number of training
packets from the last anomaly to the end of the training period.
Note that this is different from t, which continues to change
during the test period. (Like ALAD and LERAD, NETAD uses
the packet count rather than the real time to compute t).

The second improvement is to decrease the weight of rules
when r (the number of allowed values) is near the maximum of

256. A large r suggests a nearly uniform distribution, so
anomalies are of little value. Thus, we use the anomaly score
tna(1-r/256)/r. For small r, this is approximately tna/r as before.

Third, a criticism of PHAD, ALAD, and LERAD is that they
ignore the frequency of events. If a value occurs even once in
training, its anomaly score is 0. To correct this, we add a second
model, ti/(fi + r/256), where ti is the time (packet count in the
modeled subset) since the value i (0-255) was last observed (in
either training or testing), and fi is the frequency in training, the
number of times i was observed among training packets. Thus,
the score is highest for values not seen for a long time (large ti),
and that occur rarely (small fi). The term r/256 prevents division
by 0 for novel values. It is preferred over a simple count offset
(e.g. ti/(fi + 1)) because for novel events it reduces to a value that
is large for small r.

Thus, the NETAD anomaly score for a packet is

Σ tna(1 - r/256) /r + ti/(fi + r/256) (1)

where the summation is over the 9 × 48 = 432 subset/attribute
combinations.

4. EXPERIMENTAL RESULTS
NETAD was tested and evaluated under conditions identical

to PHAD, ALAD, and LERAD. It was trained on inside week 3
of the 1999 DARPA IDS evaluation data set, containing no
attacks, and tested on weeks 4 and 5, containing 185 detectable
attacks. Although there are 201 labeled attacks, the inside traffic
is missing one day (week 4, day 2) containing 12 attacks, leaving
189. There is also one unlabeled attack (apache2) which we
found by examining the test data, and there are five external
attacks (one queso and four snmpget) against the router which are
not visible from inside the local network. This leaves 185
detectable attacks.

An attack is counted as detected if the IDS identifies both the
target address (or at least one target address if there are multiple
targets), and the time within 60 seconds of any portion of the
attack. This criteria is the same as the one used by the original
DARPA evaluation. If there is more than one alarm identifying
the same target within a 60 second period, then only the highest
scoring alarm is evaluated and the others are discarded. This
technique can be used to reduce the false alarm rate of any IDS,
because multiple detections of the same attack are counted only
once, but each false alarm would be counted separately.

Experiments with PHAD on the DARPA data set found a
simulation artifact in the TTL field of the IP header that made
attacks easy to detect, so (as with PHAD), this field was set to 0
for our evaluations.

4.1. Effects of Filtering the Traffic
Filtering the traffic as described in Section 3.1 reduces the

DARPA training data (inside week 3) from 2.9 GB to 37 MB and
the test data (inside weeks 4 and 5) from 6.0 GB to 72 MB. The
total number of packets is reduced from 34.9 million to 1.1
million. On the reduced data, PHAD detects 52 attacks instead of
54, but runs about 100 times faster (7 seconds on a 750 MHz PC).

Table 2 shows the number of attack instances detected by
NETAD for various models from Section 3.3 as the threshold is
varied to allow 20, 50, 100, 500, or 5000 false alarms. For each
model, the number of packets (training plus test) is shown, and
the run time after filtering. Filtering is I/O bound, so this step

dominates the total run time and is similar to the run time on
unfiltered data, 835 seconds. Run times (in seconds) are for our
implementation (a ~300 line C++ program) running on a 750
MHz Duron under Windows Me. (The filtering program is
another ~250 lines of C++).

The first four rows show the number of attacks detected when
Equation 1 is evaluated on the entire set of packets or just one of
the nine subsets described in Section 3.3. As the set becomes
increasingly restricted, the number of false alarms drops,
increasing the number of detections at a fixed false alarm rate.
The last line shows the results for NETAD when the scores for all
nine subsets are added. At 100 false alarms, NETAD detects 132
attacks.

Model Packets Sec. 20 50 100 500 5K
unfiltered 34909810 835 4 14 23 42 71
IP 1101653 13 21 34 38 98 137
TCP 606923 9 38 51 64 96 121
TCPSYN 154057 7 74 91 97 109 113
9 models 1101653 20 66 97 132 148 152

Table 2. Packets, run time, and number of attacks detected
(out of 185) as the threshold is varied to produce false alarm

rates of 20, 50, 100, 500, and 5000 for various models.

4.2. Effects of the Scoring Function
Table 3 shows the effects of each of the changes to the

anomaly score, progressing from tn/r to Equation 1. It shows that
modeling either novel events (tn/r) and low frequency events (ti/(fi

+ 1)) are effective by themselves, and that each of the
improvements described in Section 3.4 improves the score.
Although the low frequency model is more effective by itself at
20-50 false alarms on the DARPA data, combining both models is
more effective at 100-500 false alarms.

Scoring Function 20 50 100 500 5000
tn/r 56 78 104 141 157
tna/r 56 89 118 148 152
tna(1 - r/256)/r 60 92 120 149 152
ti/(fi + 1) 33 52 81 130 158
ti/(fi + r/256) 78 115 127 142 156
NETAD: tna/r+ti/(fi+r/256) 66 97 132 148 152

Table 3. Number of attacks detected at 20 to 5000 false alarms
using various anomaly scoring functions.

4.3. Effects of Attacks in Training
In a real setting, one would not have explicit training and test

data available. Instead, one just has network traffic, which could
contain unknown attacks at any time. One approach to this
problem is to assume that the rate of attacks is low (relative to the
volume of normal traffic) and to leave NETAD in training mode
at all times. (Equation 1 is applicable in either mode).
Unfortunately, if we fail to identify anomalous data as hostile,
then those anomalies will be added to the model and future
instances of the same or similar attacks might be missed.

Table 4 shows the effects of leaving NETAD in training mode
during the attack period (weeks 4-5). The results are not as bad as
we might expect. If the 58 types of attacks in the DARPA data set
had identical signatures, then we should not expect to detect more
than one instance of each. However, it seems there are enough

differences between instances that we can detect 111 instances (at
100 false alarms) when NETAD is left in training mode for all
three weeks, and 70 instances for the more realistic case where
attacks might begin immediately after the start of training.

Week 3 Weeks 4-5 20 50 100 500 5000
Train Test 66 97 132 148 152
Train Train 47 80 111 120 140
Not used Train 27 53 70 116 152

Table 4. Number of attacks detected at 20 to 5000 false alarms
when NETAD is left in training mode.

4.4. Analysis of Detected Attacks
Table 5 lists the number of detections (at 100 false alarms) for

each category of attack. Each value is shown as a fraction of all
detectable attacks. NETAD, like most network intrusion detection
systems, performs poorly on U2R attacks, where an attacker with
shell access gains access to another user (usually root or admin).
Detecting such attacks requires the IDS to interpret user
commands, which might be entered locally or hidden by using a
secure shell. NETAD detects most of these attacks by anomalous
source addresses when the attacker logs in, or uploads the exploit
code to an FTP server normally used only for downloads. A data
attack is where an authorized user copies or transmits secret data
in violation of a security policy.

The category poorly detected includes the 74 (68 detectable)
instances of attack types for which none of the original 18
evaluated systems in 1999 were able to detect more than half of
the instances. NETAD detects these at the same rate as other
attacks, indicating that there is not a lot of overlap between the
attacks detected by NETAD and by other techniques (signature,
host based, etc.). This suggests that integrating NETAD with
existing systems might improve the overall detection rate.

Attack Category Detected at 100 False Alarms
Probe 32/36 (89%)
Denial of Service (DOS) 43/63 (68%)
Remote to Local (R2L) 38/49 (78%)
User to Root (U2R) 18/33 (55%)
Data 1/4 (25%)
Total 132/185 (71%)
Poorly Detected in 1999 48/68 (71%)

Table 5. Attacks detected by category.

Table 6 shows for each type of anomaly, the number of attack
types for which at least one instance is detected by contributing at
least 10% of the anomaly score for at least one packet. For
example, source IP detects 35 types. For each type, the number
detected (by any means) is shown, out of the total number of
detectable attacks. Some attacks are detected by more than one
attribute, in which case the numbers are shown only once. For
example, NETAD detects 14 of 15 instances of portsweep and we
record the detections under unusal packet sizes, though some of
the detections were also detected by unusual TCP flags.

Source address is by far the most frequent contributor for
detection. This is followed by the TCP window size field for a
number of unrelated attacks. Because this looked to us
suspiciously like a simulation artifact (like TTL), we reran

NETAD with this field zeroed out However, this only decreased
the number of detections at 100 false alarms from 132 to 129.

Attribute Attack types detected (total number of types --
category: detected/detectable)

Source IP
address

35 -- Probe: 4/7 ipsweep, 2/2 ls, 2/2 satan; DOS: 2/4
apache2, 2/5 arppoison, 3/7 crashiis, 1/3 mailbomb, 1/3
processtable, 5/5 smurf, 4/4 syslogd, 1/3 tcpreset, 3/3
warezclient, 1/1 warezmaster; R2L: 6/7 dict, 2/3 guest,
2/2 imap, 5/5 ncftp, 3/3 netbus, 3/4 netcat, 1/3
ppmacro, 1/3 sshtrojan, 3/3 xlock, 3/3 xsnoop; U2R:
1/1 anypw, 2/3 casesen, 2/2 eject, 1/2 fdformat, 1/2
ffbconfig, 2/4 perl, 2/3 ps, 1/2 sechole, 1/2 sqlattack,
3/3 xterm, 2/4 yaga: Data: 1/4 secret

TCP window 9 -- Probe: ls, 3/3 ntinfoscan, 1/1 resetscan; DOS:
apache2, 3/4 neptune; R2L: netbus, netcat, 2/3 phf;
U2R: casesen

Packet size 8 -- Probe: 14/15 portsweep, 3/3 queso; DOS: back, 1/1
land, neptune, 4/4 pod, smurf; R2L: named

Payload 7 -- DOS: 4/4 back, neptune, 1/2 udpstorm; R2L: 3/3
named, 2/2 sendmail; U2R: sechole, yaga

Destination 4 -- R2L: dict, ncftp; U2R: perl, xterm
Fragmented 2 -- DOS: pod, 3/3 teardrop
TCP flags 2 -- Probe: portsweep, queso
Urgent data 1 -- DOS: 4/4 dosnuke
TOS 1 -- R2L: 2/2 ftpwrite
Coincidental 1 -- Probe: 2/2 illegalsniffer
Not detected 6 -- DOS: 0/3 selfping; R2L: 0/1 framespoofer, 0/2

httptunnel, 0/0 snmpget; U2R: 0/2 loadmodule, 0/2
ntfsdos

Table 6. Number of attack types at least partially detected by
each attribute (at 100 false alarms).

Six of 58 attack types are not detected. Framespoofer delivers
an exploit by email (as HTML). Httptunnel is a backdoor which
disguises its communication with the attacker as web client
requests. NETAD misses both of these because it does not
monitor outgoing traff ic or incoming client responses. Selfping
and ntfsdos generate no traff ic directly, but could theoretically be
detected because they reboot the target, interrupting TCP
connections. Snmpget is an external router attack, not visible on
the inside sniffer. Loadmodule is U2R, thus hard to detect.

5. CONCLUDING REMARKS
NETAD, like any network anomaly detector, does not

describe the nature of an attack, or even indicate if an event is
hostile or not. Instead, it just finds unusual or interesting events
in a vast amount of data, and brings them to the attention of a
network security expert for further analysis. It is meant to
supplement, rather than replace, existing security tools and
methods, such as code reviews, encryption, firewalls, virus
detectors, and so on. Like all security tools, it requires some
investment of time and effort to use it. The challenge is to use
good filtering to minimize this effort.

NETAD is a reasonably simple and fast filter that locates
many of the hostile events in the DARPA IDS evaluation data set.
However we must caution that this data is synthetic. Because of
privacy concerns, real traff ic is generally not made available for
study. Although great care was taken to make the DARPA
background traff ic realistic, our discovery of simulation artifacts
(TTL and window size) that make attacks easier to detect is
disturbing. Furthermore, traff ic characteristics have probably
changed somewhat since 1999, for example, by the increased use

of encrypted protocols which are inaccessible to an IDS. We are
currently collecting and analyzing real traff ic to study these
effects.

Acknowledgments
This research is partially supported by DARPA (F30602-00-1-
0603). I wish to thank Phili p K. Chan for collaboration on this
research and helpful comments on this paper.

References
[1] Anderson, D. et. al., "Detecting unusual program behavior

using the statistical component of the Next-generation
Intrusion Detection Expert System (NIDES)", Computer
Science Laboratory SRI-CSL 95-06 May 1995.
http://www.sdl.sri.com/papers/5/s/5sri/5sri.pdf

[2] Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
"A Sense of Self for Unix Processes", Proceedings of 1996
IEEE Symposium on Computer Security and Privacy.
ftp://ftp.cs.unm.edu/pub/forrest/ieee-sp-96-unix.pdf

[3] Handley, M., C. Kreibich and V. Paxson, "Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics", Proc. USENIX Security Symposium,
2001.

[4] Kendall, Kristopher, "A Database of Computer Attacks for
the Evaluation of Intrusion Detection Systems", Masters
Thesis, MIT, 1999.

[5] Lippmann, R., et al., "The 1999 DARPA Off-Line Intrusion
Detection Evaluation", Computer Networks 34(4) 579-595,
2000.

[6] Mahoney, M., P. K. Chan, "PHAD: Packet Header Anomaly
Detection for Identifying Hostile Network Traffic", Florida
Tech. technical report 2001-04, http://cs.fit.edu/~tr/

[7] Mahoney, M., P. K. Chan, "Learning Models of Network
Traffic for Detecting Novel Attacks", Florida Tech. technical
report 2002-08, http://cs.fit.edu/~tr/

[8] Mahoney, M., P. K. Chan, "Learning Nonstationary Models
of Normal Network Traffic for Detecting Novel Attacks ",
Edmonton, Alberta: Proc. SIGKDD, 2002, 376-385.

[9] Paxson, Vern, "Bro: A System for Detecting Network
Intruders in Real-Time", Lawrence Berkeley National
Laboratory Proceedings, 7'th USENIX Security Symposium,
Jan. 26-29, 1998, San Antonio TX,

[10] Paxson, Vern, and Sally Floyd, "The Failure of Poisson
Modeling", IEEE/ACM Transactions on Networking (3)
226-244, 1995.

[11] Ptacek, Thomas H., and Timothy N. Newsham, "Insertion,
Evasion, and Denial of Service: Eluding Network Intrusion
Detection", January, 1998,
http://www.robertgraham.com/mirror/Ptacek-Newsham-
Evasion-98.html

[12] Roesch, Martin, "Snort - Lightweight Intrusion Detection for
Networks", Proc. USENIX Lisa '99, Seattle: Nov. 7-12,
1999.

[13] Sekar, R., M. Bendre, D. Dhurjati, P. Bollineni, "A Fast
Automaton-based Method for Detecting Anomalous Program
Behaviors". Proceedings of the 2001 IEEE Symposium on
Security and Privacy.

[14] SPADE, Silicon Defense,
http://www.silicondefense.com/software/spice/

