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Abstract. We find symmetries for constraints that model the nonlinearity re-

quirements of a discrete function f : Z2n → Z2m(n > m). Such constraints

are very important, as the functions are employed in generating deterministic

but difficult-to-analyze permutations used in symmetric cryptographic systems.

There, such functions are referred to as Substitution Boxes (S-boxes). The non-

linearity is a complex requirement that has been traditionally formulated using

a set of criteria (that we interpret as new constraints). Most of these constraints

are found to exhibit symmetries that can be exploited for reducing the size of

the search space, and for efficiently generating new solutions. Among discov-

ered symmetries, a bit inversion symmetry (a special case of the value reversal

symmetry) and a rotational symmetry (a special case of variable symmetry) are

found to apply to all studied nonlinearity constraints without affecting their secu-

rity metric, and quadruple the efficiency of solvers. Theoretical and experimental

results on symmetry are reported.

1 Introduction

Nonlinearity requirements are complex constraints occurring commonly in practice.

The problem is to find a nonlinear discrete function f : Z2n → Z2m(n > m). An exam-

ple is the nonlinearity requirements of cryptographic substitution boxes (S-boxes) for

the Substitution-Permutation networks proposed by Shannon [15], of which the Feistel

architecture sub-family [8] is one of the most common. Simply put, the values of a set

of variables should not be expressible or easily approximated by a linear relation. The

more successful an approximated linearization is, the easier could an attacker analyze

its function [10]. The designer of a cipher has to maximize the error in the closest linear

approximation.

In [13] we report on how to represent non-linearity criteria using constraints while

in [14], we discuss soft global nonlinearity constraint decomposition propagators. Here

we detail symmetries found to characterize the nonlinearity constraints, and the way we

exploit them.
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Constraint Satisfaction Problems (CSPs) Constraint satisfaction is a framework that is

famous for naturally modeling many different problems, ranging from task scheduling

to the verification of security protocols [5]. A CSP is defined as a triplet 〈X,D,C〉
where X is a set of variables, D a set of domains containing possible values for each

variable in X and C, a set of constraints that involve some or all of the variables in X .

A constraint is a predicate specifying the acceptable combinations of assignments

for the variables that it involves. It defines a relations between these variables, being a

subset of the Cartesian product of the domains of the variables. The number of variables

involved in a given constraint are referred to as its arity. For example, a binary constraint

involves only two variables. An n-ary constraint is one that involves n variables. A

solution to the CSP is a set of values assigned to each variable in X from its domain

in D such that all constraints in C are satisfied. A partial assignment comprises values

assigned to a subset X ′ ⊆ X of variables such that constraints involving only variables

in X ′ are satisfied. A soft constraint (as opposed to a hard constraint) is defined as one

in which there exist some solutions that do not have to satisfy this constraint. Security

protocols have been modeled in the past using Soft CSPs [3].

Once a problem is modeled as a CSP, it can be solved using any of the efficient

generic algorithms developed during the last few decades. However, insight can help

formulate constraints in ways that make the work of generic solvers much easier. One

of the most common approaches consists of identifying and exploiting symmetries in

individual constraints, between certain variables, between value of certain variables, or

in the problem as a whole. The search effort on symmetric areas of the search space

is identical. Therefore it is sufficient to explore one of each pair of symmetrical sub-

problems. The conclusions extracted from one sub-problems can be applied to any of

its symmetrical sub-problems using the corresponding symmetry relation. The speed-up

can be proportional with the number of identified symmetry relations.

In this paper, we identify particular features of the nonlinearity constraints occur-

ring in the design of S-boxes, and use them to find and prove symmetry relations. The

usefulness of the new symmetries is shown by studying their impact on the process of

solving a well-known instance of the S-box design problem. A systematic CSP solver

employing the proposed techniques is shown to yield S-boxes which are significantly

better than those employed by Triple-Data Encryption Standard (3DES) [2], a widely-

used cryptographic algorithm. 3DES employs eight S-boxes S1 to S8, with S8 shown

in Fig. 1. A 6 × 4 S-box substitution of 4 bits for a 6-bit input i is obtained by index-

ing into the row number formed by the first and last bits of i, and the column number

formed by the remaining middle bits of i. For example, an input of 45 (= 1011012) to

S-Box S8 yields 8 = (10002), obtained by reading the entry in row 3 (= 112), column

6 (= 01102) of Fig. 1.

The S-boxes are so designed to satisfy criteria numbered S-1, S-2, and so on [7],

which are listed in Table 1. Note that 3DES is one of the techniques currently used in

protocols such as the Secure Sockets Layer (SSL), Transport Layer Security (TLS) that

form the basis for the Internet protocol https. 3DES is also employed in the Secure

Shell protocol used in applications such as sftp and ssh.

The detection of symmetry in constraints is an important research issue, as it enables

one to avoid duplicating effort by exploring symmetric regions of the search space. To
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S1 y1y2y3y4

y0y5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Fig. 1. S-box S8 used in 3DES

limit the search to one among a set of symmetrical sub-problems one has to come out

with new constraints rejecting all but one of these sub-problems.

Next, we introduce some of the more technical related background. The subsequent

section introduces in detail the relevant concepts. Nonlinearity constraints are formu-

lated, in conjunction with a theoretical exposition of heuristics and aspects of symmetry.

Experiments are discussed, along with results and conclusions.

2 Concepts and New Properties

Here we first recapitulate on the nonlinearity constraints proposed in [13] and identify

some new properties shown later to translate into useful symmetries.

Notations The notation |x| represents the absolute value of a number x. For a set S,

|S| represents its cardinality while for a set expressed using braces, its cardinality is

denoted by preceding the braces with a #. The symbols · and ⊕ represent the bit-

wise AND and exclusive-OR (XOR) operation respectively, on two identical-sized bit

patterns. Bit pattern x̄ denotes the one’s-complement of x. For a bit b, b̄ = b ⊕ 1. For

any two bits (or identical-sized bit-patterns) a and b, a⊕ b = b⊕ a, and a⊕ b = ā⊕ b̄.

A linear Boolean function Lω(x) on an n-bit pattern x = x0 . . . xn−1 selected by

an n-bit pattern ω = ω0 . . . ωn−1 is defined [6] as:

Lω(x) = ω0 · x0 ⊕ . . .⊕ ωn−1 · xn−1 =

n−1
⊕

i=0

ωi · xi (1)

The parity P (x) of an n-bit pattern x = x0x1 . . . xn−1 is equal to the exclusive-OR

of the bits in x, that is, P (x) = x0 ⊕ x1 ⊕ . . .⊕ xn−1. Using these facts, the following

property of Lω(x) can be derived:

Property 1. Lω(x̄) = Lω(x)⊕ P (ω)

Proof. Let Lω(x) = ω0 · x0 ⊕ ω1 · x1 ⊕ . . .⊕ ω5 · x5 Then,

Lω(x) = ω0 · x0 ⊕ ω1 · x1 ⊕ . . .⊕ ωn−1 · xn−1

= ω0 · (x0 ⊕ 1)⊕ ω1 · (x1 ⊕ 1)⊕ . . .⊕ ωn−1(xn−1 ⊕ 1)

= (ω0 · x0 ⊕ ω1 · x1 ⊕ . . .⊕ ωn−1 · xn−1)⊕ (ω0 ⊕ ω1 ⊕ . . .⊕ ωn−1)

= Lω(x)⊕ P (ω), from Equation 1.
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S-1 Each S-box has six bits of input and four bits of output.

S-2 No output bit of an S-box should be too close to a linear function of the input bits.

S-3 If we fix the leftmost and rightmost input bits of the S-box and vary the four middle

bits, each possible 4-bit output is attained exactly once as the middle four input bits

range over their 16 possibilities.

S-4 If two inputs to an S-box differ in exactly one bit, the corresponding outputs must

differ in at least two bits.

S-5 If two inputs differ in the two middle bits exactly, the outputs must differ in at least

two bits.

S-6 If two inputs differ in the first two bits and are identical in the last two bits, the two

outputs must be different.

S-7 For any nonzero 6-bit difference between inputs ∆Ii,j , no more than eight of the 32

pairs of inputs exhibiting ∆Ii,j may result in the same output difference ∆Oi,j .

Table 1. The nonlinearity criteria used by IBM for designing 3DES S-boxes [7]

Q.E.D.

The Hamming weight of a bit pattern x, denoted by wt(x), is equal to the number of 1’s

in x. The amount by which x and y differ, as mentioned in Table 1, equals wt(x⊕ y).

i1i2i3i4

i0i5 0 1 2 3 ... 13 14 15

0 x0 x2 x4 x6 . . . x26 x28 x30

1 x1 x3 x5 x7 . . . x27 x29 x31

2 x32 x34 x36 x38 . . . x58 x60 x62

3 x33 x35 x37 x39 . . . x59 x61 x63

Fig. 2. Diagrammatic relationship between the defined CSP variables and 6× 4 S-box entries

The Search Space of Nonlinearity Constraints We now remind the nonlinearity con-

straints proposed in [13]. To model nonlinearity criteria [13] defines the set X of 2n

variables X = {x0, x1, . . . , x2n−1} = {xi|i ∈ Z2n}, each representing an entry in the

S-box. The domain Di ∈ D for each variable xi is Z2m = {0, 1, . . . , 2m − 1}. For

the case of n ×m S-boxes, the ith variable xi specifies the m-bit S-box output for an

n-bit input i. Using the variables in X , a 6× 4 S-box such as the ones used in 3DES, is

organized as shown in Fig. 2, addressed by incrementing the input.

Nonlinearity Metrics for Variable Assignments Since for each input i the S-box returns

the value of xi, therefore the nonlinearity of the S-box can be stated as a nonlinearity

between each index i and the value of xi. The ability of expressing each bit of an m-bit

value e ∈ Z2m in the assignment xi = e, as a linear combination of the bits in the n-bit

subscript i ∈ Z2n [10, 9], is now examined. Here, we use this measure as the score of a

solution (to be optimized) and extend the definition to a partial assignment.
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Consider an n-bit subscript i = i0 . . . in−1 of a variable xi, and a corresponding as-

signment to xi of a value from Z2m . The linear combinations to be checked for equality

are obtained by selecting bits in i and the value assigned to xi using selectors a and b

respectively, ∀a, b, 0 ≤ a < 2n and 0 ≤ b < 2m. One denotes, by Lω(xi), the applica-

tion of the function Lω of Equation 1 on the value assigned to the CSP variable xi. For

a complete assignment Φ with all variables in X assigned, let NΦ
X(a, b), quantifying the

success of linearization of the relation between i to xi using coefficients a and b, be:

NΦ
X(a, b)=# {i|xi ∈ X;La(i)=Lb(xi)} (2)

Observe that 0 ≤ NΦ
X(a, b) ≤ 2n.

Nonlinearity as a Probability Measure For each variable xi corresponding to input i in

a complete assignment Φ, given selectors a and b defined as above, p(a, b) denotes the

fraction of cases when La(i) = Lb(xi), computed as:

p(a, b) =
NΦ

X(a, b)

2n
(3)

p(a, b) = 1 is the condition where the linear combination of the bits in the value as-

signed to xi selected by b equals a linear combination of the bits in i selected by a,

i.e., ∀i, La(i) = Lb(xi). If p(a, b) is equal to zero, the linear combination of the output

bits selected by b is always equal to the negation of the linear combination of input bits

selected by a. According to the nonlinearity requirement S-2, p(a, b) should be near 1
2 .

Linear Approximation Table (LAT) The Linear Approximation Table [10] for a com-

plete assignment is a 2n × 2m matrix. Its rows are headed by selector a, 0 ≤ a < 2n,

and columns by selector b, 0 ≤ b < 2m (see Table 2). Each entry specifies the quantity

NΦ
X(a, b)− |X|

2 , with one entry in row a and column b representing an offset-ted mea-

sure of the correlation between the bits of xi selected by b and the bits of i selected by

a. As an example, for the 3DES S-box S8, the first and last two rows of its LAT are in

Table 2. The LAT of a solution is an arithmetic accumulation of individual contributions

due to each variable assignment xi = e, i ∈ Z2n , e ∈ Z2m . A contribution arising from

an assignment xi = e is equal to La(i)⊕ Lb(e)⊕ 1, a ∈ Z2n , b ∈ Z2m , that is, 0 or 1.

The offset quantity
|X|
2 is subtracted from each entry in the LAT of a solution.

We now identify the following property, used in proving new constraint symmetries.

Property 2. Changing an assignment xi = e to the assignment xi = ē changes the LAT

entry at index (a, b) by the amount (−1)La(i)⊕Lb(ē) · P (b).

Proof. These follow from Property 1, and from the fact that the contribution of an

assignment xi = e to each entry in the LAT equals La(i) ⊕ Lb(e) ⊕ 1. Therefore,

the contribution lost due to removing xi = e is [1 − La(i) ⊕ Lb(e)], which based on

Property 1 equals [1 − La(i) ⊕ Lb(ē) ⊕ P (b)]. The added contribution of xi = ē is

[1− La(i)⊕ Lb(ē)]. The total impact is their difference:

La(i)⊕ Lb(ē)⊕ P (b)− La(i)⊕ Lb(ē) = (P (b))
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

62 0 -8 4 0 -2 2 -2 6 10 6 2 2 0 0 -4 0

63 0 -8 0 4 2 -2 -10 -2 -6 6 -2 6 -4 4 -4 0

Table 2. The Linear Approximation Table for the S-box S8 of Fig. 1

Note that for any binary x and y, x⊕ y − x = (1− 2x) · y = (−1)x · y since:

x⊕ y − x =







x− x = 0 = (−1)x · y if y = 0

1− x− x = 1− 2x =

{

1 = (−1)x · y if x = 0
−1 = (−1)x · y if x = 1

for y = 1.

In our case, x = La(i) ⊕ Lb(ē) and y = P (b), and we obtain the expression in the

property.

Q.E.D.

Note that a similar expression can be obtained if any pair of assignments xi = e

and xī = f are swapped into xī = e and xi = f .

Property 3. The impact of swapping a pair of assignments xi = e and xī = f on the

LAT entry at index (a, b) is:
[

(−1)La(i)⊕Lb(ē) + (−1)La (̄i)⊕Lb(f̄)
]

· P (a).

The proof is similar to the one for Property 2.

The Score of an Assignment The most effective linear approximation of a complete as-

signment Φ containing |X| variables is obtained if, for some a and b,

∣

∣

∣
NΦ

X(a, b)− |X|
2

∣

∣

∣

is maximal. To reduce the weakest point of the assignment Φ, we use the so-called

effectiveness of linearization [11] as the optimization score:

σX(Φ) = max
a,b

{∣

∣

∣

∣

NΦ
X(a, b)−

|X|

2

∣

∣

∣

∣

: 1 ≤ a < |X|; 1 ≤ b < |D|

}

(4)

A complete assignment with a smaller score is considered better. We look for

argmin
Φ

(σX(Φ)). We now identify the following two properties as useful kinds of sym-

metries, employed as described later:

1. Invariance of the score of a complete assignment with respect to bit inversion (re-

placing S-box entries by their one’s-complements)

2. Invariance of the score of a complete assignment with respect to S-box rota-

tion by two right angles (interchanging two variables whose subscripts are one’s-

complements of each other).
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Property 4. The score σX(Φ) of a complete assignment Φ does not change if all of its

assigned values are replaced by their one’s-complements, into an assignment Φ̄.

Proof. For each LAT entry corresponding to an even parity b, where P (b) = 0, the

entry will not be changed because the contribution of each S-box assignment changing

from a value e to ē is 0 (see Property 2).

For each LAT entry corresponding to an odd parity b, where P (b) = 1, all the

assignments that were correctly linearized with their previous value e will be incorrectly

linearized with the new assignment ē, and vice-versa. Therefore in this case N Φ̄
X(a, b) =

|X| −NΦ
X(a, b), and:

σX(Φ̄) = max
a,b

{∣

∣

∣

∣

|X| −NΦ
X(a, b)−

|X|

2

∣

∣

∣

∣

}

= max
a,b

{∣

∣

∣

∣

|X|

2
−NΦ

X(a, b)

∣

∣

∣

∣

}

= σX(Φ).

Q.E.D.

Property 5. The score σX(Φ) of a complete assignment Φ does not change if all the

values assigned to variables are reassigned to variables having subscripts equal to the

one’s-complements of the corresponding original variables, into an assignment Φ̂.

Proof. The proof is very similar to that for Property 4. For each LAT entry correspond-

ing to an even parity a, where P (a) = 0, the entry will not be changed because the

contribution of each S-box assignment xi = e getting reassigned to xī = e, is 0 (see

Property 3).

For each LAT entry corresponding to an odd parity a, where P (a) = 1, all the

assignments that were correctly linearized with their previous value xi = e will be

incorrectly linearized with the new assignment xī = e, and vice-versa. Therefore in

this case N Φ̂
X(a, b) = |X| −NΦ

X(a, b), and:

σX(Φ̂) = max
a,b

{∣

∣

∣

∣

|X| −NΦ
X(a, b)−

|X|

2

∣

∣

∣

∣

}

= max
a,b

{∣

∣

∣

∣

|X|

2
−NΦ

X(a, b)

∣

∣

∣

∣

}

= σX(Φ).

Q.E.D.

3 Constraints and their symmetries

A soft global constraint was formulated [13] to model nonlinearity requirements of the

kind presented in Table 1 for S-boxes.

The Soft n-ary Global Constraint Modeling the nonlinearity requirement of the kind

specified in Table 1 for a 6 × 4 S-box, namely, criteria S-2, leads to a soft constraint

that minimizes σX(Φ). When used as a hard constraint for a threshold τ , it becomes:

σX(Φ) ≤ τ (5)

Due to Property 4 of the score of a complete assignment Φ, this soft global n-ary

constraint possesses bit-inversion symmetry. Property 5 similarly ensures that this con-

straint possesses rotational symmetry.
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The AllDiff Constraints for S-3: For a 6× 4 S-box, S-3 is directly expressible as a

set of Alldiff constraints [12, 13]:

Alldiff(x0, x2, x4, ..., x30), Alldiff(x1, x3, x5, ..., x31)

Alldiff(x32, x34, x36, ..., x62), Alldiff(x33, x35, x37, ..., x63)

This constraint possesses variable and value symmetry.

The Binary Constraints With 6 × 4 S-boxes, for any two 4-bit variables xi and xj

corresponding to 6-bit subscripts i and j, xi, xj ∈ D, [13] models requirements S-4,

S-5 and S-6 listed in Table 1, with binary constraints.

S-4 is modeled into the following binary constraint:

(∀i)(∀j)(0 ≤ i < j ≤ 63) ∧ wt(i⊕ j) = 1 ⇒ wt(xi ⊕ xj) ≥ 2

For an n × m S-box, the number of binary constraints for this criterion is equal to

n × 2n−1. This constraint possesses row symmetry. For example, if Row 1 and Row 2

of the example 6× 4 S-box of Fig. 2 are interchanged and simultaneously, Rows 3 and

4 are interchanged, S-4 is still satisfied.

S-5 is modeled into the following binary constraint:

(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 0011002) ⇒ wt(xi ⊕ xj) ≥ 2

For an n×m S-box, the number of binary constraints for this criterion is equal to 2n−1

when n is even. This criterion possesses column symmetry but only across specified

columns. With reference to the example 6 × 4 S-box of Fig. 2, upon interchanging

Column 0 with 6, 1 with 7, 2 with 4, 3 with 5, 8 with 14, 9 with 15, 10 with 12, and 11

with column 13, S-5 is still satisfied.

S-6 is modeled into the following binary constraint:

(∀i)(∀j)(0 ≤ i < j ≤ 63), (i⊕ j) ∧ 1100112 = 1100002 ⇒ xi 6= xj

For an n ×m S-box, the number of binary constraints for this requirement is equal to

(n − 2) × 2n−1 where n ≥ 4. This criterion possesses diagonal symmetry. If in the

example 6 × 4 S-box of Fig. 2, the rectangle formed by Rows 0-1 and Columns 0-7 is

interchanged with its diagonally-opposite rectangle formed by Rows 2-3 and Columns

8-15, and simultaneously, the other two rectangles be interchanged, the resulting ar-

rangement satisfies S-6.

Since yi ⊕ yj = ȳi ⊕ ȳj , all constraints for S-4, S-5 and S-6 possess bit inversion

symmetry, that is, they are satisfied by solutions having their bits inverted.

Rotating the S-box by two right angles results is equivalent to interchanging vari-

ables xi and xī for all permissible values of i. Since i ⊕ j = ī ⊕ j̄, one can observe,

upon replacing i with ī and j with j̄ in the constraints for S-4, S-5 and S-6, that they

do not change, for all permissible i, j. In other words, these constraints are satisfied by

solutions obtained by two rotations of each original solution.

Table 3 summarizes the constraints that are violated when the row, column, or di-

agonal interchanges are not simultaneously applied for separate pairs of row, columns,

and diagonals, respectively.
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Type of Conditional Symmetry Criteria violated by Remaining Assignments

Row (S-4) S-4

Column (S-5) S-4

Diagonal (S-6)

Table 3. Conditional Symmetries

The n-ary Global Constraint The last constraint that we have to investigate for sym-

metries is the one proposed in [13] for S-7. O7 =
{

(xi, x2n−1−i) : 0 ≤ i < 2n−1
}

are

pairs of variables corresponding to pairs of subscripts (i, 2n − 1 − i), that differ by n

bits with |O7| = 2n−1. The requirement applies to m-bit differences d = xi⊕x2n−1−i,

0 ≤ d < 2m. f : Z2m → Z2n−1 denotes a count function, with f(d) signifying the fre-

quency of occurrence of an m-bit number d = xi⊕x2n−1−i where (xi, x2n−1−i) ∈ O7,

0 ≤ i < 2n−1. Σ2n−1−1
i=0 f(xi ⊕ x2n−1−i) = 2n−1.

According to this requirement, at most eight elements in O7 should evaluate to

the same m-bit difference d. This requirement is modeled as a global, n-ary, Boolean

constraint in the following way:

2n−1−1
∧

i=0

(f(xi ⊕ x2n−i−1) ≤ 8) (6)

This constraint possesses bit inversion symmetry. Since xi⊕x2n−i−1 = x2n−i−1⊕xi,

these pairs of variables can be interchanged. But x2n−i−1 is the same as xī, this implies

xi and xī are interchangeable, or in other words, S-7 possesses rotational symmetry.

4 Results

The experimentation setup consists of an Intel Pentium Core-2 Duo 3-GHz CPU, 3.3

GB RAM and GNU/Linux Ubuntu 9.04 operating system. We had modeled the con-

straints using the programming language Mozart-Oz [1]. However we quickly discov-

ered infeasibility of modeling nonlinearity constraints of the kind specified in S-2. For

this reason, the aforementioned nonlinearity requirements are precompiled and input

to the Maintenance of Arc Consistency (MAC) with AC2001 solver [4]. The soft con-

straint in Equation 5 is transformed into a hard constraint by setting the threshold τ .

The maximum value for τ is equal to
|X|
2 while the “worst” score for a 3-DES S-box

is equal to 18, for S-box S7 [13]. We have experimented with lesser values of τ signi-

fying “better” S-box scores, namely, with τ = 16 and τ = 10. Using the constraints

methodology for automatic generation of S-boxes, we have obtained S-boxes having

Matsui’s score equal to 8, “better” than the ”best” 3-DES S-box S4 that equals 10 [14].

Propagators that have resulted in generation of these better-quality S-boxes are reported

in [14] for criteria S-2 and S-7.

We have experimentally confirmed our theoretical results on bit inversion and ro-

tational symmetry, on all standard 3DES S-boxes as well as S-boxes generated by our

solver (by verifying that bit-inverted S-boxes yield the same scores as the originals). By
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breaking the bit inversion symmetry, the search space (computed as the cross-product

of the domains) is halved. Computationally, this is expected to approximately halve the

effort needed to exhaust this search space.

To break this symmetry in the 6 × 4 S-box CSP solver, we restrict the domain of

x0 to {0, 1, 2, 3, 4, 5, 6, 7}. Each result Φ specifies two S-boxes: Φ and Φ̄. By breaking

the rotational symmetry, the search space is further halved to yield two more S-boxes:

Φ and Φ̂ for each result Φ.

For the standard 3DES S-boxes, we have similarly confirmed the theoretically dis-

covered row, column, and diagonal symmetry properties. For each S-box, an average

of three new S-boxes have been obtained, due to these conditional symmetries.

In future work, we plan on using these symmetries by avoiding checking of the

symmetrical constraints.

5 Conclusions

We have analyzed the nonlinearity constraints proposed in [13] and have used the ob-

tained insights to prove new properties that translate into a set of constraint symmetries.

We have identified bit inversion symmetry, a special case of value reversal symme-

try, demonstrating that they apply to all studied (soft and hard) S-box nonlinearity con-

straints. Bit inversion symmetry is obtained by replacing values assigned to variables

by their one’s-complements. This symmetry doubles the efficiency of S-box generation,

and halves the search space.

We have identified a second form of symmetry, namely, rotational symmetry that is

a special case of variable symmetry. This is achieved by interchanging variables whose

suffixes differ in all bits in their binary representations. We have shown that all (soft

and hard) S-box constraints possess rotational symmetry. The efficiency of S-box gen-

eration is further doubled by this symmetry, and the search space is halved further.

The first of three S-box nonlinear, binary constraints satisfies row symmetry, the

second satisfies column and the third, diagonal symmetry. For these symmetries, appro-

priate rows, columns and diagonal-quadrants of a solution organized in the manner of

Fig. 2 should be interchanged simultaneously to preserve the respective constraints. The

n-ary global nonlinearity constraint possesses a restricted kind of diagonal symmetry,

the investigation of which could form an extension to this work.

Together, the identified set of symmetries, can potentially generate up to 32 solu-

tions from each given S-box.
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