
Soft Nonlinearity Constraints

and their Lower-Arity Decomposition

Venkatesh Ramamoorthy1, Marius C. Silaghi1, Toshihiro Matsui2, Katsutoshi

Hirayama3, and Makoto Yokoo4

1 Florida Institute of Technology, Melbourne, FL 32901, United States of America

vramamoo@my.fit.edu, msilaghi@cs.fit.edu
2 Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan

matsui.t@nitech.ac.jp
3 Kobe University, Kobe, 657-8501, Japan hirayama@maritime.kobe-u.ac.jp

4 Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan

yokoo@is.kyushu-u.ac.jp

Abstract. In this paper we express nonlinearity constraints in terms of soft

global n-ary constraints. We describe a method to decompose nonlinearity con-

straints to obtain redundant hard constraints as projections of global lower-arity

constraints. The nonlinearity constraints apply to the inputs and outputs of dis-

crete functions f : Z2n → Z2m mapping n-bit inputs to m-bit outputs, n > m.

No output bit of the function f should be too close to a linear function of (a subset

of) its input bits. That is, if we select any output bit position and any subset of the

six input bit positions, the fraction of inputs for which this output bit equals the

exclusive-OR of these input bits should not be close to 0 or 1, but rather should

be near 1
2

. We analyze this constraint and find that the obtained redundant con-

straints increase the efficiency of arc consistency maintenance solver by several

orders of magnitude.

Keywords: CSP Model, Soft Constraint, S-boxes, DES, 3DES, Nonlinearity,

Cryptanalysis, Global Constraint, Projection, Decomposition, n-ary Constraint

1 Introduction

The nonlinearity constraint is proposed in [9] to model nonlinearity requirements that

are essential for the security of cryptographic algorithms (ciphers). If substitution op-

erations in ciphers could be represented as linear relations, their parameters could be

easily obtained by solving a system of such equations connecting pairs of inputs and

outputs. Even when the functions are not perfectly linear, any success in approximat-

ing them with linear functions can increase the chances of success in guessing their

parameters. As such, [4] and [7] define one of the main nonlinearity requirements as:

No output bit of the function f should be too close to a linear function of the input bits.

That is, if we select any output bit position and any subset of the six input bit posi-

tions, the fraction of inputs for which this output bit equals the exclusive-OR of these

input bits should not be close to 0 or 1, but rather should be near 1
2 . In this paper,

we discuss our formulation of the nonlinearity constraint as a soft global n-ary con-

straint, and prove a method to obtain a set of equivalent hard, redundant constraints by

2

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Fig. 1. The 3DES 6× 4 S-box S8

S-1 Each S-box has six bits of input and four bits of output.

S-2 No output bit of an S-box should be too close to a linear function of the input bits.

(That is, if we select any output bit position and any subset of the six input bit positions,

the fraction of inputs for which this output bit equals the exclusive-OR of these input

bits should not be close to 0 or 1, but rather should be near 1
2

).

S-3 If we fix the leftmost and rightmost input bits of the S-box and vary the four middle

bits, each possible 4-bit output is attained exactly once as the middle four input bits

range over their 16 possibilities.

S-4 If two inputs to an S-box differ in exactly one bit, the corresponding outputs must

differ in at least two bits.

S-5 If two inputs differ in the two middle bits exactly, the outputs must differ in at least

two bits.

S-6 If two inputs differ in the first two bits and are identical in the last two bits, the two

outputs must be different.

S-7 For any nonzero 6-bit difference between inputs ∆Ii,j , no more than eight of the 32

pairs of inputs exhibiting ∆Ii,j may result in the same output difference ∆Oi,j .

Table 1. The nonlinearity criteria used by IBM for designing 3DES S-boxes [4]

employing projections. The nonlinearity constraints apply on the inputs and outputs of

discrete functions f : Z2n → Z2m mapping n-bit inputs to m-bit outputs, n > m. Such

functions are commonly referred to as Substitution boxes (S-boxes). We analyze these

constraints and find that the obtained redundant constraints increase the efficiency of

arc consistency maintenance solver by orders of magnitude.

2 Background

We now introduce the nonlinearity requirement, originally defined in [4].

S-box Criteria and Nonlinearity An n × m substitution box (S-box) that scrambles

(substitutes) an n-bit input data to yield an m-bit output, is a function S : Z2n → Z2m

where Zk stands for the set {0, ...k − 1}. S is not necessarily invertible. Substitution-

permutation networks [10], a common cipher architecture, use S-boxes in the genera-

tion of a parametrized substitution of x. These S-boxes have to be nonlinear and in-

vertible. One of the SP-network versions, the Feistel cipher architecture [5], relaxes

this constraint by removing the invertibility requirement. Namely, it proceeds through

iterations of the function:

F : Z2n × Z2m → Z2n × Z2m , F (x, y) = split(y||f(x, y), n,m),

3

where a||b stands for the concatenation of the bits of a and b. The function f is:

f : Z2n × Z2m → Z2n , f(x, y) = x⊕ S(y),

and the function split is:

split : Z2n+m × Z× Z → Z2n × Z2m , split(z, n,m) = (z >> n, z&(2m − 1))

which splits the (n+m)-bit number z in two parts of n bits and m bits respectively, Z

being the set of (non-negative) integers. The definition uses the operator a >> b which

right-shifts a number a by b bits, and & for bit-wise AND. The obtained substitution

function f(x, ·) is a parametrized bijection, and it is therefore often referred to as a

permutation function. This function of parameter y should necessarily be nonlinear [4].

Since it is difficult to design and verify a nonlinear S-box function that works on a large

sequence of bits n, cipher designers replace them with a set of smaller S-boxes, where

each handles a fraction of the sequence of bits.

One of the most commonly-used ciphers in Netscape’s Secure Sockets Layer (SSL)

protocol and the newer Transport Layer Security (TLS) protocol is Triple-DES (3DES),

which is an example of a Feistel architecture. Other known Feistel architectures are

Blowfish, Twofish, RC5, Camellia, etc. 3DES works by a triple-application of the old

Data Encryption Standard (DES) developed by IBM [1]. It employs eight 6×4 S-boxes

numbered S1, S2, . . . , S8, with S8 shown in Fig. 1. An S-box substitution of 4 bits for

a 6-bit input i is obtained by indexing into the row number formed by the first and

last bits of i, and the column number formed by the middle bits of i. For example,

input of 45 (= 1011012) to S-Box S8 yields 8 = (10002), obtained by reading the

entry in row 3 (= 112), column 6 (= 01102) of Fig. 1. The S-boxes are so designed to

satisfy criteria numbered S-1, S-2, and so on [4], which are listed in Table 1. The S-box

nonlinearity constraint S-2 states that the output of an S-box should be highly nonlinear.

A proposal by Matsui [7] compiles this criteria into a complex metric but which allows

for a quantitative comparison of S-boxes. This is the metric that we employ here under

the form of a soft global nonlinearity n-ary constraint.

3 Concepts and Problem Formulation

Notations A 0x prefixed to the left of a number, such as 0x2ab3, specifies it is in

hexadecimal notation. |x| denotes the absolute value of a number x. For a set S, |S|
represents its cardinality while for a set expressed using braces, its cardinality is denoted

by preceding the braces with a #. The symbols · and ⊕ represent the bit-wise AND

and exclusive-OR (XOR) operation respectively, on two identical-sized bit patterns. A

linear Boolean function Lω(x) on an n-bit pattern x = x0 . . . xn−1 selected by an n-bit

pattern ω = ω0 . . . ωn−1 is defined [3] as:

Lω(x) = ω0 · x0 ⊕ . . .⊕ ωn−1 · xn−1 =

n−1⊕

i=0

ωi · xi (1)

The Hamming weight of a bit pattern x, denoted by wt(x), is equal to the number of 1’s

in x. The amount by which x and y differ, as mentioned in Table 1, equals wt(x⊕ y).

4

3.1 Variables and Domains

i1i2i3i4

i0i5 0 1 2 3 ... 13 14 15

0 x0 x2 x4 x6 . . . x26 x28 x30

1 x1 x3 x5 x7 . . . x27 x29 x31

2 x32 x34 x36 x38 . . . x58 x60 x62

3 x33 x35 x37 x39 . . . x59 x61 x63

Fig. 2. Diagrammatic relationship between the defined CSP variables and 6× 4 S-box entries

We now define the elements of the (X,D,C)-based CSP model for the general case

of designing a nonlinear and non-invertible n×mS-box. Our concrete examples are for

6×4 S-boxes such as those used in 3DES. Note that invertible S-boxes can be obtained

when n = m by simply adding an alldiff constraint, which makes the function one

to one.

To model our nonlinearity criteria, we define the set X of 2n variables X =
{x0, x1, . . . , x2n−1} = {xi|i ∈ Z2n}, each representing an entry in the S-box. The

domain in D of each variable is Z2m = {0, 1, . . . , 2m − 1}.

To adapt the CSP for our case study of n×m S-boxes, the ith variable xi specifies

the m-bit S-box output for an n-bit input i. Using the variables in X , a 6 × 4 S-box

such as the ones used in 3DES, is organized as shown in Fig. 2, addressed by incre-

menting the input. In Fig. 2, a 6-bit input i, 0 ≤ i ≤ 63 is represented by the bit pattern

i0i1i2i3i4i5 for clarity. Criterion S-1 in Table 1 is already satisfied based on our choice

of variables.

3.2 Nonlinearity Metrics for Variable Assignments

Since for each input i the S-box returns the value of xi, therefore the nonlinearity of

the S-box can be stated as a nonlinearity between each index i and the value of xi. The

ability of expressing each bit of an m-bit value e ∈ Z2m in the assignment xi = e, as

a linear combination of the bits in the n-bit subscript i ∈ Z2n [7, 6], is now examined.

Here, we use this measure as the score of a solution (to be optimized) and extend the

definition to a partial assignment.

Consider an n-bit subscript i = i0 . . . in−1 of a variable xi, and a corresponding as-

signment to xi of a value from Z2m . The linear combinations to be checked for equality

are obtained by selecting bits in i and the value assigned to xi using selectors a and b

respectively, ∀a, b, 0 ≤ a < 2n and 0 ≤ b < 2m. We denote, by Lω(xi), the application

of the function Lω of Equation 1 on the value assigned to the CSP variable xi. For a

complete assignment Φ with all variables in X assigned, let NΦ
X(a, b), quantifying the

success of linearization of the relation between i to xi using coefficients a and b, be:

NΦ
X(a, b)=#{i|xi ∈ X;La(i)=Lb(xi)} (2)

Observe that 0 ≤ NΦ
X(a, b) ≤ 2n.

5

Given a partial-assignment Φ′ resulting from a partial instantiation of variables

X ′ ⊆ X , we further define the partial success of linearization NΦ′

X′(a, b) as follows:

NΦ′

X′(a, b)=#{i|xi ∈ X ′;La(i)=Lb(xi)} (3)

Besides the properties for NΦ
X(a, b) [7], the following properties are also inferred di-

rectly from the definition of NΦ′

X′(a, b).

Property 1. ∀a, b, X ′, Φ′, 0 ≤ NΦ′

X′(a, b) ≤ |X ′|.

Property 2. ∀a, b, u,X ′, Φ′, and u ∈ X \X ′, NΦ′

X′∪{u}(a, b)−NΦ′

X′(a, b) ∈ {0, 1}.

Proof. Property 2 states the immediate observation that the consideration of each ad-

ditional input can raise the number of correctly linearized inputs by at most 1. This

reasoning applied consecutively to each variable in X ′ is used to explain Property 1.

Q.E.D.

These two properties are used to design heuristics that improve the efficiency of

search for solutions to satisfy the nonlinearity constraint S-2.

Nonlinearity as a Probability Measure For each variable xi corresponding to input i in

a complete assignment Φ, given selectors a and b defined as above, let p(a, b) denote

the fraction of cases when La(i) = Lb(xi), computed as:

p(a, b) =
NΦ

X(a, b)

2n
(4)

p(a, b) = 1 is the condition where the linear combination of the bits in the value as-

signed to xi selected by b equals a linear combination of the bits in i selected by a,

i.e., ∀i, La(i) = Lb(xi). If p(a, b) is equal to zero, the linear combination of the output

bits selected by b is always equal to the negation of the linear combination of input bits

selected by a. According to the nonlinearity requirement S-2, p(a, b) should be near 1
2 .

Linear Approximation Table (LAT) The Linear Approximation Table [7] for a complete

assignment is a 2n × 2m matrix. Its rows are headed by selector a, 0 ≤ a < 2n, and

columns by selector b, 0 ≤ b < 2m (see Table 2). Each entry specifies the quantity

NΦ
X(a, b)− |X|

2 , with one entry in row a and column b representing an offsetted measure

of the correlation between the bits of xi selected by b and the bits of i selected by a.

As an example, for the 3DES S-box S8, the first and last two rows of its LAT are in

Table 2. The LAT of a solution is formed by an arithmetic accumulation of individual

contributions due to each variable assignment xi = e, i ∈ Z2n , e ∈ Z2m . A contribution

arising from an assignment xi = e is equal to La(i) ⊕ Lb(e) ⊕ 1, a ∈ Z2n , b ∈ Z2m ,

that is, 0 or 1. The offset quantity
|X|
2 is subtracted from each entry in the LAT of a

solution.

6

b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

62 0 -8 4 0 -2 2 -2 6 10 6 2 2 0 0 -4 0

63 0 -8 0 4 2 -2 -10 -2 -6 6 -2 6 -4 4 -4 0

Table 2. The Linear Approximation Table for the S-box S8 of Fig. 1

The Score of an Assignment The most effective linear approximation of a complete

assignment Φ containing |X| variables is obtained if, for some a and b, |NΦ
X(a, b)− |X|

2 |
is maximal. To reduce the weakest point of the assignment Φ, we use the so-called

effectiveness of linearization [8] as the optimization score:

σX(Φ) = max
a,b

{|NΦ
X(a, b)−

|X|

2
| : 1 ≤ a < |X|; 1 ≤ b < |D|} (5)

A complete assignment with a smaller score is considered better. We look for

argmin
Φ

(σX(Φ)). The score σX′ , X ′ ⊆ X , of a partial assignment Φ′ is defined as:

σX′(Φ′) = max
a,b

{|NΦ′

X′(a, b)−
|X|

2
| : 1 ≤ a < |X|; 1 ≤ b < |D|} (6)

4 The Nonlinearity Global Constraint

The straightforward modeling of the nonlinearity requirement leads to a soft constraint

that minimizes σX(Φ). When used as a hard constraint for a threshold τ , it becomes:

σX(Φ) ≤ τ (7)

The following property of a partial assignment allows for projection of Equation 7

to lower-arity constraints.

Property 3 (Projections). A partial assignment Φ′ with values for variables in X ′, X ′ ⊆
X , cannot be extended to a solution with score better than a threshold τ if the following

inequality is not satisfied:

|X ′| − τ −
|X|

2
≤ max

a,b
NΦ′

X′(a, b) ≤
|X|

2
+ τ (8)

Proof. During projection, the goal is for the score of S-box Φ′ to never exceed the

maximum threshold τ :

max
a,b

|NΦ′

X′(a, b)−
|X|

2
| ≤ τ (9)

7

D

G

H

F B

C

A

EI

NΦ′

X′ (a, b)

|X′|O(0, 0)

45◦

NΦ
X(a, b)

|X|

NΦ′

X′ (a, b)

+|X| − |X′|

Number of variables assigned, φ

Values of NΦ′

X′ (a, b)

|X|

Fig. 3. Evaluating partially instantiated S-boxes.

Figure 3 depicts the distribution of NΦ′

X′(a, b) (Equation 3) for a partially instantiated

S-box Φ′. The horizontal axis is the number of variables instantiated, φ. After |X ′|
variables are instantiated at point A along the solid line, the dashed line at a 45-degree

angle with the horizontal represents the pathological case where the count NΦ′

X′(a, b)
increases by one for every subsequent extension of Φ′ up to point D. The solid zig-zag

lines connecting points A and C represents the corresponding, actual distribution of

NΦ′

X′(a, b) for the complete S-box Φ to attain the count equal to NΦ
X(a, b) at point C.

From this construction, we have OF = NΦ′

X′(a, b), OG = NΦ
X(a, b), FH = BD =

AB = |X| − |X ′|, and OH = OF + FH = NΦ′

X′(a, b) + |X| − |X ′|.
By construction, (|X| − |X ′|) remaining variables are to be instantiated in order to

extend Φ′ to Φ. To guarantee extensibility: OG ≤ OH , i.e.,

NΦ
X(a, b) ≤ NΦ′

X′(a, b) + |X| − |X ′|

This is true for all selectors a and b, and in particular, holds for the maximum value of

NΦ
X(a, b) (resp. NΦ′

X′(a, b)) over all a, b:

max
a,b

NΦ
X(a, b) ≤ |X| − |X ′|+max

a,b
NΦ′

X′(a, b) (10)

From Equation 9,
|X|
2 −maxa,b N

Φ
X(a, b) ≤ τ

i.e.
|X|

2
− τ ≤ max

a,b
NΦ

X(a, b) (11)

Combining Equation 10 and Equation 11,

|X|

2
− τ ≤ max

a,b
NΦ

X(a, b) ≤ |X| − |X ′|+max
a,b

NΦ′

X′(a, b) (12)

8

By transitivity and regrouping, maxa,b N
Φ′

X′(a, b) ≥
|X|
2 − τ − |X|+ |X ′|

i.e. max
a,b

NΦ′

X′(a, b) ≥ |X ′| − τ −
|X|

2
(13)

Given a partial S-box assignment Φ′ with variables in X ′, by the end of the construction

of any solution Φ obtained by extending Φ′, the following inequality holds: OF ≤ OG.

i.e. NΦ′

X′(a, b) ≤ NΦ
X(a, b) (14)

This is true for all selectors a and b, and in particular, holds for the maximum value of

NΦ′

X′(a, b) (resp. NΦ
X(a, b)) over all a, b:

max
a,b

NΦ′

X′(a, b) ≤ max
a,b

NΦ
X(a, b) (15)

From Equation 9, maxa,b N
Φ
X(a, b)− |X|

2 ≤ τ

i.e. max
a,b

NΦ
X(a, b) ≤

|X|

2
+ τ (16)

Combining Equations 15 and 16,

maxa,bN
Φ′

X′(a, b) ≤ max
a,b

NΦ
X(a, b) ≤

|X|

2
+ τ (17)

The result follows by combing Equation 13 and Equation 17.

Q.E.D.

5 Results

The experimentation setup consists of an Intel Pentium Core-2 Duo 3-GHz CPU, 3.3

GB RAM and GNU/Linux with kernel version 2.6.28-11. The constraints are precom-

piled for DES criteria S-3, S-4, S-5, S-6 and S-7. The precompiled constraints are fed to

our implementation of a solver that supports Maintenance of Arc Consistency (MAC)

with AC2001 [2]. The soft constraint of Equation 7 modeling S-2 is transformed into

a hard constraint by setting the threshold value for τ . We experiment with τ = 16 and

τ = 10.

Better-quality S-boxes based on the score The score for the standard 3DES S-box S4

is found to be 10 (minimum), while the score for S7 is 18 (maximum). Our approach

yielded S-boxes with score 8, superior in quality to any of the standard 3DES S-boxes.

Fig. 4 reports one such S-box.

Performance Statistics The MAC solver is initially started only with the binary con-

straints. We test three heuristics for integrating the n-ary constraints in this solver.

9

0 3 5 6 9 10 15 12 7 4 14 13 2 1 8 11

3 0 6 5 10 9 12 15 4 7 13 14 1 2 11 8

3 15 0 12 5 6 9 10 4 8 7 11 14 13 2 1

0 12 3 15 9 10 5 6 7 11 4 8 2 1 14 13

Fig. 4. A 6× 4 S-box with score 8, generated by our CSP solver

Time r(6×4)
× 1049 S-box Count

(hrs) σX(Φ) = 10 σX(Φ) = 8

1 355, 940 8, 562 3, 583
2 572, 810, 000 17, 827 4, 999
3 646, 070, 000 27, 875 7, 836
4 688, 140, 000 37, 875 10, 883
5 1, 030, 000, 000 47, 671 13, 602

Table 3. Solver Performance Using Incomplete, Incremental Heuristic H
64,10
I

– Complete, Non-incremental heuristic, H
φ,τ
S . This is the basic case where the n-ary

constraint for S-2 is checked only after all assignments, without using them in any

domain-filtering.

– Incomplete, Incremental heuristic, H
φ,τ
I . At each node in the search tree, incre-

mentally assign and check if the constraint in Equation 7 is partially satisfied. On

violation, abandon the assignment and proceed with the next one.

– Complete, Incremental heuristic H
φ,τ
C . At each node in the search tree, project the

constraint in Equation 7 by enforcing Property 3 on the current partial assignment.

Within the first hour, with a threshold τ = 10 specified, the incomplete, incremental

heuristic H
64,10
I found around 3, 600 6 × 4 S-boxes with the “best” score equal to 8.

This count went up to more than 13, 500 in the 5-hour run that Table 3 reports.

Although this heuristic yields S-boxes with the “best” score, it is not complete.

In order to know whether we have found the optimal quality S-boxes we would have

to exhaust the whole search space. If the search space is too large to be exhausted,

we would like to at least know what fraction of this search space we have managed to

explore, as a measure of the probability that the optimal solution could have been found.

We therefore quantify the size of the search space, as the total number of potential

S-boxes. As shown later, the search space of our problem instances is very large, and

additional research is needed in order to be able to exhaust it. Assuming that the solver is

systematic and chronological (visiting alternatives in lexicographic order), each partial

or full assignment of values to all variables (whether it satisfies the constraints or not),

and visited or skipped by the search tree, is defining a traversed distance (explored

search space):

S(n×m)
p =

|X′|−1∑

i=0

xi · (2
m)|X

′|−i−1 (18)

10

Time Non-incremental (H
64,16
S) Incremental (H

64,16
C)

(hrs) r(6×4)
× 1049 S-box Count r(6×4)

× 1049 S-box Count

1 1.198 4 102,160 20,786

2 21.725 14 265,040 35,957

3 42.091 15 915,420 49,110

4 42.091 26 993,950 80,933

5 61.340 40 1,061,500 94,069

Table 4. Solver Performance Using Complete Heuristics, with S-box threshold τ = 16.

Here, X ′ ⊆ X is a set of already-instantiated variables in the current partial assign-

ment, xi ∈ X ′ is assigned a specific value from its domain D, and in Equation 18, xi

stands for the specific value assigned to the variable xi.

With dynamic reordering of values and variables, Equation 18 still applies and one

only has to use the current order.

For 6 × 4 S-boxes, S
(6×4)
p evaluates to 78-digit base-10 numbers. Given the large

size of this search space, distances typically covered by the MAC solver in reasonable

time differed only in their last few assignments (78-digit numbers differed in approxi-

mately the last 15 digits). Sometimes, certain constraints rule out much larger areas of

the search space. To conveniently report this, we define a search offset metric S-box

S
(n×m)
p1

:

r(n×m) =
S
(n×m)
p − S

(n×m)
p1

2m×2n
(19)

Here, S
(n×m)
p1

denotes the value for S
(n×m)
p (determined from Equation 18) for the

first S-box obtained by the solver. The solver has yielded S
(6×4)
p1

≈0x033× 16
60. (The

hexadecimal form is for convenience and Sp1
could be alternatively written in decimal.)

The difference between S
(6×4)
p1

for the incomplete and complete heuristics is ≈ 3×1652

even when they use the same value for τ (graphs not shown due to lack of space). Table 3

reports the (scaled) search offsets of the solver using incomplete heuristics.

Performance Analysis of the three Heuristics Table 3 reports performance of the in-

complete, incremental heuristic, with threshold τ = 10. Table 4 compares the non-

incremental and complete, incremental heuristics. The quantities reported at each hour

represent the (scaled) fraction r of Equation 19, and the number of S-boxes generated

up to that point in each case. Based on a 5-hour run of the experiment, the complete,

incremental heuristic is observed to relatively vary between a factor of 17 and 85 times

faster than the non-incremental heuristic (in terms of size of explored search space).

The number of S-boxes generated is observed to correspondingly increase by an aver-

age factor of over 3,300. We tried all values of τ and report in Table 4 only for τ = 16.

11

6 Conclusion

A soft global nonlinearity n-ary constraint, is projected onto fewer variables and thereby

applied for dynamic domain filtering during search. This heuristic yielded a 17–85-fold

relative increase in 6× 4 S-box generation efficiency.

References

1. Data encryption standard (DES). Federal Information Processing Standard 46-2 (January

1988)

2. Bessière, C., Régin, J.C.: Refining the basic constraint propagation algorithm. In: Nebel, B.

(ed.) IJCAI. pp. 309–315. Morgan Kaufmann (2001)

3. Clark, J., Jacob, J., Maitra, S., Stanica, P.: Almost boolean functions: the design of boolean

functions by spectral inversion. Evolutionary Computation 3, 2173–2180 Vol.3 (Dec 2003)

4. Coppersmith, D.: The data encryption standard (des) and its strength against attacks. IBM J.

Res. Dev. 38(3), 243–250 (1994)

5. Feistel, H.: Cryptography and computer privacy 228, 15–23 (1973)

6. Heys, H.M.: A tutorial on linear and differential cryptanalysis. Cryptologia XXVI(3), 189–

221 (2002)

7. Matsui, M.: Linear cryptanalysis method for des cipher. In: EUROCRYPT ’93: Workshop

on the theory and application of cryptographic techniques on Advances in cryptology. pp.

386–397. Springer-Verlag (1994)

8. O’Connor, L.: Properties of linear approximation tables 1008 (1995)

9. Ramamoorthy, V., Silaghi, M., Matsui, T., Hirayama, K., Yokoo, M.: The design of crypto-

graphic s-boxes using csps. In: CP (to appear) (2011)

10. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 28,

656–715 (1949)

