
On Modeling Argumentation as Distributed Constraint Satisfaction:
Initial Results

Hyuckchul Jung, Milind Tambe, Weixiong Zhang, Wei-min Shen
University of Southern California/Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292, USA�
jungh,tambe,zhang,shen � @isi.edu

ABSTRACT
Conflict resolution is a critical problem in distributed and col-

laborative multi-agent systems. Argumentation-based negotiation,
where agents provide explicit arguments or justifications for their
proposals for resolving conflicts, is an effective approach to resolve
conflicts. However, while small-scale argumentation systems have
been developed, a well-understood computational model of argu-
mentation is missing. The lack of such a computational model
makes it difficult to investigate properties of argumentation, such
as convergence and scalability, and to understand and characterize
different collaborative negotiation strategies in a principled manner.
To alleviate these difficulties, we adopt distributed constraint satis-
faction problem (DCSP) as a computational model for investigating
conflict resolution via argumentation. We model argumentation as
constraint propagation in DCSP. We study convergence properties
of argumentation, and formulate and experimentally compare 16
different negotiation strategies with different levels of agent coop-
erativeness towards others. One surprising result from our experi-
ments is that maximizing cooperativeness is not necessarily the best
strategy even in a completely cooperative environment. The results
appear to have bearing not only on multi-agent argumentation, but
also on general DCSP systems as well. 1

1. INTRODUCTION
Distributed, collaborative agents are promising to play

an important role in large-scale multi-agent applications in-
cluding virtual environments for training, distributed robots
for exploration and distributed resource scheduling. While
there has been considerable research in such collaborative
agents in general[4, 10], the area of collaborative conflict
resolution has only recently begun to be explored. Col-
laborative agents may enter into conflicts over their shared
resources, joint plans, or task assignments, etc, requiring
effective collaborative conflict resolution techniques, partic-
ularly in large-scale applications.

Argumentation-based negotiation is a promising approach
to collaborative conflict resolution[6]. In this approach,
agents negotiate by providing arguments (explicit justifi-
cations) in support of their proposals to one another. Ar-
gumentation appears particularly appropriate in collabora-
tive settings, since agents need not hide information from
each other. Indeed, revealing this information is hypothe-

1contact author: Hyuckchul Jung, USC/ISI, 4676 Admiralty Way, Ma-
rina del Rey, CA 90292, USA, +1-310-448-8284, jungh@isi.edu

sized to speed up the rate and likelihood of converging to a
solution[5]. We have recently built on this previous work
and developed a system called CONSA: COllaborative Ne-
gotiation System based on Argumentation[11]. CONSA is
being applied in two realistic domains: battlefield simula-
tions and distributed sensor systems. These applications
require CONSA to scale-up to large numbers of agents.

While implemented argumentation systems such as
CONSA have performed well in small-size applications, no
systematic investigation on large-scale argumentation sys-
tems has been done. Thus, several major issues regarding
the computational performance of argumentation remain un-
addressed. One key open issue is understanding what impact
argumentation has on conflict resolution convergence, par-
ticularly in the face of scale-up. Indeed, the presence of
explicit justifications in argumentation could fail to improve
convergence and may degrade performance due to process-
ing overheads. Another key open issue is understanding dif-
ferent collaborative argumentation-based negotiation strate-
gies and their impact on agent performance. In particular,
what are the different principled methods in which an agent
may respond to others’ proposals? The answer to this ques-
tion is particularly important in collaborative contexts, since
well-formulated strategies from non-collaborative settings,
such as threats, appeals to self interest, or attempts to under-
cut one’s opponent[6], are inapplicable.

To address the above issues directly by building complex,
large-scale agent argumentation systems is difficult and not
cost-effective (e.g., what if argumentation fails after all the
effort?). Furthermore, such complex systems often make
it difficult to identify the critical factors that contributed
to their success or failure. What is required instead is an
abstract, well-understood computational model of argumen-
tation, suitable for experimental investigations. To the best
of our knowledge, no such computational model for argu-
mentation has been proposed or studied. The existing ones,
such as the modal logic formulations of argumentation[6],
are useful tools for studying logical properties of argumen-
tation, but not for detailed experimental investigations. In-
deed, theorem proving in these logical formulations may be
highly intractable and often researchers investigating such
logical formulations themselves recommend more practical
methods of implementations.

To alleviate the above difficulties, this paper proposes dis-
tributed constraint satisfaction problem (DCSP)[13, 1] as
a computational model of argumentation-based negotiation.
Argumentation is modeled in DCSP as follows: when an
agent communicates to others its assignments of its local
variables, it also includes the local constraints that led to the
assignments, as a justification. These communicated local
constraints are exploited in service of constraint propagation
by other agents to attempt to speed up a conflict resolution
process. We focus specifically on one of the best published
DCSP algorithms, that of Yokoo and Hirayama [13], and
model argumentation as an extension to this algorithm by
communicating local constraints. Argumentation essentially
enables this DCSP algorithm to interleave constraint propa-
gation in its normal execution.

Using this extended DCSP as our computational model,
we then formulate different argumentation-based negotiation
strategies, varying in the level of cooperativeness towards
others. While the question of cooperativeness was raised in
our implemented argumentation systems, the DCSP model
enables their formalization and systematic experimentation.
We specifically formulate different negotiation strategies as
varying the value ordering heuristics[3]. The basic idea is to
makesomevariable values more important than the others, so
as to adjust the level of cooperativeness of an agent towards
the others.

We systematically investigated 16 different negotiation
strategies, conducting detailed experiments with our DCSP
model. This experimentation provides the following re-
sults. First, argumentation can indeed significantly improve
agents’ conflict resolution, i.e., agents can more quickly re-
solve their conflicts and the overheads of argumentation are
outweighed by its benefits (at least when the right negotiation
strategy is used). Second, with respect to negotiation strate-
gies, given that our system operates in a highly collaborative
environment, the expectation was that more cooperativeness
will lead to improved performance. However, a surprising
result we obtain is that a maximally cooperative strategy is
not guaranteed to be the most dominant strategy. Essentially,
while some improvements in cooperativeness significantly
improve performance, further improvements do not help and
may end up degrading performance. This degradation is not
only in terms of overheads but more fundamentally in nego-
tiation cycles required to converge to a solution.

The main contribution of this paper is to employ dis-
tributed CSP technique to model multi-agent conflict reso-
lution and more importantly to model argumentation based
negotiation in conflict resolution. DCSP provides a formal
tool to investigate the impact of argumentation and differ-
ent argumentation-based negotiation strategies in the large-
scale. Our experimental results reveal the utility of such
modeling and begin to provide useful guidance for designers
of argumentation systems. Additionally, the paper shows
that in DCSP, argumentation inspired strategies may poten-
tially improve performance.

2. BACKGROUND AND OPEN ISSUES

In this section, we briefly describe negotiation via ar-
gumentation based on our ongoing research of building
CONSA[11]. The goals of this discussion are to present
conflicts in distributed environment, explain how argumen-
tation can be used to resolve them, and also discuss some
open issues in argumentation.

2.1. NEGOTIATION WITH ARGUMENTATION
CONSA’s argumentation involves an agent (sender) mak-

ing a proposal to the agent-team (receivers) with an attached
justification (argument). The receivers evaluate the proposal
by taking the justification into account, and either accept or
refute it. If refuting the proposal, a receiver may send back a
counter-proposal to the team, who may continue this cycle of
proposals and counter-proposals. Following [5], negotiation
objects in CONSA refers to issues over which negotiation
takes place. Agents propose and counter-propose values for
these negotiation objects, with explicit justifications.

We have been working on two different domains in devel-
oping CONSA. The first is a simulation environment where
agents control different distributed sensors, such as range
sensors and sonars. Multiple targets appear in the envi-
ronment at different intervals. The agents are required to
work together to track targets under tight deadlines. As
tracking tasks dynamically arrive and agents make different
commitments to different tasks over time, such as what to
track at a particular time interval, conflicts arise over the
sensors’ limited resources, including their availability, en-
ergy requirement and computational power. Such conflicts
need to be resolved appropriately in order to fully utilize the
sensors and optimize system performance.

The second application domain is helicopter combat sim-
ulation domain[10]. Different conflict situations arise in a
team of simulated pilot agents. One example, henceforth
called the firing positions example, involves allocating firing
positions for a team of pilots. Individual pilots in a helicopter
team typically attack the enemy from firing positions. Each
firing position must be at least one kilometer apart from oth-
ers, must enable a pilot to shoot at different enemy locations,
and must protect the pilot from return enemy fire and yet min-
imize the helicopter movements. This means that a pilot’s
firing position is constrained by the firing positions of the
others. Two firing positions are in conflict if they interfere
with each other. The dynamics of the environment makes
this conflict resolution complex and difficult. Each pilot
may have different information of enemy, friendly vehicles
and own state; and the pilot’s knowledge of its environment
changes dynamically. Therefore, each agent has to negotiate
its position with others, rather than relying on a centralized
pre-planner. A similar conflict resolution problem occurs
when agents must allocate targets to attack.

To make our discussion more concrete, we now use the fir-
ing position example to describe how argumentation can be
used to resolve conflicts. Consider two pilot agents, A1 and
A2, and two enemy positions E1 and E2, where A1 knows
about E1, while A2 knows about E2. Suppose that A1 and

A2 are only 100 meters apart, which are in conflict since they
are not one kilometer apart as required. Here, agents’ fir-
ing positions are the negotiation objects. A1 computes new
values for the negotiation objects (positions for both agents)
so as to minimize effort for both agents. It then communi-
cates its proposal to A2, suggesting � (A1 move 450 m left,
A2 move 450 m right) � , where the appended justification in-
cludes � (enemy E1 position, current separation 100 m,...) � .
When A2 receives and evaluates the proposal, it realizes that
it cannot move 450 meters right because of E2. A2 therefore
rejects A1’s proposal. It computes new positions for A1 and
A2, based on the enemy position E1 sent by A1 and E2.
Since the maximum A2 can move is 300 meters, it counter-
proposes � (A1 move 600 m left, A2 move 300 m right) � , with
the justification being that � (enemy E1 position, enemy E2
position,...) � . A1 may accept the proposal, terminating the
argumentation, or it may continue argumentation.

2.2. SOME OPEN ISSUES IN ARGUMENTATION
One key shortcoming of CONSA and agent argumentation

systems in general is the lack of a well-understood compu-
tational model suitable for understanding properties, such as
the impact of argumentation on convergence and the over-
head of argumentation. Similarly, it is difficult to formalize
and investigate the impact of different negotiation strate-
gies. For instance, in the firing position example above,
pilot agents attempt to be maximally cooperative towards
others, by offering to move the maximal distance they are
allowed. As we scale up the number of agents, it is unclear if
maximal cooperativeness will necessarily lead to improved
performance.

Unfortunately, it is difficult to analyze scale-up in
CONSA’s current implementations directly. The state in-
formation in an agent contains large numbers of features,
e.g., pilot agents have beliefs about their overall mission, or-
ganization hierarchy, standard operating procedures etc[10].
Such a large number of features makes it difficult to identify
the key features and understand how they impact perfor-
mance.

3. FORMALIZING ARGUMENTATION VIA
DCSP

To advance the current research, we need to abstract and
model the useful state characteristics relevant to argumen-
tation. We use Distributed Constraint Satisfaction Prob-
lem (DCSP)[13, 1] as a computational model to investigate
argumentation-based negotiation. DCSP allows us to easily
model conflicts and conflict resolution via constraints. As
a well-investigated problem, it provides efficient algorithms
for conflict resolution. Most importantly, it also allows us to
model the use of argumentation in conflict resolution.

A Constraint Satisfaction Problem (CSP) is commonly
defined as assigning values to a list of variables V from
a respective list of domains D such that a set of con-
straints C over the variables is satisfied. A distributed
CSP is a CSP in which there are multiple agents A � , each
with a list of variables Vi, domains Di, and constraints

Ci. (We consider DCSPs with multiple local variables
per agent[13]). For example, consider a DCSP with two
agents A1 and A2. Here, A1 has ��� 1 �	��
 1 �
 2 ���� 1 ���� 1 � 2 � � � 2 � ���� 1 ������
 1 ���
 3 �� ��
 2 ��
 1 ��� , and Agent
A2 has ��� 2 ����
 3 ���� 2 ����� 1 � 2 � ���� 2 ������
 2 ���
 3 ��� .
In this DCSP,
 2 is a locally constrained variable for Agent�

1 because it is only constrained with variables that are local
to
�

1. In contrast,
 1 is an externally constrained variable
because its value is constrained at least in part by variables
in
�

2. Constraints in DCSP can be similarly classified as
local or external. Solving such a DCSP requires that agents
not only solve their local CSP, but communicate with other
agents to satisfy external constraints. A solution to the above
DCSP is then A1 assigning ��
 1 �
 2 ��� 2 � 2 and A2 assign-
ing ��
 3 ��� 1 . Note that DCSP is not concerned with
speeding up a centralized CSP via problem decomposition
and parallelization[13]; rather, it assumes that the problem is
originally distributed in the application being modeled. This
assumption suits us well, since our negotiation problem is
indeed a distributed problem.

We map argumentation on to DCSP as follows: we model
an agents’ negotiation objects as externally constrained vari-
ables, henceforth referred to as negotiation variables. There
are external constraints among negotiation variables of dif-
ferent agents. All other facts and constraints that are local
to an agent are modeled as the agent’s local variables and
constraints — these are not known by other agents. Fig-
ure 1(a) illustrates this mapping. The big circles represent
agents, the squares labeled v1, v2, v3, and v4 are negotiation
variables, and the small circles and the links between them
are local variables and constraints. In our firing position
example, the helicopter’s firing positions are the negotia-
tion variables, which constitute the current conflict and are
known to the other agents. The enemy’s positions are local
variables because they are observed by individual agents and
are not known by others. These local variables contribute
to the negotiation process because they constrain the firing
positions.

For our initial experimental investigations in DCSP, we
abstract the mapping a bit further. We assume that each
agent has only one negotiation variable, and we represent
all the local variables and local constraint as a single node
constraint on this negotiation variable. Illustrated in Figure
1(b), each agent has only one negotiation variable !� and
one local constraint " � � . There is, however, no limitation
on the number of external constraints �$# an agent can have.
The extension of this mapping to allow multiple negotiation
variables per agent is straightforward, and will be considered
in our future work.

In this abstract mapping, an argument can be formalized
in the context of DCSP as a constraint propagation between
agents. That is, in DCSP algorithms such as Asynchronous
Weak Commitment search(AWC) [13], the communication
between agents is focused on the values assigned to their ex-
ternally constrained negotiation variables. However, with ar-
gumentation, agents also communicate their argument (jus-
tification) in the form of local constraints (e.g., the " � � in

Agent A2

Agent A3

LC2

LC3 LC4

Agent A4

C13 C24

C34

C12

V1 V2 V3 V4

(a) (b)

Agent A1

LC1

X1 X2

X3 X4

Figure 1: Model of agents in argumentation

Figure 1(b)) under which they made the selections of values
for their variables. These local constraints are propagated by
the agents receiving the argument. Such constraint propaga-
tion requires that when negotiation variables
%� and
 # (be-
longing to agents

� � and
� # respectively) share an external

constraint � � # ��
&� �
 #' then these agents know the domains
of the negotiation variables. In particular,

� � is aware of
 # ’s domain, and
� # is aware of
%� ’s domain; otherwise the

communication of local constraints such as " � � may not be
interpretable by others. This assumption models the situa-
tions where our pilot agents are aware of the overall region or
set of positions that neighboring pilots could take, but they
do not know the local constraints that restrict those posi-
tions. (Alternatively, the local constraint " � � may explicitly
outline the set of allowed values for the given negotiation
variable. There are tradeoffs in the different techniques, and
these may be optimized based on the domain.)

Concretely, argumentation in DCSP works as follows.
Suppose an agent

� � selects a value ()� for its negotiation
variable
%� . It will then send its selection ()� and its local
constraint " � � to its neighboring agent

� # with the nego-
tiation variable
 # . Here we assume agents

� � and
� # are

connected by the external constraint � � # ��
 � �
 # where
 �
has domain � � and
 # has domain � # . After receiving in-
formation from

� � , agent
� # will propagate the received

constraint to reduce
 # ’s domain � # . This may be accom-
plished as follows.

� # first reduces � � to �+*� by applying" � � to � � (alternatively, " � � directly provides the values of
�+*�), and

� # then it uses �+*� to reduce the size of �,# to �+*#
by applying the external constraint � � # ��
&� �
 #- .

While this constraint propagation amounts only to arc-
consistency, it is not run by itself to solve the DCSP, rather
this is interleaved with value selection. For instance, during
each cycle of AWC, we first propagate communicated con-
straints and then select values for variables. Thus, we also
do not increase the number of communicated messages, an
important issue for DCSP.

4. NEGOTIATION STRATEGIES
Given the mapping of argumentation to DCSP presented

in the previous section, different negotiation strategies are
considered and formalized into DCSP. A negotiation strategy
refers to the decision function used by an agent to make a
proposal or counter-proposal, which is a value assignment to
a negotiation variable. In the mapping to DCSP, a negotiation
strategy is modeled as a value ordering used to choose a value
of an assignment. A value ordering heuristics rank the value

of variables[3]. Different value ordering heuristics lead to
different negotiation strategies.

In AWC[13], min-conflict heuristic is used for value or-
dering for the good and the nogood cases: min-conflict
heuristic selects a variable that is in conflict, and assigns
it a value that minimizes the number of conflicts (ties are
broken randomly)[9]. This min-conflict heuristic is used as
a baseline negotiation strategy and labeled as S .�/�0��21 . Given
the mapping of argumentation into DCSP, the S .�/�03�21 strategy
doesn’t exploit argumentation in generating a more coopera-
tive response to other agents. Argumentation enables agents
to consider the constraints that the neighboring agents have
on their domains, which are communicated as arguments.
Taking the domains of neighboring agents into account en-
ables an agent to generate a more cooperative response, i.e.,
select a value which potentially may lead to faster negotia-
tion convergence. To elaborate on this point, we first define
our notion of cooperativeness:

4 Definition: Cooperativeness is defined as how much
flexibility (or choice of values) is given to neighboring
agents in value selection. A more cooperative response
implies giving more flexibility to neighboring agents.
More formally, let

� � be an agent with a negotiation
variable � whose domain is � � . If 5 � is a set of
agents that are

� � ’s neighbors and an agent
� # in 56�

has 7 # values from its domain (#) that are consistent
with

� � ’s value (, a cooperative function 8'1�9 for (is
defined as 8'1�9:��(= Σn# such that

� #<; N � . It can be
said that (1 is a more cooperative response than (2 if8'1�9:��(1 >= f 1�9)��(2 . A maximally cooperative response
is to select a value ()? /�@ such that for any other value(9�ACB-D3E , 8 1�9 ��()? /�@ $= f 1�9 ��(9�AFB)D�E .

Here, the concept of cooperativeness goes beyond merely
satisfying their constraints and enables even faster conver-
gence. That is, an agent

� � can provide a more cooperative
response to a neighbor agent

� # , by selecting a value for
its negotiation variable that not only satisfies the constraint
with

� # , but maximizes flexibility for
� # . If

� � is facing
a nogood, and gives

� # more choice by selecting (? /�@ ,
then

� # can more easily select a value that satisfies
� � and� # ’s other external constraints (for instance, if there is an-

other agent
�6G

constraining
� #). Giving more choice to

� #
in good case also appears useful, since

� # may then more
flexibly negotiate with others, without violating the external
constraint with

� � . This is indeed partly the rationale for the
helicopter pilots such as A2 in the firing position example
(described in Section 2) to offer the maximum flexibility to
their teammates such as A1. Having lower possibility of
constraint violation, this cooperative response can lead to
faster convergence.

S .�/�0��21 tries to minimize the number of conflicts without
taking neighboring agents’ own restrictions into account for
value ordering. An agent

� � ’s selected value (with S .�/�0��21
can have a smaller 8'1�9 value, compared with (? /�@ in � � :
that is, 8'1�9)��(6H f 1�9)��(? /�@ . That is, in terms of flexibility,
S .�/�03�I1 is not guaranteed to select a maximally cooperative

response. Hence, S .�/�0��21 is not the most cooperative strategy
to neighbor agents.

Based on the cooperativeness defined above, different
strategies other than S .�/�0��21 can be introduced and formal-
ized in terms of value ordering (as discussed below): an
agent

� � can rank each value (() in its domain � � based on
how much flexibility is given to its neighbors with (when
it assigns a value for its negotiation variable +� . These
strategies rely on the basic framework from AWC.

Different negotiation strategies are described in terms of
the good and nogood cases because different value ordering
methods can be applied in both cases. To explain the ne-
gotiation strategies, let N

B��KJ�B� (N L 93M�) be the neighbor agents
of
� � whose negotiation variable’s priority is higher (lower)

than the priority of
� � ’s negotiation variable +� . In the good

case, an agent
� � computes a set (�N�) of consistent values

for its negotiation variable +� from its domain � � . For each
value (in the set �N� , � � computes a number 7 B��KJ�B and 7 L 9�M .7 B��KJ�B (7OL 9�M) is the sum of the number of consistent values
with (for each agent in N

B��KJ�B� (N L 9�M�). Having computed7 B��KJ�B and 7OL 93M , three different negotiation strategies accord-
ing to cooperativeness can be considered for the good case.
Each of them is described as follows:

4 S B��KJPB : each agent selects a value from its domain which
maximizes 7 B��KJ�B to provide maximal flexibility to the
neighbor agents in N

B��KJ�B� . In this way, an agent
� �

attempts to be maximally cooperative towards its higher
priority neighbors.

4 S L 93M : each agent selects a value from its domain which
maximizes 7OL 9�M to provide maximal flexibility to the
lower priority agents in N L 9�M� .

4 S / LQL : let 7 / LQL be the sum of 7 B��KJ�B and 7OL 93M . To provide
maximal flexibility to all neighbor agents, each agent
selects a value from its domain which maximizes 7 / LQL .

4 S .�/�03�21 : the original AWC search algorithm based on
min-conflict heuristic as described above.

Here, strategy S / LQL is the most cooperative strategy be-
cause it gives maximal flexibility to all of an agent(

� �)’s
neighbors. S B��KJ�B (or S L 9�M) counts only the flexibility of the
agents in N

B��KJ�B� (or N L 93M�). The maximal flexibility of S B��KJ�B
(or S L 93M or S .�/�0��21) is equal to or less than that of S / LQL . In
particular, the function 8'1�9 sums up all the flexibility of all
neighboring agents for a given value and S / LQL selects a value
which maximizes 7 / LQL . Therefore, based on the definition
of cooperativeness, S / LQL is more cooperative than S B��KJ�B (or
S L 9�M or S .�/�03�21). Both S B��RJ�B and S L 9�M have trade-offs. For in-
stance, S B��KJ�B may leave very little or no choice to an agent’s
neighbors in N L 9�M� , making it impossible for them to select
any value for their negotiation variables. S L 9�M has a con-
verse effect. S .�/�03�I1 also has trade-offs because it does not
pay attention to flexibility of neighboring agents.

Thecomputation in the nogood caseis identical to the good
case except that the set � � is the set of all values in � � , not the

set of consistent values. Note that, in this nogood case, X � ’s
priority is increasedas usual, and 7 B��KJ�B and 7OL 9�M arebasedon
the variable’s priority prior to this increase. A question here
is “why should we consider neighboring agents’ prior pri-
ority?”. Answer is: highly constrained neighboring agents
tend to have higher priorities than less constrained agents.
If an agent is more cooperative to the highly constrained
agents, they will have less chances to turn into nogood in
the next cycle, which can lead to fast convergence to a solu-
tion. Because current priorities reflect the degree of agents’
being constrained, the priority prior to the increase is used
to group neighboring agents into higher and lower priority
groups. Thus, three different strategies above can be also
considered in the nogood case.

Based on the ideas introduced above, we can generate
different strategy combinations by choosing and combining
different negotiation strategies for the good and the nogood
cases: there are 16 possible combinations from 4 differ-
ent negotiation strategies(S B��RJ�B , S L 93M , S / LQL , and S .�/�0��21) for
each good case and nogood case. In the experiments, all
of the possible 16 combinations are systematically exam-
ined for completeness. In the following, some examples of
negotiation strategy combinations used for experiments are
described. Each combination below is described in terms
of its response in the good and nogood cases. Note that all
the strategies are enhanced with argumentation (constraint
propagation).

4 S .�/�03�21 -S .�/�0��21 : This is the original AWC. Min-conflict
heuristic is used for the good and nogood case.

4 S L 93M -S B��KJ�B : For the good case, an agent is maximally
cooperative towards its lower priority neighbor agents
by using S L 9�M . While giving maximal flexibility to
lower neighbors, the selected value doesn’t violate the
constraints with higher neighbors. On the contrary, for
the nogood situations, an agent attempts to be maxi-
mally cooperative towards its higher priority neighbors
by using S B��RJ�B .

4 S / LQL -S / LQL : In both the good and the nogood cases, an
agent uses S / LQL for the value ordering, which is to se-
lect a value that attempts to maximize flexibility of all
neighbor agents.

The above are only three examples out of 16 strategy
combinations that we experiment with in the next section.
Because S / LQL is more cooperative than S L 9�M (or S B��RJ�B), it
can be said that S / LQL -S / LQL is the most cooperative strategy
combination. Figure 2 shows a partial order over the co-
operativeness of 16 different strategy combinations. The
higher combinations are more cooperative than the lower
ones. The combinations at the same level are not compara-
ble to each other such as S L 9�M -S B��KJPB and S B��KJ�B -S L 9�M . While
S .�/�03�I1 -S .�/�0��21 is not comparable to other strategy combina-
tions such as S L 9�M -S B��RJ�B in the same level, this S .�/�03�21 -S .�/�0��21
was not originally defined with the notion of cooperativeness
as defined in this section; while a strategy combination such

Shigh-Sall Slow-Sall Sbasic-SallSall-Shigh Sall-Slow Sall-Sbasic

Sall-Sall

Sbasic-Slow Slow-Slow Shigh-SlowSbasic-Shigh Slow-Shigh Shigh-Shigh Sbasic-Sbasic Slow-Sbasic Shigh-Sbasic

Figure 2: Cooperativeness relationship

as S L 9�M -S B��RJ�B attempts to be explicitly cooperative to neigh-
boring agents in the sense of the definition of cooperativeness
discussed earlier.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally study the benefits of

using DCSP as a model of conflict-resolution using argu-
mentation. We investigated the impact of argumentation in
speeding up conflict resolution processes and the compu-
tational performance of the negotiation strategies from the
previous section.

DCSP experiments in this work were motivated by the
firing position example. In the experiments, each pilot was
modeled as an agent; and each agent had one negotiation
variable to model the pilot’s firing position. The domain of
this variable was the set of positions the pilot could take.
However, the domain was restricted by local node con-
straints, which were the constraints imposed by the enemy
positions visible to the pilot. The negotiation variable also
had external constraints with the negotiation variables of its
neighboring agents (where the neighbors were determined
as discussed below). This external constraint modeled the
real-world constraint that, if two pilots were neighbors, then
their positions must at least be some fixed distance from each
other. If this external constraint was violated, then clearly,
the pilots’ positions were in conflict with each other. Based
on these mapping, a distributed constraint satisfaction prob-
lem for firing position example was constructed, and the goal
of the argumentation-based negotiation was to find values for
agents’ negotiation variables that satisfied all of their local
and external constraints.

Four different types of DCSP configurations were consid-
ered in the experiments: a chain, a ring, a tree and a grid.
In the chain configurations, each agent had two neighboring
agents, to its right and left (except for end points). Since there
was a constraint between the negotiation variables of neigh-
boring agents, the negotiation variables essentially formed
a chain. The ring configuration added a constraint between
the negotiation variables of the first and the last agents of the
chain configuration. Fig. 1b shows a very small ring config-
uration, with four agents. In the tree configuration, agents’
negotiation variables fit into the nodes of a binary tree and

had constraints with their parents and children. Finally, in
a grid configuration, the negotiation variables formed a grid
in which a variable was constrained by its four neighbors
except the ones on the grid boundary.

Given a DCSP, a centralized approach can be the most
trivial method to solve the problem because there has been
considerable research in CSP and many CSP algorithms are
available. All agents could communicate all their local in-
formation to a single agent which could solve all the con-
flicts using a constraint satisfaction algorithm. However, in
many applications, such a centralized approach could prove
problematic for a variety of reasons. First, this approach
introduces a central point of failure, so that there is no fault
tolerance. If the centralized agent somehow fails (failures
are likely in a real-world environment), the entire system
will come to a halt. Second, centralization of all infor-
mation could be a significant security risk, open to actual
physical or cyber-attacks, particularly in hostile adversarial
environments. Third, a centralized agent could be significant
computational and communication bottleneck. Specifically,
in domains such as distributed sensors, negotiations must
continuously occur among all agents for continual readjust-
ment of the sensors. Centralization would require all sen-
sors to repeatedly and continuously communicate their local
information to the centralized agent for the centralized com-
putation. With hundreds or even thousands of agents com-
municating such information, there is a significant potential
for the centralized agent to be a computational and com-
munication bottleneck. A distributed system provides fault
tolerance, reduces the security risk and avoids a centralized
communication/computational bottleneck. So, we believe
the centralized approach is not suitable for multi-agent sys-
tems, especially for our application domains of distributed
sensors and helicopter pilot simulation.

Our experiments followed the method used in [13] and
same criteria were used for evaluation. The experimental
results reported below were averaged over 100 runs and all
the problem instances were solvable. The number of agents
was 512 and the negotiation variable of each agent had one
dozen values in its domain.

5.1. PERFORMANCE OF NEGOTIATION
STRATEGIES

For the performance evaluation of the strategies described
in Section 4, those strategies were compared on each of
the four DCSP configurations (chain, ring, tree and grid)
described in the above. The main goal was to investigate the
impact of the different cooperative strategies on negotiation
performance.

The main criterion for the evaluation was the time cost
because running time was very critical to our applications
such as battlefield simulations. Regarding the time cost, cy-
cles and constraint checks were measured as in [13]: cycles
is the number of cycles consumed until a solution is found,
and constraint checks is the sum of the maximal numbers of
constraint checks performed by agents at each of the negoti-
ation cycle. Figure 4 shows the results for constraint checks,

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

c
o

n
s
tr

a
in

t
c
h

e
c
k
s

Sall-Sall
Sall-Slow
Sall-Shigh
Sall-Sbasic
Slow-Sall
Slow-Slow
Slow-Shigh
Slow-Sbasic
Shigh-Sall
Shigh-Slow
Shigh-Shigh
Shigh-Sbasic
Sbasic-Sall
Sbasic-Slow
Sbasic-Shigh
Sbasic-Sbasic

Figure 3: Comparison of negotiation strategies: constraint checks

where the figures from (a) to (d) are the results for a chain,
a ring, a tree and a grid, respectively. The horizontal axes
are the ratios of the number of locally constrained agents to
the total number of agents. Each locally constrained agent
has a local constraint (described in Section 3) which ran-
domly restricts available values for its negotiation variable.
Thus, for example, local constraint ratio 0.1 means that 10
percent of the agents have local constraints. Having local
constraints, agents have less flexibility to assign a value to
their negotiation variables. The vertical axes are constraint
checks.

Experiments were performed for the sixteen negotiation
strategy combinations described in Section 4. Constraint
checks on the chain configuration is shown in Figure 3. The
results show that S L 9�M -S B��RJ�B was the best, and the results
also show that those strategy combinations with S .�/�03�I1 and
S L 9�M for nogood response (e.g., S / LQL -S L 9�M) performed worse
than the others. Cycles on the chain configuration showed
the same pattern as constraint checks did.

Given 16 strategy combinations, it is difficult to under-
stand different patterns in Figure 3. For expository pur-
poses, we will henceforth present the results from four spe-
cific strategies. First, S / LQL -S / LQL is selected because it is the
most cooperative strategy combination. Second, the original
AWC strategy (S .�/�0��21 -S .�/�0��21) is selected to compare it with
other negotiation strategies. Third, S L 9�M -S B��KJ�B which shows
the best performance is selected. Lastly, S B��RJ�B -S L 9�M is se-
lected because it is the worst performing strategy and the
opposite to the best performing strategy. Using these four
strategies does not change the conclusions from our work,
rather it is done solely to make it easier to present the graphs
and discuss the results.

The graphs in Figure 4 show the constraint checks of

the selected strategies on each of the four configurations
(tree, ring, tree, and grid) described above. These graphs
show an interesting result that maximal cooperativeness to
neighbor agents was not a dominant strategy: in S / LQL -S / LQL ,
each agent considers all of its neighbors in both the good and
the nogood cases. Though S / LQL -S / LQL performed better than
S .�/�03�I1 -S .�/�0��21 , it was worse than S L 9�M -S B��RJ�B in the chain and
the ring configurations. On the contrary, S L 93M -S B��KJ�B showed
the best performance in all of the configurations except for
the ratio of 0.0. Though S L 9�M -S B��RJ�B was a winning strategy
in terms of constraint checks, there could be a possibility that
S L 9�M -S B��KJ�B performed worse in terms of cycles. However,
the results in Figure 5 eliminates such a possibility because
cycles show the same pattern as constraint checks do (Figure
4). That is, S L 93M -S B��KJ�B was the best strategy for cycles,
too. Here, one assumption was that communication cost
was mainly dependent on the number of communications
rather than message size. Hence, communication of local
constraints was not counted as extra cost.

The results are surprising because we expected that the
most cooperative strategy combination S / LQL -S / LQL would be
more dominant. However, the less cooperative strategy com-
bination S L 9�M -S B��KJ�B showed the best performance. So, we
conclude that certain level of cooperativeness is useful, but
maximal cooperativeness is not necessarily the best negotia-
tion strategy. The results also show that S .�/�0��21 -S .�/�0��21 which
didn’t benefit from argumentation couldn’t perform as well
as S L 9�M -S B��KJ�B which exploited argumentation.

5.2. BENEFITS OF ARGUMENTATION
One critical question to be answered was how much total

amount of conflict resolution effort was saved by incorporat-
ing argumentation in negotiation, and whether the overhead
of argumentation could be justified.

To answer this question, two different versions of S L 93M -
S B��RJ�B were compared. The first version was the S L 93M -S B��KJ�B
described in Section 4. The second version was same with
S L 9�M -S B��KJ�B except that it didn’t use any argumentation (con-
straint propagation). Let this second strategy combination be
S L 9�M -S B��KJ�B (noarg). S L 93M -S B��KJ�B was chosen because it was
the best among all the strategy combinations to be consid-
ered. In S L 9�M -S B��KJ�B , each agent received arguments (local
constraints) from neighbor agents and used the propagated
constraints for eliminating its local problem space. However,
the agent had an overhead of checking extra constraints. In
S L 9�M -S B��KJ�B (noarg), agents did not receive arguments from
neighbors, and thus did not have to propagate constraints.

Figure 6 shows the experimental results for the chain
configuration with 16 agents: with 512 agents, S L 93M -
S B��RJ�B (noarg) exceeded the cycles limit (10,000) for the most
part. As in [12], agents saved the whole agent view as a
nogood in both S L 9�M -S B��RJ�B and S L 9�M -S B��RJ�B (noarg) because
finding all minimal nogoods [8] required certain amount of
computation cost. The results for the other configurations
were similar. Argumentation helped S L 93M -S B��KJ�B to reduce
the total negotiation effort as measured by constraint checks
(Figure 6.a) and cycles (Figure 6.b).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

co
ns

tr
ai

nt
 c

he
ck

s

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(a) Chain

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

co
ns

tr
ai

nt
 c

he
ck

s

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(b) Ring

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cycle

co
ns

tr
ai

nt
 c

he
ck

s

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(c) Tree

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

co
ns

tr
ai

nt
 c

he
ck

s

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(d) Grid

Figure 4: Comparison of negotiation strategies: constraint checks

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

cy
cl

es

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(a) Chain

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

cy
cl

es

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(b) Ring

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

cy
cl

es

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(c) Tree

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

cy
cl

es

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(d) Grid

Figure 5: Comparison of negotiation strategies: number of nego-
tiation cycles.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

co
ns

tr
ai

nt
 c

he
ck

s

Slow-Shigh
Slow-Shigh(noarg)

(a)

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

cy
cl

es Slow-Shigh
Slow-Shigh(noarg)

(b)

Figure 6: Benefit of argumentation: A computational comparison.

Argumentation could improve conflict resolution perfor-
mance and its overheads appeared to be well justified. How-
ever, one interesting question from the results in Figure 4 and
Figure 5 was how a negotiation strategy combination, espe-
cially S L 93M -S B��KJ�B , could reduce the number of cycles and
total work at the same time. Figure 7 provides an answer. It
presents the maximal and average workload of these strategy
combinations in all cycles. It shows that S L 9�M -S B��RJ�B gave the
highest workload by cycle among all strategy combinations,
which indicated that more agents were busy at each cycle. In
other words, negotiation effort was distributed more evenly
among agents by S L 9�M -S B��KJPB than the others.

6. RELATED WORK
While this paper builds on several previous efforts in

argumentation[6] and distributed constraint satisfaction[13],
it is a unique effort in synthesizing these two areas. Argu-
mentation has been rigorously investigated using different
logics[6], including specially designed logics of argumen-
tation. However, such formalization appears inappropriate
for empirical investigation of the effects of argumentation
on conflict resolution convergence, or the effects of differ-
ent negotiation strategies. In contrast, we have proposed
DCSP as a model of argumentation, enabling systematic ex-
perimental investigation of the computational properties of
argumentation systems in the large-scale.

Our work has built on the rich foundations of the existing
DCSP work[1, 12, 13]. Our ability to experimentally investi-

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

co
ns

tr
ai

nt
 c

he
ck

s

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(a) maximal

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio

co
ns

tr
ai

nt
 c

he
ck

s

Sbasic-Sbasic
Slow-Shigh
Shigh-Slow
Sall-Sall

(b) average

Figure 7: Maximal and average effort per cycle.

gate argumentation and negotiation strategies is a testimony
to the effectiveness of using DCSP as a computational model.
We have modeled argumentation as constraint propagation

Since agents in our work focus in part on conflict resolu-
tion over limited resources (although they may also negotiate
about joint plans, or tasks), research on distributed resource
allocation is also related. While resource allocation is itself a
broad area of research, our use of argumentation for resource
conflict resolution and the use of DCSP for modeling such
conflict resolution sets our work apart. For instances, [7]
extends dispatch scheduling to improve resource allocation;
and [2] on distributed scheduling airport-ground scheduling
service. While these systems do not perform conflict reso-
lution via argumentation, hopefully our investigations will
begin to shed light on the utility of argumentation in these
domains. Finally, whether argumentation could enhance cur-
rent market-based approaches in non-collaborative settings
remains an open issue for the future.

7. CONCLUSION

Argumentation is an important conflict-resolution tech-
nique in multi-agent research. Several researchers, including
ourselves, have developed concrete implemented argumen-
tation systems. However, much of the existing work has
focused on smaller-scale systems, and major issues regard-
ing the computational performance of collaborative argu-
mentation, particularly in the presence of scale-up, remain

unaddressed. Yet it is difficult to work with the complex im-
plemented argumentation systems to directly resolve these
issues.

The contributions of this paper mainly focus on multi-
agent conflict resolution via argumentation. We chose to
model argumentation in terms of distributed constraint satis-
faction problem (DCSP), which provides a well-understood
computational platform to address the issues above. The key
contributions of this paper are: (1) modeling of argumenta-
tion in terms of constraint propagation in DCSP; (2) mod-
eling of different argumentation strategies and investigating
different degrees of cooperativeness using value ordering
techniques of CSP. We also computationally compared col-
laborative negotiation strategies.

The utility of DCSP is seen in our ability to conduct de-
tailed experiments to address the issues raised, and quan-
titatively measure the performance of argumentation and
different negotiation strategies. These results show that ar-
gumentation indeed leads to faster convergence of conflict
resolution at least given the right resolution strategy. Our
experiments also revealed a surprising result that the most
cooperative argumentation strategy may not be necessarily
the best in terms of convergence in negotiation. Further-
more, applying constraint propagation and value ordering to
the existing DCSP algorithms, as suggested in this paper,
appears to improve these algorithms.

REFERENCES
[1] Aaron Armstrong and Edmund H. Durfee. Dynamic prioriti-

zation of complex agents in distributed constraint satisfaction
problems. In Proc. of the Intl. Joint Conference on Artificial
Intelligence, August 1997.

[2] Mike H. Chia, Daniel E. Neiman, and Victor R. Lesser. Poach-
ing and distraction in asynchronous agent activities. In Proc.
of the Third International Conferenceon Multi-Agent Systems
(ICMAS), July 1998.

[3] Daniel Frost and Rina Dechter. Look-ahead value ordering
for constraint satisfaction problems. In Proceedingsof the In-
ternational Joint Conference on Artificial Intelligence (IJCAI-
97), August 1995.

[4] B. Grosz. Collaborating systems. AI magazine, 17(2), 1996.

[5] N.R. Jennings, S. Parsons, P. Noriega, and C. Sierra. On
argumentation-based negotiation. In Proc. of the Interna-
tional Workshop on Multi-Agent Systems, 1998.

[6] S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements
through argumentation: a logical model and implementation.
Artificial Intelligence, 104:1–70, 1998.

[7] Jyi-Shane Liu and Katia P. Sycara. Multiagent coordination in
tightly coupled task scheduling. In Proceedings of the Second
International Conference on Multi-Agent Systems (ICMAS),
July 1996.

[8] Dorothy L. Mammen and Victor R. Lesser. Problem structure
and subproblem sharing in multi-agent systems. In Proceed-
ings of the International Conference on Multi-Agent Systems
(ICMAS-98), 1998.

[9] S. Minton, M. D. Johnston, A. Philips, and P. Laird. Solving
large-scale constraint satisfaction and scheduling problems
using a heuristic repair method. In Proceedings of the Na-
tional Conference on Artificial Intelligence, 1990.

[10] M. Tambe. Towards flexible teamwork. Journal of Artificial
Intelligence Research (JAIR), 7:83–124, 1997.

[11] M. Tambe and H. Jung. The benefits of arguing in a team. AI
Magazine, 20(4), 1999.

[12] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The dis-
tributed constraint satisfaction problem: Formalization and
algorithms. IEEE Transactions on Knowledge and Data En-
gineering, 10(5):673–685, 1998.

[13] Makoto Yokoo and Katsutoshi Hirayama. Distributed con-
straint satisfaction algorithm for complex local problems. In
Proc. of the Third Intl.Conf. on Multi-Agent Systems(ICMAS),
July 1998.

