
Search techniques for non-linear constraint satisfaction
problems with inequalities

Marius-C®alin Silaghi, Djamila Sam-Haroud, and Boi Faltings

Arti£cial Intelligence Laboratory
Swiss Federal Institute of Technology 1015 Lausanne, Switzerland
{silaghi,haroud,faltings}@lia.di.epfl.ch

Abstract. In recent years, interval constraint-based solvers have shown their
ability to ef£ciently solve challenging non-linear real constraint problems. How-
ever, most of the working systems limit themselves to delivering point-wise solu-
tions with an arbitrary accuracy. This works well for equalities, or for inequalities
stated for specifying tolerances, but less well when the inequalities express a set
of equally relevant choices, as for example the possible moving areas for a mobile
robot. In that case it is desirable to cover the large number of point-wise alterna-
tives expressed by the constraints using a reduced number of sets, as interval
boxes. Several authors [2, 1, 7] have proposed set covering algorithms speci£c to
inequality systems. In this paper we propose a lookahead backtracking algorithm
for inequality and mixed equality/inequality constraints. The proposed technique
combines a set covering strategy for inequalities with classical interval search
techniques for equalities. This allows for a more compact representation of the
solution set and improves ef£ciency.

1 Introduction

A wide range of industrial problems require solving constraint satisfaction problems
(CSPs) with numerical constraints. A numerical CSP (NCSP), (V,C,D) is stated as
a set of variables V taking their values in domains D over the reals and subject to
constraints C. In practice, the constraints can be equalities or inequalities of arbitrary
type and arity, usually expressed using arithmetic expressions. The goal is to assign
values to the variables so that all the constraints are satis£ed. Such an assignment is
then called a solution. Interval constraint-based solvers (e.g. Numerica [8], Solver [4])
take as input a numerical CSP, where the domains of the variables are intervals over
the reals, and generate a set of boxes which conservatively enclose each solution (no
solution is lost). While they have proven particularly ef£cient in solving challenging
instances of numerical CSPs with non-linear constraints, they are commonly designed
to deliver punctual solutions. This £ts well the needs inherent to equality systems but
is less adequate for several problems with inequalities. Inequalities can be used to state
tolerances, like for example beam-dimension = k ± ε, and it is then admissible to
solve them using punctual solvers. However, in their most general form, they rather
express spectra of equally relevant alternatives which need to be identi£ed as precisely
and exhaustively as possible. Such inequalities will, for example, de£ne the possible
moving areas of a mobile robot, the collision regions between objects in mechanical

2

assembly, or different alternatives of shapes for the components of a kinematic chain. In
all these cases, it is not acceptable to arbitrarily focus on a speci£c solution, especially
when this choice is forced by idiosyncrasies of the used solver.

A natural alternative to the punctual approach is to try to cover the spectrum of
solutions for inequalities using a reduced number of subsets from IRn. Usually, these
subsets are chosen with known and simple properties (interval boxes, polytopes, ellip-
soid,..) [5]. In recent years, several authors have proposed set covering algorithms with
intervals boxes [5, 2, 7, 1]. These algorithms, except for [5], are designed for inequality
systems1, are based on domain splitting and have one of the two following limitations.
Either the constraint system is handled as an indivisible whole2, or the splits are per-
formed statically which means that their results are not, or only partially, further propa-
gated to the related variables. In the £rst case the tractability limits are rapidly reached
while in the second, the information resulting from a split is sub-optimally used. This
paper proposes an algorithm for dynamically constructing an interval-box covering, for
a set of equality/inequality constraints, according to a “maintaining local consistency”
search schema. In numerical domains, local consistency usually takes the form of either
Box, Hull, kB or Bound consistency [8, 6], generally referred to as bound consistency
in the rest of the paper. Maintaining bound consistency (MBC) is a powerful looka-
head search technique for numerical CSPs which allows the splits performed on a given
variable domain to be propagated on domains of other variables, thus reducing the split-
ting effort. The proposed technique builds on the feasibility test proposed in [1]. This
allows for robustly constructing sound boxes and devising ef£cient splitting heuristics
for search. The output is a union of boxes which conservatively encloses the solution
set. As shown by the preliminary experiments, the new algorithm improves ef£ciency
as well as the compactness of the output representation. In order to reduce the space
requirements, our algorithm can alternatively be used to compute a new form of consis-
tency called ε1ε2-consistency. ε1ε2-consistency is a weakening of global consistency
which only considers certain projections of the solution space. It can be used as a pre-
processing technique for speeding up further queries.

2 Background

We start by recalling the necessary background and de£nitions. Parts of the material
described in this section are presented in [1].

2.1 Interval arithmetic

Intervals The £nite nature of computers precludes an exact representation of the reals.
The set IR, extended with the two in£nity symbols, and then denoted by IR∞ =
IR

⋃

{−∞,+∞}, is in practice approximated by a £nite subset F∞ containing −∞,
+∞ and 0. In interval-based constraint solvers, F∞ usually corresponds to the ¤oating
point numbers used in the implementation. Let < be the natural extension to IR∞ of the

1 In [7, 1] equalities are approximated by inequalities.
2 All the variables are split uniformly [5], or the entire set of constraints must be algebraically

reformulated [2].

3

order relation < over IR. For each l in F∞, we denote by l+ the smallest element in F∞

greater than l, and by l− the greatest element in F∞ smaller than l.
A closed interval [l, u] with l, u ∈ F is the set of real numbers {r ∈ IR | l ≤ r ≤ u}.

Similarly, an open/closed interval [l, u) (respectively (l, u]) with l, u ∈ F is the set of
real numbers {r ∈ IR | l ≤ r < u} (respectively {r ∈ IR | l < r ≤ u}). The set of
intervals, denoted by II is ordered by set inclusion. In the rest of the paper, intervals are
written uppercase, reals or ¤oats are sans-serif lowercase, vectors in boldface and sets
in uppercase calligraphic letters. A box, B = I1 × . . . In is a Cartesian product of n
intervals. A canonical interval is a non-empty interval of the form [l..l] or of the form
[l..l+]. A canonical box is a Cartesian product of canonical intervals.
Numerical Constraints Let VIR = {x1 . . . xn} be a set of variables taking their values
over IR. Given

∑

IR = {IR,FIR,RIR} a structure whereFIR denotes a set of operators and
RIR a set of relations de£ned in IR, a real constraint is de£ned as a £rst order formula
built from

∑

IR and VIR. Interval arithmetic methods [3] are the basis of interval con-
straint solving. They approximate real numbers by intervals and compute conservative
enclosures of the solution space of real constraint systems.
Relations and Approximations Let c(x1, . . . xn) be a real constraint with arity n. The
relation de£ned by c, denoted by ρc, is the set of tuples satisfying c. The relation de£ned
by the negation, ¬c, of c is given by IRn \ ρc and is denoted by ρc. The global relation
de£ned by the conjunction of all the constraints of an NCSP, C is denoted ρC . It can
be approximated by a computer-representable superset or subset. In the £rst case the
approximation is complete but may contain points that are not solutions. Conversely,
in the second case, the approximation is sound but may lose certain solutions. A rela-
tion ρ can be approximated conservatively by the smallest (w.r.t set inclusion) union
of boxes, Unionρ, or more coarsely by the smallest box Outerρ, containing it. By
using boxes included into ρ, sound (inner) approximations Innerρ can also be de£ned.
In [1], Innerρ is de£ned as the set {r ∈ IRn | Outer{r} ⊆ ρ}. Figure 1 illustrates the
different forms of approximations.

x

y

x

y

a) b)

Fig. 1. a) is an Outer approximation; b) The set of white boxes give an Inner approximation,
together with all the grey boxes they give a Union approximation.

The computation of these approximations relies on the notion of contracting opera-
tors. Basically, a contracting operator narrows down the variable domains by discarding

4

values that are locally inconsistent. This is often done using bound consistency. In this
paper we use the notion of outer contracting operator, de£ned as follows:

De£nition 1 (Outer contracting operator). Let II be a set of intervals over IR and ρ a
real relation. The function OCρ : IIn → IIn is a contracting operator for the relation ρ
iff for any box B,B ∈ IIn, the next properties are true:

(1) OCρ(B) ⊆ B (Contractiveness)
(2) ρ ∩ B ⊆ OCρ(B) (Completeness)

Often, a monotonicity condition is also required [3].

2.2 Implementing approximations of type Union

In this paper we consider the problem of computing Union approximations. Several
authors have recently addressed this issue. In [5], a recursive dichotomous split is per-
formed on the variable domains. Each box obtained by splitting is tested for inclu-
sion using interval arithmetic tools. The boxes obtained are hierarchically structured as
2k-trees. The authors have demonstrated the practical usefulness of such techniques in
robotics, etc. In [7], a similar algorithm is presented. However, only binary or ternary
subsets of variables are considered when performing the splits. This means that for
problems of dimension n, only quadtrees or octrees need to be constructed instead
of the entire 2n-tree. The approach is restricted to classes of problems with convex-
ity properties. The technique proposed in [2] constructs the union algebraically, using
Bernstein polynomials which give formal guarantees on the result of the inclusion test.
The approach is restricted to polynomial constraints. Finally, [1] has addressed the re-
lated problem of computing Inner approximations, which are also unions of boxes but
entirely contained in the solution space.

3 Conservative Union Approximation

Interval-based search techniques for CSPs with equalities and inequalities are essen-
tially dichotomous. Variables are instantiated using intervals. When the search reaches
an interval that contains no solutions it backtracks, otherwise the interval is recursively
split in two halves up to an established resolution. The most successful techniques en-
hance this process by applying an outer-contracting operator to the overall constraint
system, after each split. In all the known algorithms, equalities and inequalities are
treated the same way. Splitting is performed until canonical intervals are reached and as
long as the error inherent to the outer-contracting operator is smaller than the interval
to split. This policy, referred to as DMBC (Dichotomous MBC) in the rest of the pa-
per, works generally well for equality systems but leaves place for improvement when
inequalities are involved. Let us consider a small NCSP with the following constraints:

P1 = {x0 = x1 + 1, x2 + 1 = x0 + x1, x2 ≥ x0 + 2, x1 + 2x3 ≥ x4, x2 − x3 ≤ 3}

where the domains are [-10,10]. For this example, the usual technique, ef£ciently imple-
mented in ILOG Solver, a popular constraint-based solver, generates 8280 small boxes

5

when all the solutions are explicitly asked for3. Using a set covering strategy for in-
equalities, the technique we propose delivers all the solutions, with the same precision,
using only 199 boxes and with a speed up of three times.

The reason behind these results is that in the £rst case, the splitting is done blindly,
without taking into account the topology of inequalities. Instead, the technique we pro-
pose includes a feasibility (soundness) test for boxes, which allows better splitting deci-
sions. Given a constraint and a box, the feasibility test checks whether all the points in
the box satisfy the constraint. Recently, an original idea was proposed in [1] for safely
implementing such tests for general constraints. Given a constraint c and a box B, it
consists of proving that {r ∈ B | r ∈ ρc} = ∅. The proof is done by construction using
DMBC on ¬c and is valid due to the completeness of DMBC. We use a related approach
for computing an outer approximation of type Union. We de£ne a union conservative
contracting operator as follows:

De£nition 2 (Union Conservative Contracting Operator). Let ρ be an n-ary real
relation. A union conservative contracting operator for ρ, UCc : IIn → P(II)n veri£es:

∀B : UCρ(B) ⊇ Union(B
⋂

ρ) (1)

In this paper we use an outer contracting operator on inverted inequalities to avoid
splitting completely feasible boxes. The goal is to generate a more compact output and
to reduce the replication of search effort.

4 Algorithms

We now present an algorithm named UCA6 (Algorithm 1) that computes a Union

approximation for numerical CSPs with equalities and inequalities. We note lists in the
Prolog style [Head|Tail]. B denotes the list of children to be checked for a node, and P
denotes the list of all B. The algorithm presented is depth-£rst. Breadth-£rst and other
heuristics can be obtained by treating the lists B and P as sets, P becoming respectively
the union of all the sets of typeB. The algorithm UCA6 iteratively calls the function get-
Next which delivers a new Outer approximation for a subspace in the solution space.
By construction, the new Outer approximation will not intersect with any previously
computed box. The function getNext has two main components: a reduction operator,
reduc (Algorithm 2), and a splitting operator, split (Algorithm 3). These operators are
interleaved as in a classical maintaining bound consistency algorithm. Practically, it is
preferable to stop the dichotomous split when the precision of the numeric search tool
(splitting and contracting operators) can lead to unsafe solutions at a given precision ε.
An unsafe solution is a box that may contain no real solution. reduc, checks this state
using a function called Indiscernible(constraint,Box,OC, ε), which is not discussed
here in detail4.

Each search node is characterized by the next structures:

* The list B corresponds to a set of splits for the current search node. It de£nes the
next branches of search. Each split correspond to a new node of the search.

3 Typically, the algorithms are optimized for delivering the £rst solution.
4 The simplest strategy consists of checking that all the intervals are smaller than ε, but more

sophisticated techniques can be built by estimating computational errors.

6

* A box B de£ning the domains of the current NCSP.
* The current NCSP C containing only the constraints of the initial NCSP that can

participate in pruning the search space. The constraints that are indiscernible or
entirely feasible in B are eliminated.

* Each constraint q in a node is associated with a box, Bq, such that all the space in
B \Bq is feasible.

Each Bq is initially equal with the projection of the initial search space on the variables
in the constraint q, after applying OCρq

. One of the features of reduc is that it removes
redundant completely feasible or indiscernible constraints. If the recent domain modi£-
cations of some inequality q have modi£ed Bq, q is checked for feasibility at line 4, and
eventually removed from the current CSP (line 6). Equalities are similarly eliminated at
line 9 when they become indiscernible.

4.1 Splitting operator

The function split (Algorithm 3) allows for using three splitting strategies. The £rst one,
splitFeasible, extracts sound subspaces for some inequality, as long as these subspaces
fragment the search space in a ratio limited by a given fragmentation threshold, denoted
by frag (line 4). The second and the third strategies (splitIneq, respectively splitEq),
consist of choosing for dichotomous split, a variable involved in an inequality (respec-
tively an equality) of the current NCSP C. The heuristics used at lines 5, 6, 7, and 8
in Algorithm 3 can be based on the occurrence of variables in the constraints of C, or
according to a round robin technique. The domain of the chosen variable is then split in
two halves. Techniques based on the occurrences of variables in constraints can also be
used to devise heuristics on ordering the bounds at line 3 in splitFeasible. The criteria
for choosing a constraint at line 2 can look for maximizing the size of the search space
for which a given constraint is eliminated, minimize the number of children nodes, or
maximize the number of constraints that can bene£t5 from the split.

Given two boxes B and Bq, where B contains Bq, and given a bound b in Bq for a
variable x, we use the next notations:

* Bf(x,b)[Bq,B] is the (feasible) box not containing Bq obtained from B by splitting
the variable x in b.

* Bu(x,b)[Bq,B] is the (indiscernible) box containing Bq obtained from B by splitting
the variable x in b.

* B 1
2
r(x)[B] is the (indiscernible) box obtained from B by splitting the variable x in

half and retaining its upper half.
* B 1

2
l(x)[B] is the (indiscernible) box obtained from B by splitting the variable x in

half and retaining its lower half.

These concepts are illustrated in the Figure 2.

Proposition 1. Let C = (V,C,D) be an NCSP. UCA6 computes a union conservative
contractive operator for ρC .

5 The constraints for which the domains are split may propagate more when OC is applied.

7

B

B1/2r(x)[B]B1/2l(x)[B]

x
x1 x2(x1+x2)/2

Bq

B Bf(x,b)[Bq,B]Bu(x,b)[Bq,B]

x
b

Fig. 2. Splitting operators

Sketch of proof Both the splitting and the contracting operators are complete and
conservative. As invariant, the union of P with the set of already returned solutions
corresponds to the output of a union conservative contractive operator. Therefore, when
P is empty, the output solutions satisfy the property.

5 Handling space limitations

When a representation of all the solutions of a NCSP has to be built, or even its projec-
tion to a quite limited number of variables, the precision is the most constraining factor.
The space required depends exponentially on this precision. The analytic representation
itself is very ef£cient in space, but is less easy to visualize and offers less topological
information. The amount of aggregation on solutions is a second factor that controls
the required space. The improvements that can be achieved depend on the problem at
hand. In order to characterize the representations that can be obtained we introduce
the notion of ε1ε2-consistency which allows for constructing the representation of the
solution space only for a given subset of variables.

De£nition 3 (ε-solution). An ε-solution of a NCSPN is a box denoted by νN ,ε = I1×
...× In (n is the number of variables inN) such that the search tools with resolution ε
(splitting and contracting operators) cannot reduce it or decide the absence of solutions
inside it.

De£nition 4 (ε1ε2-consistency). A constraint c(x1, ...xk) of a NCSP N = (V,C,D)
is ε1ε2-consistent related to the variables in X = {x1, ..., xk}, X⊆V , iff:

ρN |X ⊆ ρc, ∀v ∈ Dx1
×...×Dxk

, v ∈ ρc ⇒ ∃νN,ε2 , ∃b ∈ νN ,ε2 |X , | v − b |< ε1

The procedure UCA6 can be modi£ed for generating the boxes for representing an
ε1ε2-consistent constraint on a set X of variables. This is done by £ltering out of P , the
portions of search space, closer to the found solution (line 1) than a distance ε1. The
distance is computed in the space de£ned by the variables in X.

6 Experiments

Only a small amount of work exists on computing union approximations for numerical
problems with mixed equality/inequality constraints. Often these problems are recast

8

Algorithm 1: Search

procedure UCA6(C = (V, C, D): NCSP)
P = [[{OCρC

(D), C, {Bq(OCρC
(D))}}]]

1 while (getNext(P , C, solution)) do
U ← {solution}∪U

end
return U

end.
function getNext(inout:P = [B = [{B ∈ IIn, C : NCSP, {Bq ∈ IIn}} | TB] | TP];
in: CG ∈ NCSP; out: solution∈ IIn)→ bool

forever do
2 if (B = []) then
3 if (TP = []) then
4 return (false)

else
5 P ← TP

end
6 continue

end
7 (C′,B’,{Bq’})← reduc(C, B, {Bq})
8 B ← TB

9 if (B’ <> ∅) then
10 if (C′ = ∅) then
11 solution← B’
12 return (true)

end
13 B′ ← split(B’,C′,{Bq’})
14 P ← [B′ | P]

end
end

end.

as optimization problems, with arti£cial optimization criteria, to £t the solvers. Hence,
no signi£cant set of benchmarks is presently available in this area. In this section we
present a preliminary evaluation on the following small set of problems.

WP is a 2D simpli£cation of the design model for a kinematic pair consisting of a
wheel and a pawl. The constraints determine the regions where the pawl can touch the
wheel without blocking its motion.

WP = {20 <
√

x2 + y2 < 50, 12y/
√

(x− 12)2 + y2 < 10, x : [−50, 50], y : [0, 50]}

SB describes structural and safety restrictions for the components of a ¤oor consisting
of a concrete slab on steel beams.

SB = {u + c1w
1.5161 − p = 0, u− (c6hs + c7)s ≤ 0,

c2 − c3s + c4s
2 − c5s

3 − hs ≤ 0, c8(pw
2)0.3976 − hb ≤ 0, c9(pw

3)0.2839 − hb ≤ 0}

Finally, SC is a collision problem requiring some minimal distance between a trajectory
and an object [1].

9

Algorithm 2: Problem Reduction

function reduc(in: C : NCSP, B∈ IIn, {Bi∈ IIn})→(NCSP, IIn, {IIn})
1 B’←OCρC

(B)
2 for all (q={inequality}, q∈ C, Bq ∈ {Bi}) do
3 if (B’∩Bq <> Bq) then
4 Bq ← OCρ¬q (B’∩Bq)
5 if ((Bq = ∅)∨Indiscernible(q,Bq)) then
6 C ← C \ {q}, {Bi} ← {Bi} \Bq

end
end

end
7 for all (q=equality, q∈ C) do
8 if (Indiscernible(q,B’)) then
9 C ← C \ {q}, {Bi} ← {Bi} \Bq

end
end

10 return (C, B’, {Bi})
end.

SC = {∀t,
√

(2.5 sin t− x)2 + (2.5 cos t− y)2 ≥ 0.5, t : [−π..π], x, y : [−5..5]}

On problems with exactly one inequality and no equalities, UCA6(EqFeasibleIneq)
de£ned further is equivalent to ICAb5 presented in [1].

For the splitFeasible strategy our implementation chooses the inequality, q, whose
split yields the child node with maximal search space where q is eliminated as com-
pletely feasible. For the other two splitting strategies, constraints and variables are cho-
sen in a round robin fashion. We use frag=0.2. We have tested three combinations of
these strategies: EqIneq:(splitEq,splitIneq), IneqEq:(splitIneq,splitEq), and EqFeasi-
bleIneq:(splitEq,splitFeasible,splitIneq). The OC operator is 3B-consistency. DMBC
is implemented with ILOG Solver. The obtained results are described in the following
array:

Problem DMBC (boxes / seconds) EqIneq IneqEq EqFeasibleIneq
P1 (ε = .1) 8280 / 3.38s 276 / 1.67s 410 / 1.47s 199 / 0.88s

SB (ε = .02) 67122 / 182.2s 122 / 0.47s 148 / 0.46s 92 / 0.35s
WP (ε = .1) >100000 / >238s 5021 / 2.01s 5021 / 2.01s 5561 / 15.18s
SC (ε = .1) 16384 / 68.36s 3022 / 54.88s 3022 / 54.88s 2857 / 53s

7 Conclusion

Interval-constraint based solvers are usually designed to deliver punctual solutions.
Their techniques work ef£ciently for problems with equalities, but might alter both
ef£ciency and compactness of the output representation for many problems with in-
equalities. In this paper, we propose an algorithm for numerical CSPs with mixed equal-
ity/inequality constraints that remedies this state of affairs. The approach combines the
classical interval search techniques for equalities with set covering strategies designed
to reduce the number of boxes approximating inequalities.

10

Algorithm 3: Splitting

function split(in: B∈ IIn, C : NCSP, {Bi ∈ IIn})→ [{IIn, NCSP, {IIn}} |]
1 fun← choose appropriate(splitFeasible, splitIneq, splitEq)

B ← []
fun(B, C, {Bi}, B)
return B

end.
procedure splitFeasible(in:B,C,{Bi};inout:B ∈ [{IIn, NCSP, {IIn}} |])

2 q← choose {inequality}∈ C, Bq ∈ {Bi}
3 foreach (bound b of some variable x of q in Bq (e.q. in descending order of the

relative distance rd to the corresponding bound in B)) do
4 if (rd <frag) continue

B’←Bf(x,b)[Bq,B]

B←Bu(x,b)[Bq,B]

B ← [{B’, C \ {q}, {Bi} \Bq} | B]
end
B ← [{B, C, {Bi}} | B]

end.
procedure splitIneq(in:B,C,{Bi};inout:B ∈ [{IIn, NCSP, {IIn}} |])

5 q← choose {inequality, Bq ∈ IIn} ∈ C
6 x← choose variable of q given C

B ← [{B 1
2
r(x)[B], C, {Bi}} | B]

B ← [{B 1
2
l(x)[B], C, {Bi}} | B]

end.
procedure splitEq(in:B,C,{Bi};inout:B ∈ [{IIn, NCSP, {IIn}} |])

7 q← choose {equality} ∈ C
8 x← choose variable of q given C

B ← [{B 1
2
r(x)[B], C, {Bi}} | B]

B ← [{B 1
2
l(x)[B], C, {Bi}} | B]

end.

References

1. F. Benhamou and F. Goualard. Universally quanti£ed interval constraints. In Procs. of
CP’2000, pages 67–82, 2000.

2. J. Garloff and B. Graf. Solving strict polynomial inequalities by Bernstein expansion. Sym-
bolic Methods in Control System Analysis and Design, London: IEE, pages 339–352, 1999.

3. L. Granvilliers. Consistances locales et transformations symboliques de contraintes
d’intervalles. PhD thesis, Université d’Orléans, déc 98.

4. ILOG. Solver 4.4, Reference Manual. ILOG, 1999.
5. L. Jaulin. Solution globale et garantie de problÁemes ensemblistes ; Application Áa l’estimation

non linéaire et Áa la commande robuste. PhD thesis, Université Paris-Sud, Orsay, Feb 94.
6. O. Lhomme and M. Rueher. Application des techniques CSP au raisonnement sur les inter-

valles. Revue d’intelligence arti£cielle, 11(3):283–311, 97. Dunod.
7. D. Sam-Haroud and B. Faltings. Consistency techniques for continuous constraints. Con-

straints, An International Journal,1, pages 85–118, 96.
8. P. Van Hentenryck. A gentle introduction to Numerica. AI, 103:209–235, 98.

