
Distributed Private Constraint Optimization Problem:
Cost of Privacy Loss

Marius C. Silaghi1, Prashant Doshi2, Toshihiro Matsui3, Makoto Yokoo4

1Florida Tech,2University of Georgia,3Nagoya Institute of Technology,4Kyushu University

Abstract. We propose to merge the two – privacy and cost/utility – usualopti-
mization criteria of Distributed Constraint OptimizationProblems (DCOPs) into
a unique criterion. Typically, a DCOP requests agents to agree on a tuple of as-
signments of values to variables such that the sum of costs defined by a set of
secret weighted constraints is minimized. However, the privacy requirements on
constraints is classically used to define an orthogonal optimization criteria (min-
imizing the number of disclosed tuples, or maximizing the entropy of the knowl-
edge about constraints). Common complete DCOP search techniques look for a
solution minimizing the cost and maintainingsomeprivacy.
We start from the observation that privacy leaks are a cost. ADCOP whose se-
crets are labeled with the costs of the corresponding privacy leaks defines a new
framework, that we will call Distributed Private Constraint Optimization (DP-
COP). We propose to define the cost of an agreed tuple of assignments as the
sum between the weights of the constraints for the chosen tuple, and the cost
induced by secrets leaked before agreeing on the tuple. Therefore, the cost of a
solution depends on the algorithm used to find it. Differentcompletealgorithms
will return solutions with different (privacy-loss&weight) costs, and these costs
provide a metric to compare algorithms. The level of detail used for specifying
costs for privacy leaks can lead to different winners among algorithms. A set of
benchmarks is proposed and made available.

1 Introduction

The distributed constraint reasoning (DCR) framework addresses problems where a set
of agents participate in distributed problem solving. A common assumption (used in
this work) is that the agents are self-interested1. Another assumption is that the agents
agree to cooperate for finding the values of some parameters,X , which optimize an
objective function defined as a sum of a set of constraints onX . The motivation of
this agreement is sometimes assumed to be enforced by mechanisms outside the DCR,
while sometimes the reward (utility) of finding a solution isspecified as an input of the
problem. The constraints themselves are real functions. Some of the constraints may
be public, and some are secrets of different participating agents. A simple example of
such problem is meeting scheduling with secret constraints, where the parameters are
the meeting place and time, and each agent’s utility to succeed in meeting the others is
specified by that agent. When the constraints are Boolean andhard (results in{0,∞}),

1 The main idea in this work (explicitly specifying the utility of keeping secrets) can also be
used with cooperative agents, defending their privacy fromoutsiders.

their secrecy can be defined with the DisPrivCSPs framework,proposed in [15]. The
more general case where constraints can be any real functionand specify utilities is
called distributed constraint optimization, (DCOP). DCOPs raise additional problems,
and several approaches to addressing privacy were described recently. Here we present
a solution based on the explicit evaluation of the utility ofkeeping the constraints secret.
We propose to assume that this evaluation of utility of secrecy can be performed prior
to the definition of the problem, based on concrete situations, and are an input of the
corresponding agents.

The distributed private constraint satisfaction (DisPrivCSPs) framework [15] mod-
els problems with privacy requirements and enables qualitatively and quantitatively
comparison of distributed CSP solvers. We introduce a similarly powerful framework
for distributed constraint optimization (DCOPs), as an extension to DisPrivCSPs. Sig-
nificant attention was previously given to the definition andanalysis of privacy require-
ments in distributed constraint satisfaction problems (DisCSP) [19]. For a given agent
Ai, all the solutions of a DisCSP have the same value (utility),Ui. At the basis of the
DisPrivCSP theory is the observation that a rational agentAi will drop out of search
when it expects that the price of its future privacy loss is higher thanUi (intuitively
leading to a negative total utility). Past privacy loss doesnot matter since its value was
already lost. The quality of a solution to be searched for by aDisCSP algorithm is
therefore defined only by the privacy criteria.

Distributed constraint optimization problems (DCOPs) arean extension of DisCSP
where constraints have different costs. Some attention wasalready given to privacy in
distributed constraint optimization [7, 5]. In prior work,DCOPs with privacy require-
ments are treated as a multi-criteria optimization where the constraint weights are of a
different nature from privacy (often perceived from an information theoretic perspec-
tive). The changes needed for generalizing the DisPrivCSP framework have not yet
been analyzed. We start by noting that its idea does not immediately apply to DCOPs,
since in DCOPs the value of the optimal solution is not known in advance (otherwise
the problem would become a constraint satisfaction problem). While DisPrivCSPs are
optimization problems for the privacy criterion, DCOPs were so far seen as multi-
criteria optimization problems along two incomparable metrics (privacy/entropy and
cost/utility).

We propose a new framework called Distributed Private Constraint Optimization
(DPCOP) where the two – previously incomparable – metrics ofDCOPs are redefined
and merged under the utility theory, yielding a unique and easy to analyze optimization
criteria. We explicitly model the loss of privacy as a cost and we assume that this cost
is provided as a part of the input specification. When the costs of revealing each secret
can be obtained like this, they allow for much better targeted strategies, keeping the
most valuable secrets and revealing less valuable secrets (rather than just maximizing
the entropy by guarding many irrelevant secrets). A set of benchmarks are proposed
for the new framework (see [2]), and baseline algorithms areproposed and analyzed
experimentally.

The DPCOP framework also defines a new hybrid between the DCOPand the multi-
agent planning research areas, since a DPCOP solver becomesa planner (where the
actions taken during search have an impact on the solution).

2 Related Work

Privacy has been a fundamental motivation for distributed constraint optimization, since
the early beginning of the field [19]. However, due to wide disagreement on how to
formalize privacy requirements, proposed techniques are often evaluated not from the
privacy perspective but solely from the perspective of efficiency and cost. The first
quantitative measurement of privacy loss was based on simply counting the number
of disclosed tuple values [3]. The distributed private constraint satisfaction problems
introduced in [15] label each secret with a number corresponding to the cost induced
by its privacy loss. The privacy loss incurred during a computation is given by the sum
of the the privacy values of each leaked secret. Other approaches to quantifying privacy
loss are based on information theory, maximizing entropy. The privacy loss is therefore
expressed in bits of information, or some related units [7].All these approaches lack a
clear way to trade off privacy for solution quality, resulting in a difficult multi-criteria
optimization.

2.1 Distributed Private CSPs

With DisPrivCSPs [15], each secret (cost/weight of a constraint or combination thereof)
is associated with aprivacy value. The privacy value of a secret specifies the incre-
mental loss of utility due to the revelation of that secret. Note that DisPrivCSPs could
only model additive privacy loss, restriction also removedin the definition proposed
here. Thereward for solving the problemis given as a constant. The weights (satisfy-
ing/unsatisfying) of a constraint have no direct relation to the utility. Agents in Dis-
PrivCSPs abandon the search when the utility loss due to predictable privacy loss (next
incremental privacy loss) is higher than the reward for finding a solution. A qualitative
comparison of algorithms was possible based on the ability to solve problems without
abandoning the search.

2.2 Baseline Algorithms

The simplest distributed algorithm for solving distributed CSPs is the one proposed
in [3]. In this algorithm, an agent proposes a value for the variables (a solution) at a
time, and the other agents answer with messages specifying whether their constraints
are satisfied by that assignment.

There are other algorithms for solving DCOPs such as ADOPT [9], DPOP [11],
and DisAO [8]. There also exist DCOP optimization techniques using cryptographic
protocols [16, 5], and which offer significantly high levelsof privacy guarantees.

3 DPCOP Framework

While prior work treated distributed constraint optimization problems (DCOPs) with
privacy requirements as a multi-criteria optimization, where the constraint weights are
measured in utility and privacy is measured in information bits or related metrics, here
we propose to measure privacy in the same type of utility as the constraint weights.

In order to extend the DisPrivCSP framework to DCOPs, we start from the obser-
vation that the DCOP constraint weights, normally used in the objective function of the
optimization, can also be considered to be a positive (or negative) utility – or cost – of
the same nature as the cost induced by privacy loss. As such, in DCOPsminimizingthe
sum of the constraint weights (i.e., where weights represent a cost, with negative util-
ity), the total cost is given by the sum between the value of the total lost privacy and the
cost of the selected solution. The reward for each agent of solving the problem will still
be considered in this setting to be a previously known (possible infinite) value, like with
DisPrivCSPs. A rational participating agent is expected toabandonthe search if its next
revelation would lead to a value for theincremental privacy losswhich, together with
a lowest bound on the cost of the solution, becomes larger than the reward for solving
the problem.

For maximizationDCOP problems, namely problems seeking a solution maximiz-
ing the sum of the constraint weights (i.e., where constraint weights represent rewards),
privacy loss becomes the only cost. The utility is defined by the difference between the
reward of the solution and the value of the privacy lost during the search. A rational
agent will therefore abandon the search problem if its next (or expected) disclosures
leads to anincremental privacy lossthat is larger than the expected total reward of the
solution.

In order to formally define the framework described so far, wefirst formalize the
concept of privacy leaks in a way general enough to model non-additive functions.
Given a set of secrets, a leaked information about some of these secrets will be called
revelation.

Definition 1 (Revelation).Given a set of secretsS and a set of agentsA, the set of
possible revelationsR(S, A) is a functionR(S, A) : A → (S → [0, 1]) which maps
each peer agent to a functional relation specifying the probability learned by that agent
for each secret.

Note that this definition of revelation is more general than the version used by Dis-
PrivCSPs, as here it can model statistical privacy losses. While the above definition has
a rich modeling power, one can assume that sometimes users may find it difficult to
provide the data related to all possible revelations definedin this way. We therefore also
consider a simplified version that requires less data (but issomewhat less general):

Definition 2 (simplified revelation). Given a set of secretsS and a set of agentsA,
the set of possible revelationsR(S, A) is the function,R(S, A) : A → PS(S), which
maps each peer agent to the element of the power-set of the setof secrets,PS(S), that
he learns.

The simplified revelation definition assumes that privacy islost only when a secret
is completely revealed. It does not account for secrets about which other probabilistic
information is made available. Now we can formally define theDPCOPs.

Definition 3 (DPCOP). A (minimization) Distributed Private Constraint Optimiza-
tion Problem (DPCOP) is defined by a tuple(A, X, D, C, P, U). A is a set of agents
{A1, ..., AK}. X is a set of variables{x1, ..., xn}, and D is a set of domains

{D1, ..., Dn} such that each variablexi may take values only from the domainDi. The
variables are subject to a setC of sets of weighted constraints{C0, C1, ..., CK}, where
Ci = {φ1

i , ..., φ
ci

i } holds the secret weighted constraints of agentAi, andC0 holds the
public constraints. Each weighted constraint is defined as afunctionφi : Xi → IR+

whereXi ⊆ X . The value of such a function in an input point is calledconstraint entry,
and eachCi can be seen as a set of such constraint entries.

P is a set of privacy loss cost functions{P1, ..., PK}, one for each agent.Pi defines
the cost inflicted toAi by each revelationr of its secrets, i.e.,Pi(r) : R(Ci, A) → IR+.

A solution is an agreement between agents inA on a tupleτ∗ of assignments of
values to variables that minimizes the total cost:

τ∗ = argminτ

∑

i

(
∑

j

φ
j
i (τ)) + Pi(Πi(τ))

whereΠi(τ) is the revelation inR(Ci, A) performed during the process leading to the
agreement on the assignmentsτ .

U is a set of rewardsU1, ..., UK , one for each agents, that the corresponding agent
receives if a solution is found, and that agents use for deciding whether to abandon a
search given their foreseen incremental privacy loss.

The set of rewardsU can be used to qualitatively compare DCOP solvers, as to
which solver can solve more problems than another solver without any agent abandon-
ing the process. Such a hierarchy of solvers was built for DisPrivCSPs in [15]. Formally,
the agentAi abandons the search if:

Pi(r∗) − Pi(r) + W≥Ui

wherer is the revelation performed byAi up to this moment,r∗ is the revelation after
the next planned sequence of actions, andW is a low bound on the quality (cost) of the
expected solution.

Theprivacy-loss cost functionsPi are a new concept. These functions are part of
a problem model (just like utilities of auction outcomes, used to infer bids in Vickrey
auctions). Just as utilities are an agent’s input for auctions, a privacy-loss cost function
is an agent’s input for DPCOPs. An agent can infer a privacy-loss cost function by
simulating how much utility it may lose when each revelationis performed.

The above DPCOP definition is for the general case where the constraint of an agent
may involve all variables. Many approaches consider a simplified version (equivalent in
expressive power) where each agentownssome variables, and agents enforce only con-
straints with variables assigned by previous agents. We provide next the corresponding
DPCOP simplification, allowing for most existing DCOP algorithms.

Definition 4 (simplified DPCOP).A (minimization) distributed private constraint op-
timization problem is defined by a tuple(A, X, D, C, P, U). A is a set of agents
{A1, ..., An}. X is a set of variables{x1, ..., xn}, and D is a set of domains
{D1, ..., Dn} such that each variablexi may take values only from the domainDi. The
variables are subject to a setC of weighted constraints sets{C0, C1, ..., Cn}, where
Ci = {φ1

i , ..., φ
ci

i } holds the secret weighted constraints of agentAi, andC0 holds

public constraints. Each weighted constraint is defined as afunctionφ
j
i : Xi → IR+

whereXi ⊆ {x1, ..., xi}.
P is a set of privacy loss cost functions{P1, ..., Pn}, one for each agent.Pi defines

the cost inflicted by the revelation of any subset of secret elements ofPi : R(Ci, A) →
IR+.

A solution is an agreement between the agents inA on a tupleτ∗ of assignments of
values to variables that minimizes the total cost:

τ∗ = argminτ

∑

i

(
∑

j

φ
j
i (τ)) + Pi(Πi(τ))

whereΠi(τ) is the revelation inR(Ci, A) performed during the process of agreeing on
the assignmentsτ .

U is a set of rewardsU1, ..., UK , one for each agents, that the corresponding agent
receives if a solution is found.

Maximization Maximization DPCOPs are defined similarly, but without the element
U , and redefining the solution as:

τ∗ = argmaxτ

∑

i

(
∑

j

φ
j
i (τ)) − Pi(Πi(τ)).

An agent abandons the maximization search if:

W − (Pi(r∗) − Pi(r))≤0

wherer is the revelation performed byAi up to this moment,r∗ is the revelation after
the next planned sequence of actions, andW is an upper bound on the quality of the
expected solution.

Simplified cost functionsWhile (in general) privacy-loss cost functions are not additive,
we expect that additive randomly generated benchmarks havethe simplicity that can
help in the theoretical understanding of the new framework.In a simplified version,
the value of privacy leaks towards a peer agent can also be considered independent
of privacy leaks towards other peers (assumption not applicable to all problems). For
additiveprivacy cost functions, an array of privacy costs can simplybe attached to each
constraint tuple.

An important case ofnon-additiveprivacy-loss cost function is where the cost of
a leak is independent of the agent (revelation to an agent being considered to be a
revelation to all agents), while being additive along the dimension of the secrets. Such a
privacy cost function can be represented by a single cost associated with each constraint
tuple.

4 Comparison with previous frameworks

The closest previous framework is the Distributed Private CSPs (DisPrivCSPs) that
we introduced in [15], which deals with distributed constraint satisfaction problems

(DisCSPs). DisPrivCSPs also have costs for privacy loss, but that cost is not integrated
in any way with the cost of the agreement tuples.

DisCSPs can be modeled as a special case of DCOPs, namely whenthe constraints
are functions with results only in{0,∞}, rather than in IR+. This is because:

∑

i

(
∑

j

φ
j
i (τ))

has the same value for all the satisfying tuples of the DisPrivCSP.
Previous research related to privacy in DCOPs has already found inspiration in

DisPrivCSPs [7], and can be seen as straightforward applications of DisPrivCSPs to
DCOPs. DPCOPs are a less straightforward extension of DisPrivCSPs. We think that the
main innovation in DPCOPs versus a straightforward DisPrivCSPs usage with DCOPs
is:

– DPCOPs unify the metric for cost of privacy loss with the metric used for specifying
weights of constraints (in DisPrivCSPs they were incomparable metrics).

– The revelation is more general in DPCOPs, allowing for statistical and non-additive
privacy loss functions.

Among smaller differences, while with DisPrivCSPs an agentAi will abandon the
search when incremental costs are higher thanUi, with maximization DPCOPs there
may be no known finite limit on the reward of the agent. Also, for DisPrivCSPs we
provided only theoretical and qualitative comparison of techniques, while with DP-
COPs we provide benchmarks, random problem generators, andexperimental analysis
of techniques.

5 Baseline DPCOP Solvers

Any of the existing DCOP techniques can be used to solve DPCOPs. Techniques us-
ing cryptographic methods, such as the ones in [16, 5], can guarantee optimality with
minimal privacy leak. Other techniques may offer more efficiency at the expense of
optimality. We evaluate simple algorithms for solving DPCOPs. Probably the simplest
technique consists of an agent consecutively asking each publicly possible tuple one
after another, while the other agents answer with their costs. This is an adaptation to
optimization of the technique proposed in [3]. The agent asking the questions in this
1-leader version is calledthe leader. In the N-leaders variant, the search space is
distributed between agents (related to [6]), and each agentasks costs for his part. The
baseline version we evaluate in the N-leaders version is even simpler, with agents acting
in turn rather than simultaneously, each question also delegates the leader for the next
question. At the end, the agents publish the best tuples for their sub-parts, and the best
overall tuple is selected.

Leaders may propose tuples that are suboptimal (with worse local cost than their
currently best tuple), lying to increase privacy (lying occurs also in [1]).

procedure leaderdo
foreach next tupleτ with better local weight than currently best tupledo

decide nextleader // only N-leaders version;
send ask(τ ,next leader);
set next leader // only N-leaders version;
wait answers;
update identity of best tuple;

end
end do.
procedureslavesdo

whenask (τ , next leader)do
compute local cost forτ ;
send answer(τ , cost) to leader;
recompute privacyloss;
leader := nextleader // only N-leaders version;
if (leader = myself)then

change to leader mode // N-leaders version;
end

end do.
end do.

Algorithm 1: Baseline (1-leader and N-leaders versions)

6 Non-cooperative multi-agent problem solving

The DPCOP framework typically models semi-cooperative paradigms. Some other
agent paradigms that are also useful are:

– Cooperative in which agents are willing to readily exchangeany data that can
improve their global performance (e.g., robots or humans ina team exploring
Mars [13]).

– Non-cooperative and self-interested in which the agents are enemies and do not
coordinate with each other and do not agree on any protocol (e.g., reciprocally
spying robots or humans in a war [10]).

– Semi-cooperative and self-interested in which the agents in their own interest agree
to follow social protocols in order to coexist (bidders in anauction [18]).

The two self-interested situations are extreme and often, in practice, the self-
interested situations are in-between. For example, enemies in a cold war are interested
in destroying each other, but (since a blunt nuclear war would destroy all parties) agree
to coordinate (unreliably) to minimize the probability of being destroyed. This is repre-
sentative of the situation of communication between the twoactors in the well known
Prisoner’s Dilema game, each trying to convince the other tostay silent, while trying to
catch an opportunity to betray.

The DPCOP framework assumes that the agents are involved in some important
amount of coordination, and desire to maximize the sum of independently declared
utility functions (with trustworthiness guaranteed by other externel mechanisms, such
as Clarke tax).

Privacy as utility in non-cooperative self-interested paradigms However, our idea of
modeling privacy as utility also applies to non-cooperative self-interested situations.
While DPCOP solving is a kind of multi-agent planning (MAP),non-cooperative sit-
uations are more commonly addressed in general approaches to MAP, such as partial
order planning or POMDPs [12, 4]. While current MAP approaches enforce privacy us-
ing entropy maximization [10], our idea of modeling privacyloss with utility (cost) can
be utilized to get simpler and more intuitive frameworks. The effort then shifts toward
specifying the privacy loss functions.

7 Evaluation

It is easy to learn a secret weight of a constraint entry for anagent when a message
sent by this agent is based solely on the weight of that secretconstraint entry. If an
agent controls a single secret constraint, each message that the agent sends in response
to a leader’s challenge reveals a secret weight. If an agent holds several secret con-
straints, a message is an aggregation of secrets from those constraints, and learning the
component secrets is sometimes possible, but more computationally involved (solving
the corresponding systems of equations, when they are determined). First we perform
an experimental study for the simpler case whereeach agent enforces a single private
constraint.

Random problem generatorAn important component of constraint-based frameworks
consists in the development of random problem generators. Our DPCOP genera-
tor (made available on the DPCOP site [2]) is based on a typical CSP generator
parametrized by density and number of values per variable. The weights we gener-
ate for constraint tuples are finite, generated according toa distributionDw, defined
by the uniform distributionU(0, Bw) between 0 and an upper boundBw. Each con-
straint is tagged with the ID of an owner agent (i for agentAi). For additive privacy
functions, each secret constraint tuple is tagged with a vector of privacy loss costs, one
for each non-owner agent. The privacy loss cost is drawn fromanother distribution,
Dp, also chosen as a uniform distributionU(0, Bp) between 0 and a boundBp. For the
version with costs of privacy leaks independent of the target agent, the array of costs
per constraint entry has length 1. The rewards generated forreaching a solution with
minimization DPCOPs are infinite.

DPCOP filesEach randomly generated DPCOP, as well as any non-random benchmark
we generate is stored in a file in the following format:

<nb variables>
<var_name1> <dom_size> <val_1> ... <val_d>
<var_name2> <dom_size> <val_1> ... <val_d>
...
<nb constraints>
<arity1>
<owner>

<size privacy-vector/tuple>
<var1_name>
...
<weight1> [<privacy vector>] ...

An example file (with additive privacy costs) is:

2 # nb agents
2 # nb variables

x0 3 0 1 2
x1 3 0 1 2

2 # nb constraints

1 # arity first constraint
0 # owner agent (-1 means public)
2 # length privacy-leaks vector
x0 # variable_name
3 [0 4] 0 [0 1] 3 [0 1]

2 # arity second constraint
1 # owner agent (-1 means public)
2 # length privacy-leaks vector
x1 # var1
x0 # var2
3 [3 0] 4 [0 0] 1 [3 0]
3 [4 0] 2 [1 0] 3 [1 0]
1 [3 0] 1 [3 0] 1 [3 0]

Random problems

Variables

To
ta

l C
os

t

4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1�leader 20%�density
1�leader 30%�density

Fig. 1. Total cost (privacy+weight) with 1 leader.

Experimental ResultsResult quality, averaged over random 25 minimization DPCOPs
at each size with the baseline 1-leader algorithm are reported in Figure 1, as total cost

Algo DPCOPSizePref CostCyclesTime
HP STM 4 2 3 14 1.47
BL STM 4 2 257 9.6 0.85
BL RPSM 4 2 249 8.8 0.56
BL RPSX 4 2 310 27.6 0.82

Table 1.Benchmarks.

(to be subtracted from the result reward). Results for the N-leaders variant were also
obtained on the same problems and found to lead to 10% higher cost for small problems,
4-6 variables, while being similar at larger problems (which is explained by the random
nature of the problems).

We also show evaluations based on benchmark problems [2]. The results are given
in Table 1. RPSX and STM based on soft constraints, and RPSM based on hard con-
straints, Results are given for the baseline algorithm withone leader (BL), and for cryp-
tographic algorithm (HP) in [14]. The cryptographic algorithm leaks only the secrets
implied by the fact that the solution satisfies the public constraints

Some cryptographic solvers are guaranteed to find optimal solutions for DPCOPs,
at the expense of efficiency [17, 16]. Assuming that no two agents exchange information
about peers, there exist partially cryptographic solvers that are quite efficient but may
rarely leak information due to solution vulnerabilities [5].

8 Conclusion

This is the first approach where privacy loss and weight of constraints in DCOPs are
measured with the same unit (utility) and integrated into a unique optimization criteria.

We define the framework of Distributed Private Constraint Optimization to model
problems with complex privacy requirements. We also provide a generator for random
DPCOPs with additive or agent-independent privacy functions.

Baseline algorithms are evaluated for problems in the new framework. All exist-
ing DCOP solvers apply to DPCOPs. Some cryptographic solvers provide the optimal
solution, at the expense of efficiency.

References

1. I. Brito and P. Meseguer. Distributed forward checking may lie for privacy. In CP DCR
Workshop, 2007.

2. DPCOP. Distributed private optimization problems.http://www.cs.fit.edu/

˜ msilaghi/DPCOP , 2008.
3. E.C. Freuder, M. Minca, and R.J. Wallace. Privacy/efficiency tradeoffs in distributed meeting

scheduling by constraint-based agents. InProc. IJCAI DCR, pages 63–72, 2001.
4. Piotr Gmytrasiewicz and Prashant Doshi. A framework for sequential planning in multiagent

settings.Journal of Artificial Intelligence Research (JAIR), 24:49–79, 2005.
5. Rachel Greenstadt, Barbara Grosz, and Michael D. Smith. SSDPOP: Improving the privacy

of PDCOP with secret sharing. 2007.

6. Youssef Hamadi. Interleaved backtracking in distributed constraint networks. InICTAI,
pages 33–41, 2001.

7. Rajiv T. Maheswaran, Jonathan P. Pearce, Emma Bowring, Pradeep Varakantham, and
Milind Tambe. Privacy loss in distributed constraint reasoning: A quantitative framework
for analysis and its applications.Journal of Autonomous Agents and Multiagent Systems
(JAAMAS), 2006.

8. Roger Mailler and Victor Lesser. Solving distributed constraint optimization problems using
cooperative mediation. InAAMAS, pages 438–445, 2004.

9. Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and MakotoYokoo. ADOPT: Asyn-
chronous distributed constraint optimization with quality guarantees.AIJ, 161, 2005.

10. Praveen Paruchuri, Milind Tambe, Fernando Ordó nez, and Sarit Kraus. Security in multia-
gent systems by policy randomization. InAAMAS, 2006.

11. Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. In
IJCAI, 2005.

12. S. Russell and P. Norvig.Artificial Intelligence, A Modern Approach. Prentice Hall, 2nd
edition, 2002.

13. M. Sierhuis, J. M. Bradshaw, A. Acquisti, R. v. Hoof, R. Jeffers, and A. Uszok. Human-
agent teamwork and adjustable autonomy in practice. InThe 7th International Symposium
on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2003.

14. M.-C. Silaghi. Hiding absence of solution for a discsp. In FLAIRS’05, 2005.
15. M.-C. Silaghi and B. Faltings. A comparison of DisCSP algorithms with respect to privacy.

In AAMAS-DCR, 2002.
16. M.-C. Silaghi, B. Faltings, and A. Petcu. Secure combinatorial optimization using DFS-

based variable elimination. InSymposium on AI and Maths, January 2006.
17. M.-C. Silaghi and D. Mitra. Distributed constraint satisfaction and optimization with privacy

enforcement. In3rd IC on Intelligent Agent Technology, pages 531–535, 2004.
18. W. Vickrey. Counterspeculation, auctions and competitive sealed tenders.Journal of Fi-

nance, 16:8–37, 1961.
19. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction

problem: Formalization and algorithms.IEEE TKDE, 10(5):673–685, 1998.

