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It is shown that optimal text compression is a baptoblem than artificial
intelligence as defined by Turing’s (1950) imitatigame; thus compression ratio
on a standard benchmark corpus could be used@gective and quantitative
alternative test for Al (Mahoney, 1999). Specilligdet L, M, andJ be the
probability distributions of responses chosen byiiaan, machine, and human
judge respectively to the judge’s questions inithigation game. The goal of Al
isM =L, the machine is indistinguishable from human. tBetmachine wins
(the judge guesses that it is human) wheiMH< Hy(L), where Ry(P) = -2 P(x)
log Q(x) is the cross entropy @ with respect td®. This happens whehis a

poor estimate df, meaning that the interrogator fails to anticipgae human’s
responses, but even in the worst case wireh, the machine can still win with a
suboptimal solutionN] # L) by deterministically favoring the most likely
responses over the true distribution. In contigstimal compression of a
probabilistic languagk with unknown distribution (such as English) usarg
estimated distributioM (an encoding of lengthlog, M(X) bits for each string)
isM = L, by the discrete channel capacity theorem (Shar@?49).

Answering questions in the Turing tegihat are roses?) seems to require
the same type of real-world knowledge that peopkein predicting characters in
a stream of natural language teRRogesare ___ ?), or equivalently, estimating
L(x) for compression. Shannon (1951), and Cover and KL978) established an
upper bound of 1.3 bits per character (bpc) forathgeopy (information content)
of English narrative in a 27-character alphabeZ(And space) using human
prediction tests.

No compression program has achieved this. Eigigrams, including
those top-rated by Gilchrist (1998) and Bell (198@)ye used to compress English
narrative Alice in Wonderland (Carroll, 1865) andrar from the Madding Crowd
by Thomas Hardylbpokl from the Calgary corpus (1993)), after reducinthkio
27 characters. The best compression was achigvedivie (Taylor, 1998): 1.86
bpc onalice and 1.94 orbookl. Others tested (from worst to best) weoenpress
(1990),pkzip (1993),gzip (Gallly, 1993),ha (Hirvola, 1993)szip (Schindler,
1998),ppmz (Bloom, 1998), anthoa (Sutton, 1998). All program options were
set for maximum compression.



Better compressors “learn”, using prior inputrtgorove compression on
subsequent inputszip was the best learner, compresdmgkl to about 95% of
the size of the two halves compressed separafddy.1 shows the correlation
between compression and learning. Similar resudt® obtained foalice.
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Fig. 1. Full, and ratio of full to split compressiforbookl using a 27 character
alphabet.

It was also found that better compressors makatgreise of the syntactic
and semantic constraints of English. Lexical, agti¢, and semantic constraints
were selectively broken by swapping pairs of Istteithin words, pairs of words,
or pairs of phrases respectively. Results forotiginal text ofbookl are shown
in Fig. 2, with similar results faalice. The swapping transforms are reversible
and do not change file size or information content.
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Fig. 2. Percent increase in compressed outpuidakl as compression improves
when lexical, syntactic, or semantic constrainessalectively broken.
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