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ABSTRACT
We propose a way to define the most expensive operation to
be used in evaluations of complexity and efficiency for sim-
ulated distributed constraint reasoning (DCR) algorithms.
We also report experiments showing that the cost associ-
ated with a constraint check, even within the same algo-
rithm, depends on the problem size. The DCR research has
seen heated debate regarding the correct way to evaluate ef-
ficiency of simulated algorithms. DCR has to accommodate
two established practices coming from very different fields:
distributed computing and constraint reasoning. The ef-
ficiency of distributed algorithms is typically evaluated in
terms of the network load and overall computation time,
while many (synchronous) algorithms are evaluated in terms
of the number of rounds that they require. Constraint rea-
soning research evaluates efficiency in terms of constraint
checks and visited search-tree nodes.

We argue that an algorithm has to be evaluated from the
point of view of specific operating points, namely of possi-
ble or targeted application scenarios. We then show how to
report efficiency for a given operating point based on simu-
lation. Additionally, new experiments we report here show
the fact that the cost of a constraint check varies with the
size of the problem, and we discuss the implications of this
phenomenon.

1. INTRODUCTION
This article addresses the evaluation of distributed con-

straint reasoning algorithms. One of the major achievements
of computer science consists of the development of the com-
plexity theory for evaluating and comparing the efficiency of
algorithms in a scalable way [8]. Complexity theory proposes
to evaluate an algorithm in terms of the number of times it
performs the most expensive operation. This number is seen
as a function of the size of the problem. While such metrics
do not reveal how much actual time is required for a cer-
tain instance, they allow for interpolating how the technique
scales with larger problems. The assumption that compu-
tation speed will double each few years makes a polynomial
factor in the cost irrelevant from a long perspective [8, 4].

Identifying the most expensive operation is not always
trivial. For simple algorithms such as centralized sorting
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and graph traversal, this operation is typically identified as
the processing inside the most inner loop. Constraint rea-
soning researchers have long used either the constraint check
or the visited search-tree node as the most expensive opera-
tion in classical algorithms. In algorithms whose structure
does not present a most inner loop, a scalable efficiency eval-
uation is usually based on the operation that seems to be
the most often used and that is relatively expensive. How-
ever, the cost of operations can be distorted by specialized
hardware where, for example, on some processors multipli-
cation is as efficient as addition. This leads to an uncertainty
about whether the obtained metric is relevant for evaluat-
ing the same algorithm on a new machine. Moreover, that
most expensive operation can prove irrelevant for a compet-
ing algorithm who uses extensively another operation. In
general, the relevance of a metric is therefore relative to the
algorithm and the scenario where it will be used. The rel-
ativity of relevance of metrics is not considered important
for some problem domains and algorithms that are similar,
as is usually the case with constraint reasoning.

Evaluating distributed computing.
However, the relativity in the relevance of metrics is par-

ticularly acute for distributed computing. The two main
reasons for it are:

• the relative ratio between cost (latency) of messages
varies by 4-6 orders of magnitude between multi-
processors and remote Internet connections, and

• while the cost of a centralized computation can be ex-
pected to reduce over years, the cost (latency) of a
message between two points is not expected to decrease
significantly (in contrast with the other computation
costs), since the limits of the current technology are
already dictated by the time it takes light to traverse
that distance over optical cable.

Indeed, the minimal time it can theoretically take a mes-
sage to travel between two diametrically opposed points on
the Earth is:

π ∗ REarth

speedlight

=
3.14 ∗ 6.378 ∗ 106m

3 ∗ 108m/s
≈ 67ms.

Since the optical cables do not travel on a perfect circle
around the Earth, it is reasonable to not expect significant
improvements beyond the current some 150ms latency for
such distances.

For a realistic understanding of the behavior of distributed
algorithms, some experiments are performed using agents



placed on different computers on Internet, typically on a
LAN [25, 9, 20, 12]. However, results obtained with LANs
may not be valid for any other network topology, or for re-
mote agents on Internet. Also, such results cannot be repli-
cated and verified by other researchers, and therefore results
using deterministic network simulators are also commonly
requested.

In the following we provide the formal definition for
the Distributed Constraint Optimization (DCOP) problem.
Then we introduce a simple framework for unifying various
versions of logic time systems. We show that the framework
models well the different efficiency metrics and methodolo-
gies previously used to evaluate DCOP algorithms based on
logic time. These previous methodologies are presented in
the unifying framework to make the understanding of their
properties easier. We then discuss the arguments and draw-
backs for each such metric, and then argument our new pro-
cedure for evaluating experiments.

2. FRAMEWORK
Distributed Constraint Optimization (DCOP) is a formal-

ism that can model naturally distributed problems. These
are problems where agents try to find assignments to a set
of variables that are subject to constraints. Several appli-
cations are addressed in the literature, such as multi-agent
scheduling problems, oil distribution problems, auctions, or
distributed control of red lights in a city [15, 22, 19].

Definition 1 (DCOP). A distributed constraint opti-
mization problem (DCOP), is defined by a set A of agents
A1, A2, ..., An, a set X of variables, x1, x2, ..., xn, and a set
of functions (aka constraints) f1, f2, ...fi, ..., fm, fi : Xi →
IR+, Xi ⊆ X, where only some agent Aj knows fi.

The problem is to find argminx

Pm

i=1 fi(x|Xi
). We as-

sume that xi can only take values from a domain Di =
{1, ..., d}.

The DCOPs where the functions fi are defined as fi :
Xi → {0,∞}, are called Distributed Constraint Satisfaction
Problems (DisCSPs). Algorithms for the general DCOP
framework can address any DisCSP and specialized algo-
rithms for DisCSPs can often be extended to DCOPs.

3. EVALUATION FOR MIMD
Some of the early works on distributed constraint reason-

ing were driven by the need to speed up computations on
multiprocessors, in particular (multiple instruction multiple
data) MIMD architectures [25, 3, 10], sometimes even with
a centralized command [3]. However, their authors pointed
out that those techniques can be applied straightforwardly
for applications where agents are distributed on Internet.

Among the earliest experimental research on DCR we
mention [25] by Zhang and Mackworth. The metric pro-
posed by them is based on Lamport’s logic clocks described
in the Definition 6.1 and in the Algorithm 18 in [25].

Logic clocks and logic time.
An event e1 at agent A1 is said to causally precede an

event e2 at agent A2 if, had all agents attached all events
that they knew to each existing message, A2 would know
about e1 at the moment when e2 takes place. Leslie Lam-
port proposes in [11] a way, called logic clocks to construct
a tag, called logic time (LT), for each event and concurrent

% RL is the number series generator from which message
latencies are extracted using function next()
% E = {e1, ..., ek} is a vector of k local events
% T = {t1, ..., tk} is a vector of (logic) costs for events E
when event ej happens do

LTi = LTi + tj ;
end do.
when message m is sent do

LT (m) = LTi + next(RL));
end do.
when message m is received do

LTi = max(LTi, LT (m));
end do.

Algorithm 1: Lamport’s logic time maintenance for par-
ticipant Pi. Use of parameters LT 〈RL, E, T 〉 unifies pre-
vious versions for usage with DisCSPs found in (Zhang&
Mackworth 1991; Yokoo, Durfee, Ishida& Kuwabara 1992;
Meisels, Kaplansky, Razgon& Zivan 2002; Silaghi& Falt-
ings 2004; Chechetka& Sycara 2006).

message in a distributed computation such that whenever an
event e1 causally precedes e2 then the logic time of e1 should
be smaller than the logic time of e2. If LT (e) denotes the
logic time of an event e, then we can write LT (e1) < LT (e2).
Otherwise, the logic time does not reflect the real time and
some messages with smaller logic time may actually occur
after concurrent messages with bigger logic time. Each pro-
cess Pi maintains its own logic clock with logic time (LTi)
initially set to zero. Whenever Pi sends a message m, it
attaches to m a tag, denoted LT (m), set to the value of LTi

at that moment. The process Pi increments LTi by the logic
duration, te, of each local event (computation) e. Assume
Pi receives a new message mk from a process Pj . Pi has to
make sure that the logic time LTi of its future local events
is higher than the LTj of the past events at Pj . This is done
by setting LTi = max(LTi, LT (mk) + L), where L is a logic
time (duration) assigned to each message passing. We give
in Algorithm 1 the procedures proposed in [11], tailored to
unify the different metrics used for DCOPs. Certain au-
thors use random values for the logic time of a message [7]
and therefore we allow this in our framework by specifying
a number series generator (NSG) RL from which each mes-
sage logic time (logic latency) is extracted with a function
next(). A logic time system we will use here is therefore
parametrized as LT 〈RL, E, T 〉 where E is a vector of types
of local events and T a vector of costs, one for each type
of event. For measurements assuming a constant latency of
messages set to a value L, the RL parameter used consists
of that particular number, L, (written in bold face).

An experiment may simultaneously use several logic time
systems, LT 1〈R1

L, E1, T 1〉, ..., LT N〈RK
L , EK , T K〉. Each

process Pi maintains a separate logic clock, with times LT u
i ,

for each LT u〈Ru
L, Eu, T u〉. Also, to each message m one will

attach a separate tag LT u(m) for each maintained logic time
system LT u〈Ru

L, Eu, T u〉. This is done in order to simulta-
neously evaluate a given algorithm and set of problems for
several different scenarios (MIMD, LAN, remote Internet).

A common metric used to evaluate simulations of DCR
algorithms is given by the logic time to stability of a compu-
tation. The logic time to stability is given by either:

• the highest logic time of an event occurring before qui-
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Figure 1: Graph axes depicting (a) logic time to sta-
bility vs problem size as (log scale) number of vari-
ables; and (b) logic time vs. number of processors
at a given size of the DisCSP distributed to those
processors.

escence is reached [25];

• the logic time tagging the message that makes the so-
lution known to whoever is supposed to be informed
about it [20].

Quiescence of an algorithm execution is the state where no
agent performs any computation related to that algorithm
and no message generated by the algorithm is traveling be-
tween agents.

Uses of logic time for multiprocessors.
The operation environment targeted by [25] consists of a

network of transputers. The metric employed in [25] with
simulations for a constraint networks with ring topology
is based on the logic time system LT 〈1, {semijoin}, {1}〉,
where the number series generator 1 outputs the value 1 at
each call to next(). Note that the single local event associ-
ated in [25] with a cost is the semijoin, which is due to the
fact that the algorithms being tested there were not based on
constraint checks but on semijoin operators (which consist
of composing constraints and then projecting the result on
a subset of the involved variables). Graph axes used in [25]
depict logic time to stability vs problem size as (log scale)
number of variables, and logic time vs. number of processors
(aka agents) at a given size of the DisCSP distributed to
those agents (see Figure 1).

A theoretical analysis of the time complexity of a DisCSP
solver is presented in [3]. Logic time analysis is presented
there under the name parallel time, targeting MIMD multi-
processors, where each value change (aka visited search-tree
node in regular CSP solvers) has cost 1. Note that the ob-
tained metric is LT 〈0, {value-change}, {1}〉, where message
passing is considered instantaneous. A sequential version of
the same algorithm is also evaluated in [3] using the logic
time LT 〈0, {value-change, privilege-passing}, {1, 1}〉. The
term coined in [10] for a similar theoretical analysis of the
time complexity in parallel computations is sequential time.

4. EVALUATION FOR APPLICATIONS
TARGETING INTERNET

Distributed constraint reasoning algorithms targeting the
Internet had to account for the possibly high cost of message
passing between agents on remote computers. The latency
of message passing in this context is a function on the dis-
tance and available connections between the locations. As

message delay (time steps)
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Figure 2: Performance graph for one problem in-
stance used in (Yokoo.et.al 1992). The number of
time steps is what some recent articles call equiva-

lent non-concurrent constraint checks (NCCCs).

mentioned above, the theoretical lower bound on this la-
tency can be 67ms, eight orders of magnitude larger than a
basic operation on a computer (of the order of 1ns).

Network Simulators.
While some experiments use agents placed on distinct

computers on a LAN, such experiments can somewhat shew
the results due to the following.

• agents are geographically closer to each others than
in Internet applications, and therefore the latency of
messages can be 2-3 orders of magnitude smaller (1-2
ms instead of 100-200ms) [6].

• due to the shared medium used by the typical Ethernet
implementation of LANs, the bandwidth is shared and
communication between a pair of agents slows down
communication between any other pair of agents.

These two issues act in different directions and it is not
clear in which actual direction are the results skewed. This
makes another argument toward evaluating performance on
a simulated network. It is worth noting that early research,
such as [25] perform experiments both with simulators and
with actual execution on multiprocessors.

Metrics for Internet.
One of the first algorithms targeting Internet is the Asyn-

chronous Backtracking solver in [23]. That work experi-
mented with a set of different logic times, LT 1, ..., LT 25,
where LT i is defined by the parameters

LT i〈i, {constraint-check}, {1}〉, ∀i ∈ [1, 25] (1)

[23] reports the importance of the message latency in de-
ciding which algorithm is good for which task. Note that a
curve in the obtained type of graph (see Figure 2) reports
several metrics, but for a single problem size/type.

The time steps introduced in [23] correspond to the cost
of a constraint check. A similar results graph is used in [21]
having as axes checks vs checks/message, i.e., the logic time
cost for one message latency when the unit is the duration
of a constraint check (see Figure 3.a). This last graph also
reports logic time for the latency L = 0

LT 0〈0, {constraint-check}, {1}〉, (2)

which corresponds to simulation of execution with agents
placed on the processors of a MIMD with very efficient (in-
stantaneous) message passing (similar to [3], but using the
constraint check as the logic unit). This particular metric
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Figure 3: Performance graphs showing (a) (non-
concurrent) checks versus various latency/check
costs including 0 and (b) showing sequential mes-
sages versus constraint tightness.

is sometimes referred to as the number of non-concurrent
constraint checks.

Cycles.
After the work in [23], most DCOP research focused on

agents placed on remote computers with problem distribu-
tion motivated by privacy [24]. Due to the small ratio be-
tween the cost of a constraint check and the cost of one mes-
sage latency in Internet, the standard evaluation model se-
lected in many subsequent publications completely dropped
the accounting of constraint checks. A common assump-
tion adopted for evaluation is that local computations can
be made arbitrarily fast (local problems are assumed small
and an agent can make his computation on arbitrarily fast
supercomputers). Instead, message latency between agents
is a cost that cannot be circumvented in environments dis-
tributed due to privacy constraints. The metric in [24] is:

cycles = LT 〈1, ∅, ∅〉

The original name for this metric is cycles, based on the next
theorem (known among some researchers but not written
down in this context).

Theorem 1. In a network system where all messages
have the same constant latency L and local computations
are instantaneous, all local processing is done synchronously
only at time points kL (in all agents).

Proof. One assumes that all agents start the algorithm
simultaneously at time L, being announced by a broadcast
message, which reaches all agents at exactly time L (due to
the constant time latency). Each agent performs computa-
tions only either at the beginning, or as a result of receiving
a message.

Since each computation is instantaneous, any message
generated by that computation is sent only at the exact time
when the message triggering that computation was received.
It can be noted that (induction base) any message sent as
a result of the computation at the start will be received at
time 2L, since it takes messages L logic time units after the
start to reach the target.

Induction step: All the messages that leave agents at
time kL, will reach their destination at exactly time (k+1)L
(due to the constant latency L). Therefore the observation
is proven by induction.

As a consequence of this observation, any network simula-
tion respecting these assumptions (that local computations
are instantaneous and that message latencies are constant)
can be performed employing a loop, where at each cycle each
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Figure 4: Performance graphs based on (a) NCCCs
and (b) ENCCCs.

agent handles all the messages sent to it at the previous cy-
cle. As such, LT 〈1, ∅, ∅〉 is given by the total number of
cycles of this simulator.

Sequential messages (SMs).
Some researchers voice concern that the name cycle

is counter-intuitive and would suggest synchronous algo-
rithms. A significant fraction of reviewers currently adhere
particularly strongly to this opinion and are known to com-
monly reject articles that report results of this metric under
the name cycles.

This is not our opinion. However, another name previ-
ously used for the same metric is number of sequential mes-
sages (SMs) [20] or length of the longest causal chain of
messages. These names come from the common terminol-
ogy of Lamport’s logic clocks work [11] and directly suggest
their meaning and applicability to general asynchronous al-
gorithms. In particular sequential messages can be used
for experimentation with random message latencies. The
graphs in [20] depict results using as axes of coordinates
sequential messages versus problem parameters (see Fig-
ure 3.b).

NCCCs and ENCCCs.
The practice of using cycles and sequential messages as

time unit was intriguing for the CSP community which prac-
tices the use of constraint checks and search-tree nodes, and
a debate at the Constraint Programming 2001 conference
led to the subsequent re-introduction of logic time in the
form of the metric in Equation 2. That work [13] proposes
to build graphs with axes labeled NCCCs (non-concurrent
constraint checks) versus problem type (Figure 4.a). This
approach differs from earlier works by the fact that the cost
of a message in such graphs is typically restricted to only 0,
reporting solely constraint checks, (while the article admits
that other values are possible). This metric (initially used
for DCOPs targeting MIMD multiprocessors in [3]) has been
earlier dropped for the evaluation of problems with privacy
requirements on Internet. Its re-introduction (and in par-
ticular the NCCC acronym) has particular success, and a
vocal community of reviewers currently still maintains and
mandates its usage for evaluation of DCOP algorithms.

However, the importance of the latency of messages has
been rediscovered recently and logic time cost for message
latency is reintroduced in [2] under the name Equivalent
Non-Concurrent Constraint Checks (ENCCCs). ENCCCs
are computed using the Equation 1. Current ENCCCs usage
in graphs typically differs from earlier usage of the metric by
being depicted versus constraint tightness or versus density
of constraint-graph (with a label specifying the value of the
logic latency L, i.e. the number of checks/message-latency).
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Figure 5: Performance graphs illustrating (a) seconds per constraint tightness of the problems; (b) total
number of constraint checks per tightness, and (c) total number of exchanged messages per tightness.

Each graph depicts the behavior of several problem types
for one message latency, rather than the behavior of one
problem type for several message latencies.

Evaluations not related with the logic time.
Three other important metrics (not based on logic time)

for evaluating DCOPs algorithm were introduced in [9] in
conjunction with a DisCSP solver.

• the total running time in seconds for solving a DCOP
with agents distributed on the computers of a LAN
(with axes illustrated in Figure 5).a;

• the total number of constraint checks, illustrates the
efficiency of the algorithms if used to solve a CSP, by
converting the CSP into a DisCSP (DCOP) and solv-
ing it with a simulator(see Figure 5).b, and

• the total number of exchanged messages, which illus-
trates the total network load (with axes illustrated
in Figure 5).c. It is worth noting that measuring
the network load as the number of exchanged bytes
rather than exchanged messages is a common practice
in multi-party computations, and may be interesting
in some DCOP solvers where the messages do not have
constant size (e.g. DPOP [18]).

Note that these graphs introduced the use as axes of abscis-
sas the constraint tightness, namely the fraction of allowed
(i.e., 0-valued) tuples in each constraint.

Another evaluation methodology that is not fully based
on logic time, but whose computation uses logic time, is
called cycle-based runtime. It is equivalent with computing
ENCCCs on a modified version of the algorithm, which adds
synchronizations before sending a each message [5].

5. A NEW METHODOLOGY
Next we describe a new methodology for evaluating

DCOP algorithms that we decided to employ recently [1],
but which has not yet been introduced in sufficient detail.

Let us first mention the weaknesses in currently common
methodologies, and which we want to fix with our new pro-
posed approach:

• the weakness of the cycles/sequential-messages metric
is that its assumptions do not apply to DCOP solvers
with extensive local processing at each message (such
as in the recent DPOP algorithm [18]). DPOP has very
few messages and very expensive local computation at
each message.

• NCCCs (in the version with message cost zero) do
not take into account message latencies, which are an

important cost for many typical DCOP algorithms.
Moreover, (see the Experiments section) the cost of a
constraint check grows linearly with the problem size
(for the same algorithm), causing misleading curves.

• ENCCCs require depicting many graphs, one for each
possible checks/latency ratio, and still does not offer
a way to know which ratio is relevant to a given ap-
plication. This is due to the fact that the cost that
has to be associated with a constraint check depends
on many factors, being a function of the algorithm, of
the programming language, and (as we report here)
even function of the problem size. Plots of different
algorithms on the same ENCCCs graph are not com-
parable since their units often have different meaning
and relevance (and may not even be bounded by a
polynomial relation).

• time in seconds of experiments on a LAN, besides the
fact that its measuring requires important hardware
resources, it does not apply to remote Internet applica-
tions, or to other hardware, and cannot be replicated.

Our proposal is, given any well defined application
scenario, to start by first computing the expected la-
tency/checks ratio, following the next procedure.

Proposed Evaluation Method.

1. Retrieve the typical latency Ls in seconds for messages
in the type of network of the targeted application.
Such information is found in technical catalogs, en-
cyclopedias, and technical articles. For example, some
typical message latencies for remote machines on In-
ternet are found in [17].

2. Compute the total execution time in seconds, tp, for
solving each complete test set of problems at size p
using the simulator. Note that this is machine and
programming language dependent, and therefore the
used machine and programming language have to be
specified.

3. Compute the total number of constraint checks,
#CCp, at each problem size p [9] (see Figure 5.b).

4. Compute the cost in seconds that should be associ-
ated with a constraint check by computing the ratio
tp/#CCp. We note that for a given machine and pro-
gramming language this cost depends on the problem
size p, varying as much as an order of magnitude. For
example, our C simulator for ADOPT on the problems



LT i〈i, {constraint-check, nogood-inference, nogood-validity, nogood-applicability}, {1, 3, 2, 2}〉,∀i > 0 (3)

in [16] uses between 3 to 28 microseconds per con-
straint check on a Linux PC at 700MHz. The smaller
value was found at problems with 8 agents and 8 vari-
ables and the larger one at problems with 40 agents
and variables. We discuss later our explanation for
this phenomenon.

5. Compute the ratio message-latency/constraint-check
for the given problem size p as Lp = Ls ∗ #CCp/tp.
They can be displayed in a graph with axes shown in
Figure 6.

6. Compute the graph in the Operating Point.

As it follows from the aforementioned weaknesses, the
main problem with reporting ENCCCs is that we can find
out neither where is a particular latency/check ratio rele-
vant, nor which latency/check ratio is relevant for a given
application. We propose a way to solve this problem by
offering a little bit of additional information besides ENC-
CCs graphs. To compute the graph for the Operating Point
based on ENCCCs (ENCCC-OPs) we identify the following
alternatives:

• the ENCCCs graph with the logic time cost given by
the targeted/average value of Lp as interpolated from
values for the different problem types p in the graph
in Figure 6, or

• the ENCCCs graph with the logic time cost given by
the value of L that is closest to the targeted value of
Lp, among the different values of L used as LT i for
the logic times schemes evaluated in the experiments
(see Equation 1).

One can also draw graphs representing the Equivalent
Message Latencies in the Operating Point (EML-OP) from
the ENCCC-OP graph, where each ordinate is divided by
the latency/check ratio L of the graph. The axis of or-
dinates shows the number of (equivalent) message delays.
This graph has the advantage that the the ordinate has an
easy to understand meaning, namely the message latency
in the targeted destination, which is readily available. Such
systems of coordinates are illustrated in Figure 7.b. EMLs
can also be plotted against abscissae showing different ratio
latency/checks, to illustrate better how algorithms behave
in areas neighboring the operating point.

Yet an additional metric can be obtained measuring the
logic simulated seconds, where each event is measured in the
number of (micro)seconds it lasts (in average) as observed
during experimentation. This has the advantage over actual
seconds that they can be replicated and verified by other
researchers.

The term operating point comes from graphs depicting
behavior of transistors. The operating point is the area of
these graphs that is of real interest for an application.

The advantage of our method is that it can be performed
using only a simulator, its results are reproducible, and can
be applied to difficult to evaluate experimentally settings,
such as remote Internet connections.
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Figure 6: Axes for a graph displaying the expected
logic latency Lp per problem type p (tightness or
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Figure 7: Performance graphs using (a) ENCCC-
OPs and (b) EML-OPs.

Accounting for nogood validation.
Certain DCOP algorithms are not based on checking con-

straints repeatedly, but rather they compile information
about constraints into new entities called nogoods. After-
ward, these techniques work by performing inferences on
such nogoods. Nogoods are a kind of constraints them-
selves. In such algorithms it makes sense to attribute costs
to the different important operations on nogoods such as
nogood inference, nogood validity check, and nogood applica-
bility check. The new method for computing logic times at
various message latencies is the Equation 3, where the coef-
ficients of different nogood handling operations are selected
based on a perceived complexity for those operations. The
nogood inference operation is typically the most complex of
these operations as it accesses two nogoods to create a third
one (suggesting a logical cost of 3). Nogood-validity and
nogood-applicability both typically involved the analysis of
a nogood and of other data, local assignments and remote as-
signments, to be compared with the nogood (hence a logical
cost of 2). These costs do not typically have an exact value
since the sizes of nogoods vary within the same problem.
A constraint check for binary constraints is cheaper than
the verification of an average-sized nogood, and is given the
logical cost of 1.

Why cost of checks varies with the problem size.
An interesting question raised by our experimental results

is: Why do experiments reported here show that the cost
associated with a constraint check varies with the size of
the problem?

The cost associated with a constraint check (as measured



p (agents) 8 10 12 14 16 18 20 25 30 40
tp (total seconds) 0.1404 0.1528 0.3012 0.5516 1.0068 2.5708 4.1176 47.7112 174.06 3767.38

#CCp total checks 43887.8 38279.3 70279.4 116080 191501 381415 516835 4.1*106 10.9*106 132*106

microseconds(tp)

check(#CCp)
3.199 3.992 4.286 4.752 5.257 6.74 7.967 11.47 15.98 28.4

Lp ( checks
latency(200ms)

) 62518.3 50103.8 46666.3 42088.5 38041.6 29672.9 25103.7 17437.3 12519 7041.1

ENCCC L=104 (103) 2228 1758 2910 4118 6008 11579 15001 95321 192750 1832356
ENCCC L=105 (103) 500 374 621 891 1310 2491 3195 21269 44598 439144
simulated time (s) 3.51 4.1 7.63 12.69 21.5 58.19 93.36 920.8 2711.8 48013

Table 1: Sample re-evaluation of ADOPT with our method. Columns represent problem size.

above) consist of an aggregation of the costs of all other
operations executed by DCOP algorithm in preparation of
the constraint check and in processing the results of the
constraint check. Typically there are several data structures
to maintain and certain information to validate, and these
data structures may be larger with large problem sizes than
with small problem sizes. The variation may also come from
approximations in the way in which the cost of a constraint
check is evaluated in comparison to operations for handling
other data structure (such as nogoods [24]).

In certain situations, algorithms change their relative be-
havior in situations that are close to the operating point.
Then precise measurements are important, and it makes
sense to try to tune the logic time associated with each op-
eration, in order to reduce the variation of the meaning of a
unit of logic time with the problem size. One can approach
this problem by trying many different combinations, or try-
ing a hill climbing approach that tunes successively each of
the parameters. One has to run complete sets of experiments
for each of these possible costs (which is computationally
expensive). A valuable future research direction consists in
finding an efficient way of tuning these parameters.

However, a currently simpler alternative is to report ef-
ficiency in simulated seconds [1, 12], where each significant
event is given a logic cost equal with the average time in
microseconds as obtained from experiments.

Random message latencies.
Some researchers report that the introduction of random

latencies has a strong impact on the efficiency for certain
DCOP algorithms [7]. We have extensively experimented
and we have found random latencies to have only around
5% impact (in both directions) on the number of sequential
messages for the ADOPT [14] algorithm. In order to allow
other researchers to replicate such experiments we propose
to publish the seed with which we initialized the used ran-
dom number generator (e.g., in our case the C library ran-
dom number generator with seed 10000), as well as the equa-
tion used to distribute the latency uniformly in the range of
expected latencies for the targeted application (in our case
uniformly between 150ms and 250ms).

6. EXPERIMENTS
We will describe here how we conduct experiments with

ADOPT [14], as an example of how our evaluation method
can be applied to other algorithms. The illustration is based
on a sample of Teamcore random graph coloring problems
with 10 different sizes, ranging between 8 agents and 40
agents, with graph density 30%. The results are averaged

over 25 problems of each size [14]. The targeted application
scenario consists of remote computers on Internet.

Following the steps of our method we report the following:

1. The catalog message latency for our scenario is 200ms,
varying between 150ms and 250ms (see [17]).

2. Simulated ADOPT with randomized latencies is im-
plemented in C++ and runs on a the 700MHz node of
a Beowulf (Linux Red Hat). The total time in seconds
is given in the second row of Table 1.

3. The total number of constraint checks #CCp for each
problem size is given in the third row of Table 1.

4. The cost in (micro)seconds associated with each con-
straint check is computed as tp/#CCp. It is given in
the fourth row of Table 1.

5. The message-latency/constraint-check ratio (Lp) is
computed by dividing the average latency found at
Step 1 (200ms) by the items in the 4th row. The results
are given in the 5th row of Table 1.

6. The operating point is defined by the fourth and fifth
rows. The last step consists of reporting the results for
this operating point (here we will use a Table rather
than a graph, to make the processing more visible).
We performed the experiments using several logic time
systems, the available ones that are the closest to the
obtained operating point are L = 100, 000 and L =
10, 000. In is now possible to re-run the experiments
with all the Lp values found in our table. Here we will
just report the results of the closest L, which is 10,000
for most problem sizes (one also can use L = 100000 for
problems with 8 and 10 agents), see the 6thand7th rows
of Table 1. One can also interpolate the time between
the predictions based on L = 10, 000 and L = 100, 000,
function of the predicted Lp at each problem size.

Next, for example, one can also report the simulated
time (in simulated seconds) by multiplying each logic
time (in ENCCC-OPs) with the corresponding cost
per logic unit (here reported in the third row). We
interpolate (liniarly) the time between the predictions
based on L = 10, 000 and L = 100, 000, function of the
predicted Lp at each problem size. We report the sim-
ulated time in the 8th row of Table 1. This simulated
time represents the average actual time (in seconds)
that a problem of the corresponding size is expected
to need in our operating point.

In Table 2 we show data for comparing between random-
ized versus constant latencies in simulation.



p (agents) 8 10 12 14 16 18 20 25 30 40
SMs (random) 793.2 631.48 1045.12 1480.36 2158 4172.56 5411.36 34284.2 69383.64 658731.36
SMs 736.16 602.76 1020.24 1438.64 2109.24 4125 5480.84 34067.2 68976.36 650307.08
total time (sec) 0.104 0.098 0.2776 0.4872 0.9636 2.55 4.1612 49.3452 181.2136 3813.5016
total checks 44637 40537 76936 126979 215303 428259 592419 4729413 12523233 151307539
µs/check 2.33 2.417 3.608 3.837 4.475 5.95 7.024 10.4 14.47 25.2
checks/latency 85841.9 82728.9 55429.8 52125.9 44687.2 33588.9 28473.5 19168.7 13821.5 7935.36

Table 2: ADOPT. First row is for randomized latency. Remaining rows are with constant message latency.

7. CONCLUSION
We have introduced a framework for enabling an unified

representation of different logic clocks-based metrics used for
efficiency evaluation of DCOPs. We analyzed all major met-
rics used in the past for evaluating algorithms for DCOPs
by comparing them using this framework. We identify the
meaning and the weaknesses of each currently common met-
ric, and we propose a new methodology to analyze DCOPs,
extending the one known as Equivalent Non-Concurrent
Constraint Checks (ENCCCs). Our extension shows how
to identify the ENCCCs graph that fits a given applica-
tion scenario (named operation point). The obtained metric
counts the equivalent non-concurrent constraint checks in
the operation point (ENCCC-OPs) and its construction re-
quires the evaluation of several other metrics, such as the
total number of constraint checks and the total time to run
the simulator as a centralized solver. We also show how to
handle algorithm using nogoods.

Then we discuss remarkable experimental results on a sim-
ulator showing that cost associated with constraint checks
can vary with the size of the problem even for the same im-
plementation of teh same algorithm. We discuss the possible
explanations, their implications, and how the issue can be
handled (including open research directions).
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