Towards Sensor and Motion Measurements Databases for
Training Models for the NAO Robot

Kholud Alghamdi, Jesse Torres, Justin Burden, Venkata Maddineni, Roba Alharbi, Tejeswar Neelam,
Peter Tarsoly, Abdullah AlHaif, Joseph Nke, Soham Jadhav, Sai Sohana Dodle, Marius Silaghi

Florida Institute of Technology

ABSTRACT

High quality probabilistic models for a complex robot like Alde-
baran’s Nao humanoid depend heavily on details from its envi-
ronment, involving multiple parameters. Building such models re-
quires significant effort with data gathering and data cleaning. We
propose to create a public database of NAO sensor data that can be
used by researchers and engineers training models for localization,
mapping, and planning in controlled environments. Here we report
on our release of a database with sensor data, parameterized by en-
vironment configuration and nature. The database contains struc-
tured folders with documentation, measurements, Nao Al feedback,
and data management tools. The measurements can include transi-
tion, sonar, and image data while the internal Al feedback contains
results of default landmark detection.

Keywords: Humanoid, framework, model, Al, Nao.

1. Introduction

In order to support high level intelligent moving tasks for Nao, high
quality models of its sensors and transition models have to be pre-
pared. A database is designed and released with recorded sensor
and transition data, as reported here, to support the construction of
such models. The models are not solely a function of the electro-
mechanical design of Nao, but also a function of the environment
in which Nao acts. Both sonars and vision produce measurements
that strongly depend on the materials, textures, and colors of the
surroundings. Further, the friction coefficient and stability of the
robot depends on the adherence, elasticity, and softness of the floor.
The recognition rate of the landmark detection module is sensitive
to the Nao-Marks sizes, colors, and positions.

In a previous work on this direction involving some of the au-
thors [[1] we have have proposed a model and framework for con-
structing probabilistic models for the problem of exploration of
a labyrinth. These models are designed for integration with high
level artificial intelligence techniques, usable for advancing towards
a long term goal of providing a software architecture for supporting
Nao’s motion and localization activities for general tasks. However,
the models built in that work used only small amounts of data for
training and therefore the error rate of the algorithms using them
was too high for achieving a usable behavior.

Other areas of Artificial Intelligence, such as speech recognition
and vision, exhibited spectacular improvements in quality after sig-
nificant work was laid over decades into the gathering of data and
creation of clean databases for model training, such as the TIMIT
corpus from the Language Data Consortium (LDC) [2]. While the
basic techniques for speech recognition and vision (HMMs and
ANNSs) have largely existed for many decades, it was the creation

and wide availability of these databases that enabled the develop-
ment of the high quality probabilistic models that can handle rea-
sonably the challenges posed by real applications.

A similar situation is present now in robotics, where advanced
algorithms are available for planning, localization, and mapping,
but where accurate probabilistic models of reasonable robots are
absent. Nao is a skilled robot which has advanced mechanical and
computational resources, but where quality models of its interac-
tion with the environment are essential for the advancement of the
technology towards a status that is sufficiently usable to be brought
to the large public.

Aldebaran’s Nao is a humanoid robot that can be a human com-
panion and is appropriate for household environments. It has small
dimensions which do not offer him the strength, height, and dex-
terity to open doors or perform other mechanical tasks. In home,
hospital, and office environments it can provide, for example, en-
tertainment or emergency support for children and seniors. While
its communication and emotional intelligence is meeting many ex-
pectations, its movement and ability to localize with standard soft-
ware is reduced, and insufficient for most other tasks. A number
of research efforts have led to the description of successful applica-
tions of simultaneous localization and mapping (SLAM) to certain
tasks such as wall following in mazes and localization in spaces
filled with landmarks [3]. However there is a lack of general soft-
ware packages applicable to new scenarios. In this work we take
additional steps towards designing such a general mapping and lo-
calization support software architecture.

2. Nao Sensors and transition

Nao robots have 25 joints for robot motion that include Head Yaw,
HeadPitch, ShoulderPitch, ShoulderRoll, ElbowYaw, ElbowRoll,
HipYawPitch, WristYaw, Hand, HipRoll, HipPitch, KneePitch, An-
klePitch, and AnkleRoll. Each one has two sides (right and left)
except for three joins, namely HeadYaw, HeadPitch, and Hip Yaw-
Pitch. These joins are responsible for the movement of the robot
and, for introspection, each of them has five sensors which include
position, temperature, electric current, stiffness of the join sensors,
and position of the actuators. However, these are not the only sen-
sors that the NAO robot has. There are two HD cameras, four mi-
crophones, and ten touch sensors.

The sonar sensors are particularly relevant to us, as they are im-
portant for NAO’s navigation. NAO robots have two sonar sensors
that help to calculate the distance between the robot and the ob-
stacles ahead of the robot. These have the ability to detect and
measure distance to objects in the range between 20 cm and 80
cm (according to Aldebaran website for NAO robots v3 and v4).

32th Florida Conference on Recent Advances in Robotics May 10-11, 2019, Florida Polytechnic University, Lakeland, Florida

Figure 1. Nao Marks

Above or under this detection range, the object distance cannot be
calculated.

There are four different events generated by the sonar sensor
drivers. First, the SonarLeftDetected event, which signals that there
is an obstacle in front-left side at less than 50 cm, so NAO may need
to stop and turn right to avoid the obstacle. Next, the SonarRight-
Detected event signaling that there is an obstacle in front-right side
and NAO may need to stop and turn left to avoid hitting the ob-
ject. Further, SonarNothingLeftDetected signals there is nothing in
the front-left side, and SonarNothingRightDetected, which signals
there is nothing in the front-right side.

Additionally, we use ALLandMarkDetection, which is a vision
module that uses a NAO camera to recognize special patterns called
landmarks or NaoMarks (see Figure[I)). Those landmarks are used
to get the accurate robot position. The landmark is a dark disk
that has white triangle fans inside it. The white triangle sizes are
different to distinguish between landmarks.

3. Framework for Sensors and Transition Data

The studied labyrinth consists of connected square cells with inte-
rior sides of 20 inches. Each wall is 2 inches thick. For record-
ing a sensor model, we program Nao to take various positions is
a labyrinth cell with 3 walls and an open side. Each wall has a
NAOmark pair at the level of the head. We save the sonar and land-
mark detection readings at each position. Each position is taken
10 different times, recording each time separately the correspond-
ing measurements. At the moment of each measurement, the head
is looking straightforward, as the landmark detection is associated
with the direction of the head, and the sonar reading is associated
to the orientation of the body.

The floor of the cell is split into a safely reachable and an un-
reachable area. The unreachable area is within 6 inches from the
walls. The central reachable area is 8 inches wide and 16 inches
long, namely in the direction of the cell opening. The safely reach-
able area is split into squares with sides of 2 inches. The sensor
measurements are made in the centers of each square. The robot is
oriented once in each direction that forms angles that are a multiple
of 5 degrees with respect to the sides of the squares.

The conditional probabilities of each of the sensor readings given
each position an orientation can be estimated from these measure-
ments. Measurements of the accuracy of Nao movements are also
taken as measurements of results of walking movements intended
to be between such adjacent squares.

4. Procedure For Sensor Data Gathering

In order to obtain sufficient data for localization, we programmed
the robot to take ten measurements at each position and orientation
within a single labyrinth 20in x 20in cell. As previously explained,

20in

2

6in. 6in

Figure 2. Data Gathering: The Nao robot travels on this path
taking measurements at each 5° to 11.25° orientation in each of the
squares.

the cell is divided into 2in x 2in squares, in which the center of the
NAO robot cannot be within 6 in of a wall.

An example path the NAO robot took through the 2 in squares
in the labyrinth cell is displayed in Figure 2] In each of the 2 in
squares, the robot makes a 360-degree rotation, taking sonar and
landmark readings every five or degrees. Due to inaccuracy in the
robot’s movement, the robot may move more than ten degrees on a
rotation. Based on our measurements, our program asks the NAO
library that the robot should rotate only a total of 320 degrees, re-
quest that will have it rotate 360 degrees in practice. For each mea-
surement, the position and orientation are stored in the database
with the sensor readings.

The recorded measurements include readings from both the left
and right sonars and the landmark detector. The program includes
several instances of the NAOqi module ALProxy, which allow it
to take these measurements, in addition to movement functional-
ity. Among these instances are a memory proxy, which gets data
from NAO’s subdevices such as the sonars and head rotations, and
a landmark proxy which gets data on which landmarks, if any, are
detected. The memory proxy obtains the data of the left and right
sonars, which represent measured distances between the robot and
the wall, and stores these in the database. Then, a boolean value is
stored indicating whether a landmark was detected, and if any were
detected, then measurements on the ID, dimensions, and direction
of view for each landmark are stored in the database.

S. Procedure For Transition Data Gathering

We represent the current square and the adjacent squares as a 5x5
matrix, with the initial position is in the center of the matrix. This
allows to record the case where a requested move of one square
ends up being a move of two squares.

The robot was programmed to rotate clockwise, and counter-
clockwise, and to move to adjacent squares. We start giving in-

32th Florida Conference on Recent Advances in Robotics May 10-11, 2019, Florida Polytechnic University, Lakeland, Florida

structions by selecting the orientation and specifying the goal posi-
tion, to which robot has to go. Then we record the actually obtained
position.

6. Database Folders

The Transition data and Sensor data is organized in our databas
for which robot type according to the following hierarchy:

/<Env>/<Model>/<Collection>/Type[_run] .extension

Where,

Env := Envl | Env2

Model := Sensor | Transition

Collection := Code | Data | Documentation
File := readings|cpt

Extension := .txt | .csv | .py | .c
Examples :

/Env1/Sensor/Code/Method/SensorFusion/
/Env1l/Transition/Code/ParticleFiltering.c
/Envl/Transition/Data/cpt_O1l.csv
/Envl/Sensor/Data/readings_05.txt

The Env segment identified the physical environment described
in the documentation. For the data described so far, Env1 is de-
scribed as a NAO v5 in a labyrinth with walls of plastic cloth, and
hard linoleum floor.

Our database contains transition data and sensor data. Transition
data is defined as when the robot tries to move between two adja-
cent squares, each 2inx2in, in the labyrinth. The sensor data consist
of measurements about landmarks and sonars detecting walls. Each
move/turn is recorded multiple times.

As an example, the data formats in the Env1 are described below:

Transition Data. The transition data is a 270 number dataset.
The dataset is given by four columns:

e Given_Position is defined as the position the robot requests
to reach

e Given_Orientation is the requested orientation of the robot at
the destination cell.

e Recorded_Position is where the robot moves from the center
of the cell to the destination cell and

e Recorded_Orientation is the final orientation of the robot at
the destination cell (see Table[T).

Sensor Data. Sensor data is a 5120 number dataset defined by
32 columns. Column and row are the position of the robot in the
cell. Angle is the degree of the rotation. Head Pitch and Head
yaw represents the Orientation of the Head. Sonar left and Sonar
Right are the sensor reading of the sonar. Landmark detection rep-
resents whether the landmark is detected or not. Two Landmarks
are placed on each wall. So, the robot detects two landmarks: Land-
markl, Alphal, Betal, Widthl, Heightl, landmarkID2, Alpha2,
Beta2, Width2, Height?2.

For each landmark position robot detects width and height of the
landmark. Alpha and Beta are the line of sight angle of landmark

Ygithub.fit.edu/RoboDB

from the position of the robot. If the Robot is at the corner of a
labyrinth cell, it sometimes detect two other landmarks on the other
wall so we have LandmarklId3, Alpha3, Beta3, Width3, Height3,
LandmarkID4, Alpha4, Beta4, Width4, Height4. Sample measure-
ments are shown in Table[2} where only one out of the 4 landmarks
is observed.

Delta shows the horizontal and vertical angle under which the
landmark is seen (the value reported by NAO being always equal
to the largest of the two).

In a set of measurements runs, we used three additional columns,
namely for the requested head pitch and yaw values, which can help
learn discrepancies between requested and actual values for NAO
actuators.

7. Data Formats for Sensors

In order to programmatically access the sensors and transitions on
the NAO humanoid, numerous SoftBank NAO SDKs were consid-
ered. However, due to its widespread usage and adoption within
the Al and Machine Learning communities, Python was chosen as
the primary language and SDK for development. Using the Python
SDK, the main python module utilized was ALProxy, alluding to
the effective Proxy design pattern implemented within the SDK.
ALProxy is passed parameters regarding the IP address of the NAO,
the port number of the broker, and the exact name of the NAO mod-
ule being utilized. The usage of NAO modules can be classified into
two separate categories: modules used for sensors and transitions.

S

a0 03

Figure 3. The layout of the area where the sensor data was col-
lected. Each square was two inches in length and width, with each
of the boundaries six inches away from a labyrinth wall. The letters
represent the orientation seen in the data; additionally, each letter
represents a wall with two NAO Landmarks.

Each CSV file has the following headers: runid, column, row,
orientation, headOrientationYaw, actualYawU, actualPitchU, ac-
tualYawL, actualPitchL, leftSonar, rightSonar, alphalU, betalU,
dalU, db1U, nb1U, alpha2U, beta2U, da2U, db2U, nb2U, tU, NU,
alphalL, betalL, dalL, db1L, nb1L, alpha2L, beta2L, da2L, db2L,
nb2L, tL, and NL.

The runid corresponds to the run number of the specific trial.
Column and row correspond to the numbers seen in the boxes in
Figure 3] However, there is a caveat to this system; these numbers
are relative to each of the orientations S, L, and R. For example,
7,0 corresponds to the top left square when the orientation is S, or
straight. If the orientation is L (left), for instance, 0,0 is where 0,3
is written in Figure E} If the orientation is R (right), 0,0 is where
7,0 is written in Figure[3]

The headOrientationYaw field is the position of the head, mea-
sured in degrees away from the head facing the same forward posi-
tion as the body. The other yaw and pitch values are recorded when
ALLandMarkDetection is called. For these values, and other values

32th Florida Conference on Recent Advances in Robotics May 10-11, 2019, Florida Polytechnic University, Lakeland, Florida

github.fit.edu/RoboDB

Given_Position Given_Orientation
0 left
0 right
0 still
1 left
1 right
1 still

Recorded_Position Recorded_Orientation
17 left
2 right
0 still
3 left
2 right
1 still

Table 1. Sample Transition Data

Measurement 1 2 3 4
Column 0 0 0 0
Row 0 0 1 1
Angle 0 10 10 20
HeadPitch N/A N/A N/A N/A
HeadYaw N/A NA NA N/A
Sonar Left 46 47 45 45
Sonar Right 48 S1 47 .30

LandmarkDetected | False False True True

LandmarkID1 0 0 68 68
Alphal 0 0 -.0089 .2294
Betal 0 0 -.0649 -.0935
Width1 0 0 .098 .103
Heightl 0 0 .098 .103
Delta 0 0 .01 .008

Table 2. Sensor Data

associated with landmark detection, the U and L denote measure-
ments taken from the upper and lower cameras built into NAO’s
head.

The fields for the sonar distances, leftSonar and rightSonar, are
measured in meters. The measurements for landmark detection
make up the remainder of the fields. The numbers 1 and 2 for
each of these fields correspond to the values associated with each
of the landmarks detected by NAO, as two landmarks were placed
adjacent to each other on each of the three walls. The alpha and
beta fields correspond to the angles of the landmarks, and the da
and db fields respectively correspond to the height and width of
the landmarks, all with respect to the specific NAO camera (upper
or lower). The t field corresponds to a timestamp in seconds and
microseconds that the respective landmarks were found. Finally,
the N field corresponds to the number of landmarks detected by the
respective camera.

All previously mentioned sensors have associated NAO modules
that can be utilized to gather sensor data. In order to collect data
from each of the sonar sensors, ALSonar was used. To collect
information regarding landmark detection, ALLandMarkDetection
was used. However, sensor data is not directly collected by simply
calling the aforementioned modules prior to gathering any sensor
data. After calling the desired module, via ALProxy, to capture the
sensor data, the collection of data was completed through calling
ALMemory. The resultant proxy object generated from calling the
ALMemory module from ALProxy allowed for the collection of
data using the getData function.

In order to make transitions, ALMotion was utilized. The com-
bination of the different functionality within this module allowed
for control over the orientation and position of both the robot body
and robot head. In order to move the robot, the moveTo func-
tion was used, where the movement desired along with desired end
orientation was passed in. Additionally, prior to each movement,
the movelnit function was called. Similarly, directly following

each move, the killMove function was called. Finally, in order to
make transitions with respect to the head orientation, the angleIn-
terpolationWithSpeed function was called in order to effectively
set the head orientation. Utilizing the angleInterpolationWithSpeed
and moveTo functions allowed for transitions defined by inches of
translation and degrees of rotation.

As seen, each run successfully resulted in the collection of sonar
values. However, there is a sparsity in the number of landmarks
recorded; this is because the NAO simply did not detect land-
marks during a majority of samples detected. If a landmark was
not recorded, every value after rightSonar in each respective CSV
row is populated with a zero.

8. Data Formats for Transitions

The amount of the data that has been collected for evaluating move-
ments is 270 measurements, which consist of 10 rounds where each
round has 27 measurements, which are the outcome of 9 squares
times 3 orientations. There are three orientations that are consid-
ered, which are straight (S), left (L), and right (R). The map that
is used in this experiment contains 9 destination squares, and these
squares were numbered from O to 8. The robot has to go to every
square from O to 8 to complete one round. The data that was col-
lected for the transitions were saved in the csv files by using the
following function. As a result, the data is stored in csv files.
with open('motion_data.csv', 'a') as csvfile:
fieldnames = ['directedSquareNumber',
'directedendorientation’,
‘actualSquarelumber ',
‘actualEndorientation']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

Figure 4. The function that is used in saving the csv files.

When the program is run, some steps were followed, which start
with entering a square number to move to and the orientations of
the robot. Then, waiting until the robot moves and after that other
two questions are showed up, which ask about the square number
and the orientation that the robot ended up in.

After collecting these data, one may calculate the transition
probabilities between states, given action decisions. That is cal-
culated by summing up the counts that ended up in each target
square/orientation, and then dividing the result by the total number
of runs, for the given action. These transition probabilities predict
the end state statistically.

9. Sample use of data for localization

Particle filtering allows tracking nonlinear systems and dealing
with non-Gaussian problems, and is utilized for simultaneous lo-
calization and mapping. It can be used for large dimensional

32th Florida Conference on Recent Advances in Robotics May 10-11, 2019, Florida Polytechnic University, Lakeland, Florida

0s 0s

oL 17 L

1
2‘
3‘
4
5
6‘

Figure 6. Transitions Map

state spaces. Here we give an example of implementing localiza-
tion for our model using particle filtering with data trained from
our database. It works by producing samples “particles” from
p(xiler,. .., e;) for approximating p(x;t1ley,...,ei+1), where x; are
random variables describing the state at time i, and e; are evidence
variables measured at time i.

We show how localization is applied to maintain robot situation
awareness during a predefined sequential plan.

At each step of the predefined sequential plan, the robot is given
anew action, such as going straight, or turning left or right, at a cer-
tain angle. Then, we read the current sensor measurements: sonar,
landmarks list and position.

Based on the map and model that was trained from data, a prob-
ability distribution is initialized and maintained over the possible
states of the robot.

A set of particles is generated based on the current probability
distribution. Each particle has a state (the position of the robot)
and a weight. The particles are updated for the performed transi-
tion based on the taken action. The measured sensors are used to
associate a weight with each particle, based on its likelihood. Fur-
ther, a new distribution is inferred from these weighted particles,
effectively making the robot aware of the new situation.

The repetition of the process is also possible, for the next action
in the sequential plan.

The first thing we do, we sample a particle from the current
distribution. A distribution can even be represented with a set of
weighted particles: < x;,w; >, interpreted as a Gaussian mixture.

Then, one can sample a new states x;| using the previous sam-
ple < x; > and the control (action) u,;. After that, one re-weights
that sample by measuring how likely the measurement have been
if that x; 1| is actually where the robot was. This become the parti-
cle’s new weight. The sample weights are further normalized and
identical states are aggregated.

We assume the robot has to go through three cells of the
labyrinth, and it has to localize itself while walking through this
environment. That is done by utilizing information from sonars
and landmarks spotted on the walls of the cells. As discussed pre-
viously, the space inside that cells is divided into small 2 in squares.
We have 3 cells of the labyrinth, looking like in Figure[§]

The sample sequential plan used in this example is [FFFF F
FFFRL4SDDDRL45S FFFFF FF], where F is the action

Figure 8. Model of the world where the robot is supposed to be.

for row in sensorDatalist:
colNum = int (row[0])
rowNum = int (row[1l])
left samples[rowNum].append(
float (row[S]) *meter to_inch conversion)
right samples[rowNum].append(
float (row[€]) *meter_to_inch conversion)

Figure 9. Parsing Sonar Data

for going forward 2 inches, RL45 is the action for turning left 45
degrees, and D is the action for going forward 2+/2 inches.

Based on this plan the robot should go 8 steps forward, then turn
right 45 degree, then make 3 steps forward on diagonals, then turn
right 45 degree, then go 7 more steps forward. We keep running
this plan and as we are running the plan the robot is measuring the
sonars and landmarks. This is would be a map and a configuration
of the problem.

At the very beginning, the robot knows where it is, and in our
case the robot starts at (3,12) which on an edge with the back to
the wall. The hidden variable is a position and a rotation. The
position is given by the current square. The possible rotations are
multiples of 5 degree. We have approximately 100 cells *360/5
=7200 possible states.

The whole problem is a dynamic belief network (DBN), To start
with particle filtering, all the particles at the beginning are in (3,12).
We started by generating 1000 particles which is a rather small
number for the given space size.

If based on the collected database we have a transition matrix
with 0% probability of transiting to an adjacent node, we subtract

32th Florida Conference on Recent Advances in Robotics May 10-11, 2019, Florida Polytechnic University, Lakeland, Florida

sonarLeft = memoryProxy.getData("Device/SubDevicelList/US/Left/Sensor/Value™
sonarRight = memoryProxy.getData ("Device/SubDevicelist/US/Right/Sensor/Value")

row.append (sonarlefc)
row.append (sonarRight)

Figure 10. Fetching Sonar Data

def gaussian(x, mu, wvar):

return np.exp(-np.power(x - mu,

2.) / (2 *

var)) /np.sqgrt (2*np.pi*var)

Figure 11. Regression on Sonar Data

Quit

Figure 12. Belief Map Localizing NAO

a fraction (i.e. & = 10%) of the probability mass of existing target
states, to distribute to all states within 4 inches distance. When we
sample the first transition, with approximately 90% likelihood the
next node is (3,11) with O degree for orientation, and approximately
100 particles are distributed on the surrounding areas which are left,
right, and diagonally, with adjacent orientations.

The Figure|12|shows a snapshot of the belief map where whiter
doughnut segments correspond to location and orientations of
higher likelihood, white darker area illustrate lower location prob-
ability. In the example of the figure, the NAO robot “Dougie” is
most likely close to the middle of the right wall, facing left.

10. Data Processing

CSV data files containing the sensor and transition data were gener-
ated by using a writer object from the Python CSV module (Python
v2.7). The algorithms used for generating the sensor and transi-
tion data collection are described in Sections 4 and 5 respectively.
The CSV data formats are described in detail in Sections 7 and 8.
Figure [I0] shows an example of how the writer object is used to
hold data obtained from the Nao sonar sensor into the “row” ob-
ject, which is a Python list. Similar methods were used to capture
landmark detection data from the Nao ALLandMarkDetection API,
and to capture movement transition data using manual input.

An example of the way the data can be used is described below.
The sonar data is read from the CSV file and the mean and vari-
ance of the sonar readings are calculated for each row of the 2x2
inch squares, using the Python numpy library. Data is first loaded

into numpy arrays “left_samples” and “right_samples” as shown in
Figure[9]

The numpy “average” and “var” functions can then be used to
calculate the mean and variance for each row of squares. For ex-
ample, for one subset of data this method calculated the mean and
variance for the second row of squares from the wall (9 inches from
the wall) to be 8.31015 and 3.26334. This data can then be used in
a Gaussian function, shown in Figure[TT] to perform sensor fusion
to estimate the probability of the Nao robot’s actual location being
in the second row of squares given a sonar measurement.

Additional conditional probability tables can be computed using
the landmark detection module data by summing the landmark de-
tection counts to compute discrete probability tables for Bayesian
inference.

11. Related Work

The problem of simultaneous localization and mapping (SLAM)
for a Nao robot placed in a room with multiple Nao marks placed
at random locations, at the height of the cameras of Nao, was ad-
dressed in [3|]. The effort led to new SLAM approaches for real-
time incorporation of new landmarks in exploration.

Probabilistic reasoning for localization has been used with mo-
bile robots to address various types of problems. If the map of the
explored world is known, then Monte Carlo Localization can em-
ploy particle filtering [4].

Motion planning in partially observable non-deterministic envi-
ronments of this type can be modeled with Partially Observable
Markov Decision Processes (POMDPs), for which various tech-
niques have been proposed to tame the complexity challenges. All
these techniques can employ a dynamic belief network representa-
tion of the problem [5].

12. Conclusion

In this work we propose to build a database of sensor and transition
data describing Nao’s behavior in a standardized environment, to-
gether with documentation and tools, that can support the training
of high quality probabilistic model of the humanoid robot Nao sen-
sors and actions, enabling the application of high level intelligent
algorithms for tasks such as localization, mapping, and planning.

In previous work we had reported that sensors and movements
of Nao have significant noise and it was difficult for him to reliably
move using the models obtained with preliminary measurements.
The database proposed and released in this report is a further step
towards the development of reliable models of the type that large
and high quality speech databases enabled for the area of speech
recognition.

References

[1] A. Hasanain, T. Weekes, M. Person, K. Paul, Y. Chang,
A. Rothman, Z. Rui, R. Rahil, M. Syed, C. Wodd, and

32th Florida Conference on Recent Advances in Robotics May 10-11, 2019, Florida Polytechnic University, Lakeland, Florida

M. Silaghi, “Models and framework for supporting humanoid
robot planning & exploration,” in FCRAR.

[2] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and
D. S. Pallett, “Darpa timit acoustic-phonetic continous speech
corpus cd-rom. nist speech disc 1-1.1,” NASA STI/Recon tech-
nical report n, vol. 93, 1993.

[3] Y. Zhang, Real-time SLAM for Humanoid Robot Naviga-
tion Using Augmented Reality. PhD thesis, Applied Sciences:
School of Mechatronic Systems Engineering, 2014.

[4] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte
carlo localization for mobile robots,” Artificial intelligence,
vol. 128, no. 1-2, pp. 99-141, 2001.

[51 S.J. Russell and P. Norvig, Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited,, 2016.

32th Florida Conference on Recent Advances in Robotics May 10-11, 2019, Florida Polytechnic University, Lakeland, Florida

