
Resource constrained DCOP solver using virtual
variables and conventional pseudo-tree

Toshihiro Matsui1, Marius Silaghi2, Katsutoshi Hirayama3, Makoto Yokoo4, and
Hiroshi Matsuo1

1 Nagoya Institute of Technology{matsui.t, matsuo }@nitech.ac.jp
2 Florida Institute of Technologymsilaghi@fit.edu

3 Kobe Universityhirayama@maritime.kobe-u.ac.jp
4 Kyusyu Universityyokoo@is.kyushu-u.ac.jp

Abstract. The Distributed Constraint Optimization Problem (DCOP) is a fun-
damental formalism for multi-agent cooperation. With DCOPs, the agent states
and the relationships between agents are formalized into a constraint optimiza-
tion problem, which is then solved using distributed cooperative optimization
algorithms. In the original DCOP framework, a set of objective functions is em-
ployed to represent the relationships between agents. However, constraints for
resources that are consumed by teams of agents are not well supported. Resource
constraints are necessary to handle practical problems including distributed task
scheduling with limited resource availability.

A dedicated framework called Resource Constrained DCOP (RCDCOP) has been
recently proposed. RCDCOP models objective functions and resource constraints
separately. A resource constraint is an n-ary constraint that represents the limit on
the number of resources of a given type available to agents. Previous research ad-
dressing RCDCOPs employs the Adopt algorithm, which is an efficient solver
for DCOPs. An important graph structure for Adopt is the pseudo-tree for con-
straint networks. A pseudo-tree implies a partial ordering of variables. In this
variable ordering, n-ary constrained variables are placed on a single path of the
tree. Therefore, resource constraints that have large arity augment the depth of
the pseudo-tree. This also reduces the parallelism, and therefore the efficiency of
Adopt.

In this paper we propose another version of the Adopt algorithm for RCDCOP
using a pseudo-tree that is generated ignoring resource constraints. The key ideas
of our work are as follows: (i) The pseudo-tree is generated ignoring resource
constraints. (ii) Virtual variables are introduced, representing the usage of re-
sources. These virtual variables are used to share resources among subtrees. (iii)
The addition of virtual variables increases the search space. To reduce this prob-
lem, the search is pruned using the bounds defined by the resource constraints.
These ideas are used to extend Adopt. The proposed method reduces the previous
limitations in the construction of RCDCOP pseudo-trees. The efficiency of our
technique depends on the class of problems being considered, and we describe
the obtained experimental results.

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) [1, 2, 3, 4, 5, 6, 7] is a funda-
mental formalism for multi-agent cooperation in distributed meeting scheduling, sensor
networks and applications including distributed problem solving.

With DCOPs, the agent states and the relationships between agents are formalized
into a constraint optimization problem, which is then solved using distributed coopera-
tive optimization algorithms. In recent years, new efficient algorithms for DCOP have
been developed.

In the original DCOP framework, a set of objective functions is employed to repre-
sent the relationships between agents. However, constraints for resources that are con-
sumed by teams of agents are not well supported. Resource constraints are necessary to
handle practical problems including distributed task scheduling with limited resource
availability. For example, collaborative task scheduling among different organizations
has characteristics of “scheduling on a budget”. Each plan of schedule consumes a cer-
tain amount of the budget. An optimal schedule that satisfies limitation of budget is
the goal of problem. We can consider this scheduling problem as an extended class of
DCOP whose resource constraint represents the budget. Distributed cooperative prob-
lem solving is important to reduce leak of privacy of costs and other local information.

A dedicated framework called Resource Constrained DCOP (RCDCOP) has been
recently proposed [8, 9] . RCDCOP models objective functions and resource constraints
separately. A resource constraint is an n-ary constraint that represents the limit on the
number of resources of a given type available to agents. In [8], multiply-constrained
DCOP is formalized. As an example domain of the formalization, the meeting schedul-
ing problem that includes the concept of privacy is presented. The algorithm to solve
the problem is considered with the privacy. In [9], n-ary constrained DOCP for resource
constrained distributed task scheduling, and the algorithm to solve the problem are pre-
sented. In the research, a method called constraint posting has been developed. The
constraint posting handles constraints that are not given as priori but discovered while
search processing.

Previous research addressing RCDCOPs employs the Adopt algorithm [4], which
is an efficient solver for DCOPs. An important graph structure for Adopt is the pseudo-
tree for constraint networks. A pseudo-tree implies a partial ordering of variables. The
n-ary resource constraint is represented as a hyper graph in the constraint network. In
this variable ordering, n-ary constrained variables are placed on a single path of the tree.
Therefore, resource constraints that have large arity augment the depth of the pseudo-
tree. This also reduces the parallelism, and therefore the efficiency of Adopt.

On the other hand, a basic resource constraint is a rather simple constraint that
represents the limitation of the total usage of resources required by agents. Therefore, it
is possible to allow resource constraints related to different subtrees in the pseudo-tree.

In this paper, we propose another version of the Adopt algorithm for RCDCOP
using a pseudo-tree that is generated ignoring resource constraints. The key ideas of
our work are as follows: (i) The pseudo-tree is generated ignoring resource constraints.
(ii) Virtual variables are introduced, representing the usage of resources. These virtual
variables are used to share resources among subtrees. (iii) The addition of virtual vari-
ables increases the search space. To handle this problem, we consider the influence of

x
0

x
1

x
2

x
3

x
4

r
0

r
1

Fig. 1.Resource constrained DCOP

placement of virtual variables/resources constraints in the pseudo tree. Moreover, we
use pruning operations using the bounds defined by the resource constraints, if possi-
ble. An important aim of the research is the trade-off between simplicity of pseudotree
and overhead of additional search space. These ideas are used to extend Adopt. The
efficiency of our technique depends on the class of problems being considered, and we
describe the obtained experimental results.

2 Problem definition

2.1 Distributed Constraint Optimization Problem (DCOP)

A DCOP is defined by a setA of agents, a setX of variables and a setF of bi-
nary functions. Agenti has its own variablexi. xi takes a value from discrete fi-
nite domainDi. The value ofxi is controlled by agenti. The cost of an assignment
{(xi, di), (xj , dj)} is defined by a binary functionfi,j(di, dj) : Di × Dj → N. The
goal is to find a global optimal solutionA that minimizes the global cost function:∑

fi,j∈F, {(xi,di),(xj ,dj)}⊆A fi,j(di, dj).

2.2 Resource Constrained DCOP (RCDCOP)

In RCDCOP resource constraints are added to DCOP. Resource constraints are defined
by a setR of resources and a setU of resource requirements. A resourcera ∈ R has
its capacity defined byC(ra) : R → N. Each agent requires resources according to its
assignment. For assignment(xi, di) and resourcera, a resource requirement is defined
by ui(ra, di) : R × Di → N. For each resource, the total amount of requirement
must not exceed its capacity. The global resource constraint is defined as follows:∀r ∈
R,

∑
ui∈U, {(xi,di)}⊆A ui(r, di) ≤ C(r). The resource constraint takes arbitral arity.

An example of RCDCOP that consists of 5 variables and 2 resources is shown Fig-
ure 1. In this example,x0, x2 andx3 are constrained by resourceR0. x0, x1 andx4 are
constrained by resourceR1.

3 Background : Solving RCDCOP using Adopt

In previous work, the Adopt algorithm is employed to solve n-ary resource constrained
DCOP. Adopt is a DCOP solver using a pseudo-tree for a constraint network. In this

section, a brief description of pseudo-trees, Adopt and an extension of Adopt for n-ary
constraints will be shown.

3.1 Pseudo-tree

The Adopt algorithm depends on a variable ordering defined by a pseudo-tree. The
pseudo-tree is generated using a depth first search for the constraint network in the
preprocessing of Adopt. The edges of the original constraint network are categorized
into tree edges and back edges of the pseudo-tree. The tree edges represent the partial
order relation between two variables. There is no edge between different subtrees. By
employing this property, Adopt performs search processing in parallel.

3.2 Adopt

Adopt[4] is an efficient distributed constraint optimization algorithm. The processing
of Adopt consists of two phases as follows.

– Computation of global optimal cost: Each node computes the boundary of the
global optimal cost according to the pseudo-tree.

– Termination: After computation of global optimal cost, the boundary of the cost
is converged to the optimal value in the root node. Then the optimal solution is
decided according to the pseudo-tree in a top-down manner.

In this paper, important modifications for Adopt are applied to computation of the global
optimal cost. Agenti computes the cost using information as follows.

– xi: variable of agenti. Valuedi of xi is sent to lower neighbor nodes ofxi using
VALUE message.

– current contexti: current partial solution of ancestor nodes ofxi. current contexti
is updated byVALUE message andcontext of COST messages.

– thresholdi: total amount of cost that is shared with subtree routed atxi. thresholdi

is received from parent node ofxi usingTHRESHOLD message.
– contexti(x, d), lbi(x, d)i, ubi(x, d): boundary of optimal cost for each valued of

variablexi and subtree routed at child nodex. These elements are received from
child nodex usingCOST message.
If current contexti includescontexti(x, d), upper and lower bounds of cost are
lbi(x, d) andubi(x, d) respectively. Ifcurrent contexti is incompatible withcontexti(x, d),
contexti(x, d), lbi(x, d)i andubi(x, d) are reset to{}, 0 and∞ respectively.

– ti(x, d): total amount of cost that is allocated to subtree routed at child nodex when
xi takes valuedi. ti(x, d) is sent tox usingTHRESHOLD message.

Computation in agenti is shown as follows. The local costδi(d) for valued of
variablexi andcurrent contexti is defined as follows.

δi(d) =
∑

(xj,dj)∈current contexti,

j∈upper neighbor nodes of i

fi,j(d, dj) (1)

Upper boundUBi(d) and lower boundLBi(d) for valued of variablexi and the
subtree routed atxi are defined as follows.

LBi(d) = δi(d) +
∑

j∈child nodes of i

lbi(xj , d) (2)

UBi(d) = δi(d) +
∑

j∈child nodes of i

ubi(xj , d) (3)

Upper boundUBi and lower boundLBi for the subtree routed atxi are defined as
follows.

LBi = min
d∈Di

LBi(d) (4)

UBi = min
d∈Di

UBi(d) (5)

Agenti maintains values ofdi, thresholdi andti to holdInvariantsas follows.

LBi ≤ thresholdi ≤ UBi (6)

lbi(xj , d) ≤ ti(xj , d) ≤ ubi(xj , d) (7)

thresholdi = δ(di) +
∑

j∈child nodes of i

ti(xj , di) (8)

{
UBi(di) = thresholdi UBi = thresholdi

LBi(di) ≤ thresholdi otherwise
(9)

Each agenti exchanges messages, and updates local information. Eventually, at
root noder, global optimal cost converges asLBr = thresholdr = UBr. The global
optimal solution is decided according to the optimal cost. Details of the Adopt algorithm
are shown in [4].

3.3 Serialization of resource constrained variables

In previous works, a version of the Adopt algorithm using a basic approach, which se-
rializes resource constrained variables, is proposed. The pseudo-tree is generated con-
sidering resource constraints. Variables, which are related to an n-ary constraint, are
placed in a single path of a pseudo-tree. For example, the pseudo-tree shown in Figure
2(a) is generated from the RCDCOP shown in Figure 1. In this example,x0, x2 andx3,
which are related to resourcer0, are placed on a single path of a pseudo-tree.x0, x1 and
x4, which are related to resourcer1, are also placed on a single path. If it is necessary
to serialize variables, extra tree edges are inserted between nodes. In the example of
Figure 2(a), tree edges (x2,x3) and (x1,x4) are inserted.

In the Adopt algorithm,Resource evaluation nodes, which evaluate resource con-
straints, are introduced. A resource evaluation node is added as a child node of the
lowest node of serialized nodes. For example, in Figure 2(b), extra nodesr0 andr1 are
added as child nodes ofx3 andx4 respectively. Each agent sends its value of variable
to resource evaluation nodes using theVALUE message. Then the resource evaluation

x
0

x
1

x
2

x
3

x
4

r
0

r
1

x
0

x
1

x
2

x
3

x
4

r
0

r
1

VALUE
messages

COST
message

(a) pseudo-tree (b) computation

Fig. 2.Serializing of resource constrained variables

x
0

x
1

x
2

x
3

x
4

r
0

r
1

Fig. 3.Resource constraint free pseudo-tree

node evaluates the total amount of resource requirement for its resource. If the resource
constraint is not satisfied, the resource evaluation node notifies its parent node using the
COST message. The violation of the resource constraint is represented by infinity cost.
In addition, it is possible to integrate the resource evaluation node into its parent node.

In this approach, no modification of the Adopt algorithm is necessary except adding
resource evaluation nodes and handling infinity cost. However, large arity of resource
constraint increases the depth of the tree, and reduces parallelism in search processing.

4 Solving RCDCOP with Resource constraint free pseudo-tree

In this work, we propose a novel version of the Adopt algorithm for RCDCOP. The pro-
posed algorithm allows resource constraints related to nodes in different subtrees. The
pseudo-tree is generated ignoring resource constraints. For example, the pseudo-tree
shown in Figure 3 is generated from the RCDCOP shown in Figure 1. In this example,
there is a constraint edge ofr0 between two different subtrees, which containx2 andx3

respectively. Similarly, there is a constraint edge ofr1 betweenx1 andx4.

In the original Adopt, constraint edges, which are placed among different subtrees,
are not allowed. In such case, it is not possible to generate aCOST message that notifies
parent nodes of the violated solution correctly.

4.1 Introduction of virtual variables

The main idea of the proposed method is the introduction of virtual variables, which
represent usage of resources. Each node shares resources with its parent node and child
nodes using the virtual variables.

Virtual variablevra,i is defined for resourcera and nodexi, which requires resource
ra in the subtree routed atxi. vra,i is owned by the parent node ofxi. vra,i takes a value
from its discrete domain{0, 1, · · · , C(ra)}.

As a simple example, a pseudo-tree, which is related to single resource constraint,
is shown in Figure 4. In this example, resourcer0 is related to variablesx0, x1, x2

andx3. For these resources and variables, virtual variablesvr0,1, vr0,2 andvr0,3 are
introduced. Each virtual variablevra,i is owned by the parent node ofxi. The value of
vra,i is controlled by the parent node. Note that root nodex0 does not have a parent
node. Therefore, it is assumed that the value ofvr0,0 is given from the virtual parent
node. In this case,vr0,0 takes a constant value that is equal to capacityC(r0) of resource
r0.

Valuedra,j of virtual variablevra,j , which is owned by agenti, is sent toi’s child
nodej using theVALUE message. Therefore, theVALUE message is modified to
contain(xi, di) and the additional assignment(vra,j , dra,j). When nodej receives the
VALUE that contains(vra,j , dra,j), nodej updates itscurrent contextj with new
(vra,j , dra,j).

In nodei, assignments of virtual variables for resourcera should satisfy a constraint
ca,i as follows.

ca,i : dra,i ≥ ui(ra, di) +
∑

j∈child nodes of i

which requires ra

dra,j (10)

Heredra,i denotes the value ofvra,i, which is received from the parent node ofi. The
assignment(vra,i, dra,i) is contained incurrent contexti. If an assignment does not
satisfy the resource constraintca,i, the violation of the resource constraint is represented
by infinity cost.

Each nodei evaluates the boundary of optimal cost for
current contexti. Then the cost information is sent to the parent node ofi using the
COST message. The context of theCOST message is modified to contain additional
assignment for virtual variables ofi’s parent node.

The modification using virtual variables allows pseudo-trees, which are generated
ignoring resource constraints. However, the additional virtual variables increase the
search space.

4.2 Generating virtual variables

In a general case, variables are related to one or more resources. Moreover, variables
are related to a subset of the whole resources. Virtual variables are generated according
to rules as follows.

1. Basically, if a subtree routed at nodei’s child nodej requires resourcera, then
nodei owns virtual variablevra,j . However, the following cases are prioritized as
special cases.

x0

x1

x2 x3

r0

x0

x1

x2 x3

vr0,1

vr0,2
vr0,3

vr0,0

(a) pseudo-tree (b) virtual variables

Fig. 4.Virtual variables for resource constraint

2. If nodei or multiple subtrees routed ati’s child nodes requirera, thencurrent contexti
contains assignment (vra,i, dra,i). In this case,dra,i is decided as follows.
(a) If no i’s ancestor node requiresra, theni is theroot node forra. In this case,

dra,i is initialized as a constant that takes a value equal to capacityC(ra) of
ra.

(b) If nodei is not the root node forra, theni’s parent nodeh owns virtual vari-
ablevra,i. Therefore,VALUE messages, which are received fromh, contain
assignment(vra,i, dra,i).

3. If nodei requires resourcera and no subtree routed ati’s child node requiresra,
then i is a leaf node forra. In this case, nodei has no virtual variables forra.
Therefore, the resource constraint is defined bydra,i ≥ ui(ra, di).

4. If multiple subtrees routed ati’s child nodesj ∈ A′ requirera, theni must share
ra among child nodesj ∈ A′, even if nodei does not requirera. Therefore, nodei
owns virtual variables{vra,j |j ∈ A′}.

An algorithm to generate virtual variables is shown in Algorithm 1.1. In this algo-
rithm, it is assumed that a pseudo-tree has been generated. For the sake of simplicity,
the algorithm consists of two phases of processing. In the first phase, each nodei com-
putes a setR−

i of resources that are required by nodes in the subtree routed at node
i. In the second phase, each nodei computes a setR+

i of resources that are shared
from nodei or i’s ancestor nodes. According to these results, nodei generates setXi

of its own variables. This preprocessing is performed during or after construction of the
pseudo-tree.

4.3 Growth of search space and efficient methods for search processing

Additional virtual variables increase the search space. Nodei selects an assignment for
a set of variablesXi = {xi} ∪ {vra,j |j ∈ Childreni, ra ∈ Rj}. HereRj denotes a
subset of resources that are required in the subtree routed at nodej. Cost evaluations
in nodei are modified toδi(Di), LBi(Di) andUBi(Di) respectively. HereDi denotes
a total set of assignments forXi. Moreover, cost information of nodei’s child node
j is evaluated forXi,j = {xi} ∪ {vra,j |ra ∈ Rj}. Therefore, they are modified to
lbi(j,Di,j), ubi(j,Di,j), ti(j,Di,j) andcontexti(j,Di,j) respectively.

Listing 1.1. Generate virtual variables

1 Initiationi{
2 Generate pseudo−tree ignoring resource constraint.
3 if(i is not root node)pi ← parent node of nodei.
4 Ci ← a set of child nodes of nodei.
5 Ri ← a set of resources required by nodei.
6 Xi ← {xi}.
7 if (i is root node){ call Rootwardi(). call Leafwardi(ϕ). } }
8 Rootwardi(){
9 R−

i ← Ri.
10 for eachj in Ci{
11 call Rootwardj() and receiveR−

j . R−
i ← R−

i ∪ R−
j . } }

12 Leafwardi(R+
pi

){
13 R+

i ← ϕ.
14 for eachr in R−

i {
15 n ← number of nodesj s.t.r ∈ R−

j .
16 if (n ≥ 2 or (n = 1 and (r ∈ Ri or r ∈ R+

pi
))){

17 R+
i ← R+

i ∪ {r}. } }
18 for eachj in Ci{
19 for eachr in R−

j {
20 if(r is contained inR+

i) Xi ←Xi ∪ {vrr,j}. }
21 call Leafwardj(R+

i). } }

As a result of these modifications, the size of the search space increases exponen-
tially with the number of virtual variables. To reduce this drawback, additional efficient
methods are necessary.

Pruning for partial solution In nodei, search processing forXi is necessary to cal-
culate boundariesLBi andUBi for optimal cost. The search space increases expo-
nentially with the number of virtual variables that are contained inXi. However, it is
possible to prune the search processing using a boundary defined by a resource con-
straint. if an assignment does not satisfy Equation 10, the cost of the assignment is∞.
Therefore, the assignment is pruned.

A violation of a resource constraint does not depend on evaluation of other resource
constraints. If an assignment violates a resource constraint forra, the assignment is a
violated assignment even if other resource constraints are satisfied.

Cost information of child nodes Cost information of nodei’s child nodej is modified
to lbi(j,Di,j), ubi(j,Di,j), ti(j,Di,j) andcontexti(j,Di,j) respectively. The memory
space for this information increases exponentially with the number of virtual variables
that are contained inXi,j . However, in the Adopt algorithm, default initial cost infor-
mation is used when the cost information has not been received from the child nodes.
Moreover, whencurrent contexti is incompatible withcontexti,j(j,Xi,j), the cost

r=1, k=0.05 (c=1)
020004000600080001000012000

5 10 15 20num. of variablesavg. num. of message cycle
s N (d=1)N (d=2)V (d=1)V (d=2)VU (d=1)VU (d=2) t=10%t=30% t=0%t=20%t=70% r=4, k=0.05 (c=1)

01000200030004000500060007000
5 10 15 20num. of variablesavg. num. of message cycle

s N (d=1)N (d=2)V (d=1)V (d=2)VU (d=1)VU (d=2) t=70%
r=1, k=0.25

010002000300040005000600070008000900010000
5 10 15 20num. of variablesavg. num. of message cycle

s N (d=1)N (d=2)V (d=1)V (d=2)VU (d=1)VU (d=2) t=80% t=40%t=70% t=10% r=4, k=0.25
0500100015002000250030003500400045005000

5 10 15 20num. of variablesavg. num. of message cycle
s N (d=1)N (d=2)V (d=1)V (d=2)VU (d=1)VU (d=2) t=90%t=80%t=80%

r=1, k=0.5
0100020003000400050006000

5 10 15 20num. of variablesavg. num. of message cycle
s N (d=1)N (d=2)V (d=1)V (d=2)VU (d=1)VU (d=2) t=80%t=70% r=4, k=0.5

01000200030004000500060007000
5 10 15 20num. of variablesavg. num. of message cycle

s N (d=1)N (d=2)V (d=1)V (d=2)VU (d=1)VU (d=2) t=50%t=70%
Fig. 5.Message cycles (t: ratio of correctly terminated instances (others: 100%))

information is reset to the initial value. Therefore, it is unnecessary to store the cost
information that takes the initial value.

Upper limit of resource usageThe proposed method allocates resources in a top down
manner. This is similar to the maintenance of Threshold in original Adopt. However
this processing is speculative. To reduce overestimation in the allocation, an upper limit
of resource usage is considered. As a part of preprocessing, each node computes its
maximum usage for each resource, and notify its ancestors in a bottom up manner. As
a result, each node obtain upper limits of resource usage for each resource and subtree.
Each node limits resource allocation using the upper limits.

4.4 Correctness and complexity of the algorithm

The proposed method uses additional virtual variables. This modification straightfor-
wardly extends Adopt. In each node, the original variable and virtual variables can be
considered as one integrated variable. The cost evaluation and invariants for the inte-
grated variable are the same as the original definition of Adopt. Therefore, the optimal-
ity, soundness, and termination are the same as Adopt.

Additional virtual variables exponentially increase search space. In each node, the
original variable and virtual variables can be considered as one integrated variable.
Then the growth of search space can be considered as the growth of the domain of the
integrated variable.

5 Evaluation

The efficiency of the proposed method is evaluated by experiments. An important goal
of RCDCOP is to solve practical scheduling problem. On the other hand, the practi-
cal problem is rather complex for basic evaluation of the proposed solver. As a basic
example problem, we used a modified graph coloring problem with three colors. Re-
source constraints are added to the original problem. The problems are generated using
parameters(n, d, r, k, c, l, u). c andl are determined by other parameters.

The total number of nodesn and link densityd are the basic parameters of the graph
coloring problem. The link densityd is set to 1 or 2. In the original graph coloring
problems, this setting of parameters is used to generate a low constrained problem.
However, the problem contains additional resource constraints as follows.

Parameterr determines the number of resources.c = ⌈n×k⌉ determines the capac-
ity of a resource.l determines the arity of a resource constraint. In this problem setting,
each variable is related to at least one resource constraint. For the sake of simplicity, the
usage of a resource, which is required by an agent, is limited to 0 or 1. This means that
each agent requires a unit amount of a resource or does not require one at all. Parameter
u represents the ratio of a variable’s values that require a resource. In these experiments
u is set to2

3 . Each problem instance is generated so that at least one assignment glob-
ally satisfies resource constraints. The experiment is performed for10 instances for each
setting.

We evaluated three versions of Adopt as follows: Local serialization of resource
constrained variables (N), virtual variable (V) and virtual variable with upper limit of
resource usage (VU). Each experiment is terminated at 9999 cycles. In that case, the
cycle is considered as total number of message cycles.

Total number of message cycles is shown in Figure 5. In these results, the shapes of
the graphs are not monotonic. The reason for the non-monotonicity is that the difficulty
of the problem cannot be completely controlled.

In the case ofr = 1, message cycles of the competing method are greater than the
proposed methods. In this case, the competing method generates a linear graph as a
pseudo-tree. The linear pseudo-tree causes a delay in the processing of Adopt. On the
other hand, the proposed method generates a pseudo-tree ignoring resource constraints.
Therefore, the processing of Adopt is performed in parallel.

Table 1.Size of pseudo-trees and dimension of assignments (n=20)

d r c l avg.max. avg. avg.max.
depth of branch. dim. of

pseudo treefactor assign.
N V N V

1 1 10 2020.0 5.3 1.0 3.5 9.6
4 3 5 10.8 5.3 1.2 3.5 13.0

2 1 10 2020.0 11.21.0 1.5 3.7
4 3 5 15.2 11.21.2 1.5 6.8

Table 2.partial solutions and resource constraint violation (n=20)

k d r c l V VU
max.total num. of max.total num. of

num of partial infinity num of partial infinity
slt. / cycle cost slt. / cycle cost

0.051 1 1 20 40.5 0 40.5 0
4 1 5 51.1 0 51.1 0

2 1 1 20 56.8 0 56.8 0
4 1 5 137.1 0 137.1 0

0.5 1 1 10 20 50.3 0 43.6 0
4 3 5 71.1 0 50.8 0

2 1 10 20 176.9 0 140.9 0
4 3 5 559.4 0 561.8 0

However, in the case ofr = 4, k = 0.25 and 0.5, the proposed method takes
a larger number of cycles than the competing method. In this problem, the proposed
method generates multiple virtual variables for each node of a pseudo-tree. Therefore,
the search space of the proposed method is increased.

On the other hand, in the case ofr = 4, k = 0.05, the proposed method takes
smaller message cycles. In this case, resource constraint is rather tight. Therefore, local
serialize version of Adopt generates large number of infinity cost messages. This also
increases message cycles.

Results related to generated pseudo-trees and the dimension of assignments are
shown in Table 1. In the competing method N, the depth of the pseudo-tree increases
when the number of resources is small. On the other hand, the depth of the pseudo-tree
does not depend on the number of resources.

In the proposed method, the dimension of the assignment for each node increases
with the number of resources. The dimension also depends on the branching factor.
The total number of cost information that is recorded in each node increases with the
dimension of assignment.

Total number of stored partial solutions per cycle and number of infinity costs (re-
source constraint violation) are shown in Table 2. Number of stored partial solutions is
restrained by default (empty) cost information. In these experiment, each problem has

Table 3.execution time (n=20)

k d r c l execution time (s)
N V VU

0.051 1 10 201.786 0.007 0.008
4 3 5 0.021 0.242 0.253

2 1 10 202.010 0.350 0.363
4 3 5 0.944 3.885 4.167

0.5 1 1 10 200.507 32.524 0.940
4 3 5 0.002334.243 26.162

2 1 10 201.089 5.656 1.491
4 3 5 0.073490.274251.030

at least one resource consistent solution. And proposed method mainly searches feasi-
ble solutions. Therefore no infinity cost is introduced in these instances. However this
is considered as a reason of the inefficient case of the proposed method.

The total execution time is shown in Table 3. The experiment is performed on a
machine with a 1.6GHz Itanium2 processor and 32GB memory. This result includes in-
stances which were terminated at 9999 cycle. The execution time depends on the total
number of message cycles and computation cost. The cost increases in the following or-
der: N, V, VU. In the case ofr = 1, k = 0.5, efficient method of VU reduces execution
time.

6 Conclusion

We propose a distributed constraint optimization method for RCDCOP using a pseudo-
tree that is generated ignoring resource constraints. The proposed method allows re-
source constraints related to different subtrees in the pseudo-tree. The main idea is to
introduce a special set of virtual variables that represents the usage of resources. The ad-
dition of virtual variables increases the search space. To handle this problem, influence
of placement of virtual variables/resources constraints in the pseudo tree is considered.
Moreover, the search is pruned using the bounds defined by the resource constraints, if
possible. The proposed method reduces the previous limitations in the construction of
RCDCOP pseudo-trees. The efficiency of our technique depends on the class of prob-
lems being considered, and we described the obtained experimental results.

Currently, the proposed method is effective for the class of problem that have a
small number of resources andtight resource constraint. Virtual variables increase the
search space of the internal processing of agents. In this paper, only the basic boundary
is used to prune the search. Additional variable ordering, forward checking and branch-
and-bound methods are necessary for more efficiency. Moreover, in practical problem,
error bounds of cost/resource usage will be available to reduce the search space.

The proposed approach using virtual variables can be applied to another pseudo-tree
based DPOP algorithms [6, 10].

Analysis of pseudo-trees to improve the efficiency of the proposed method and bet-
ter representation of boundaries to prune the search processing, will be included in
future work.

References

[1] Ali, S.M., Koenig, S., Tambe, M.: Preprocessing techniques for accelerating the DCOP
algorithm ADOPT. In: 4th International Joint Conference on Autonomous Agents and
Multiagent Systems. (Jul. 2005) 1041–1048

[2] Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP
to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling.
In: 3rd International Joint Conference on Autonomous Agents and Multiagent Systems.
(Aug. 2004) 310–317

[3] Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using co-
operative mediation. In: 3rd International Joint Conference on Autonomous Agents and
Multiagent Systems. (July 2004) 438–445

[4] Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence161(1-2) (2005) 149–180

[5] Petcu, A., Faltings, B.: A distributed, complete method for multi-agent constraint opti-
mization. In: 5th International Workshop on Distributed Constraint Reasoning. (Sep. 2004)
1041–1048

[6] Petcu, A., Faltings, B.: A Scalable Method for Multiagent Constraint Optimization. In: 9th
International Joint Conferece on Artificial Intelligence. (Aug. 2005) 266–271

[7] Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The Distributed Constraint Satisfac-
tion Problem: Formalization and Algorithms. IEEE Transactions on Knowledge and Data
Engineering10(5) (1998) 673–685

[8] Bowring, E., Tambe, M., Yokoo, M.: Multiply constrained distributed constraint optimiza-
tion. In: 5th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems. (2006) 1413–1420

[9] Pecora, F., Modi, P., Scerri, P.: Reasoning About and Dynamically Posting n-ary Con-
straints in ADOPT. In: 7th International Workshop on Distributed Constraint Reasoning,
at AAMAS, 2006. (2006)

[10] Petcu, A., Faltings, B.: O-DPOP: An algorithm for Open/Distributed Constraint Optimiza-
tion. In: National Conference on Artificial Intelligence. (Jul. 2006) 703–708

