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Abstract. We propose a way to define the logic computation cost of op-
erations to be used in evaluations of scalability and efficiency for simu-
lated distributed constraint reasoning (DCR) algorithms. We also report
experiments showing that the cost associated with a constraint check,
even within the same algorithm, depends on the problem size. The DCR
research has seen heated debate regarding the correct way to evaluate
efficiency of simulated algorithms. DCR has to accommodate two estab-
lished practices coming from very different fields: distributed computing
and constraint reasoning. The efficiency of distributed algorithms is typ-
ically evaluated in terms of the network load and overall computation
time, while many (synchronous) algorithms are evaluated in terms of
the number of rounds that they require. Constraint reasoning evaluates
efficiency in terms of constraint checks and visited search-tree nodes.
We argue that an algorithm has to be evaluated from the point of view
of specific operating points, namely of possible or targeted application
scenarios. We then show how to report efficiency for a given operating
point based on simulation, in particular we show how to tune the dis-
tribution used to generate the message latency costs as function of the
logic computation unit. New real and simulated experiments show that
the cost of a constraint check varies with the size of the problem. We
also show how to select logic units for nogood-based algorithms, such
that the unit is constant with the size of the problem,

1 Introduction

This article addresses the evaluation of distributed constraint reasoning algo-
rithms. One of the major achievements of computer science consists of the de-
velopment of the complexity theory for evaluating and comparing the scalability
and efficiency of algorithms [7]. Complexity theory proposes to evaluate an al-
gorithm in terms of the number of times it performs the most inner loop (aka
the most expensive operation). This number is seen as a function of the size of
the problem. While such metrics do not reveal how much actual time is required
for a certain instance, they allow for interpolating how the technique scales with
larger problems. The assumption that computation speed doubles each few years
makes a polynomial factor in the cost irrelevant from a long perspective [7, 3].



Identifying the most inner loop operation is not always as trivial as for cen-
tralized sorting and graph traversal. Constraint reasoning researchers have long
used either the constraint check or the visited search-tree node as the most basic
operation in classical algorithms. In algorithms whose structure does not present
a most inner loop, a scalable efficiency evaluation is usually based on the oper-
ation that seems to be the most often used and that is relatively expensive. In
general, a basic operation can prove irrelevant for a competing algorithm who
uses extensively another operation. For CSP algorithms, the constraint check is
almost ubiquitous, and is typically part of the most inner loop. Here we analyze
the distributed constraint reasoning algorithm, ADOPT, and the compliance of
the selected computational units with standard evaluation assumptions.

Evaluating distributed computing The main reasons for which distributed con-
straint reasoning evaluation differs from CSP evaluation are:

– The event-driven design of distributed solvers makes it difficult to detect
the inner loops, and these loops often consist only of validating incoming
messages and local data rather than in constraint checks.

– The relative ratio between cost (latency) of messages varies by 4-6 orders of
magnitude between multi-processors and remote Internet connections.

– While the cost of a local computation can be expected to reduce over years,
the cost (latency) of a message between two points is not expected to decrease
significantly (in contrast with the other computation costs), since the limits
of the current technology are already dictated by the time it takes light to
traverse that distance over optical cable.
Indeed, the minimal time it can theoretically take a message to travel be-
tween two diametrically opposed points on the Earth is:

π ∗ REarth

speedlight

=
3.14 ∗ 6.378 ∗ 106m

3 ∗ 108m/s
≈ 67ms.

Since the optical cables do not travel on a perfect circle around the Earth,
it is reasonable to not expect significant improvements beyond the current
some 150ms latency for such distances.

– Improvements in the future can only increase bandwidth, which at best may
result in removing congestion and obtaining constant latency, at its minimal
value computed above.

For a realistic understanding of the behavior of distributed algorithms, some
experiments are performed using agents placed on different computers on Inter-
net, typically on a LAN [25, 8, 19, 12] (and we report such experiments in this
paper). However, results obtained with LANs may not be valid for any other
network topology, or for remote agents on Internet. Also, such results cannot be
replicated and verified by other researchers, and therefore results using deter-
ministic network simulators are also commonly requested.

In the following we provide the formal definition for the Distributed Con-
straint Optimization (DCOP) problem. Then we introduce a simple framework



for unifying various versions of logic time systems. We show that the new frame-
work models well the different efficiency metrics and methodologies used so far
to evaluate DCOP algorithms based on logic time. These previous methodologies
are presented in the unifying framework. We then introduce our new procedure
for evaluating scalability and efficiency, and show how it improves on compliance
with standard assumptions and evaluation goals.

2 Framework

Distributed Constraint Optimization (DCOP) is a formalism that can model
naturally distributed problems. These are problems where agents try to find
assignments to a set of variables that are subject to constraints. Several applica-
tions are addressed in the literature, such as multi-agent scheduling problems, oil
distribution problems, auctions, or distributed control of red lights in a city [14,
22, 17].

Definition 1 (DCOP). A distributed constraint optimization problem
(DCOP), is defined by a set A of agents A1, A2, ..., An, a set X of vari-
ables, x1, x2, ..., xn, and a set of functions (aka constraints) f1, f2, ...fi, ..., fm,
fi : Xi → IR+, Xi ⊆ X, where only some agent Aj knows fi.

The problem is to find argminx

∑m

i=1
fi(x|Xi

). We assume that xi can only
take values from a domain Di = {1, ..., d}.

The DCOPs where the functions fi are defined as fi : Xi → {0,∞}, are
called Distributed Constraint Satisfaction Problems (DisCSPs). Algorithms for
the general DCOP framework can address any DisCSP and specialized algo-
rithms for DisCSPs can often be extended to DCOPs.

3 Evaluation for MIMD

Some of the early works on distributed constraint reasoning were driven by the
need to speed up computations on multiprocessors, in particular (multiple in-
struction multiple data) MIMD architectures [25, 2, 9], sometimes even with a
centralized command [2]. However, their authors pointed out that those tech-
niques can be applied straightforwardly for applications where agents are dis-
tributed on Internet.

Among the earliest experimental research on DCR we mention [25] by Zhang
and Mackworth in 1991. The metric proposed by them is based on Lamport’s
logic clocks described in the Definition 6.1 and in the Algorithm 18 in [25].

Logic clocks and logic time An event e1 at agent A1 is said to causally precede an
event e2 at agent A2 if, had all agents attached all events that they knew to each
existing message, A2 would know about e1 at the moment when e2 takes place.
Leslie Lamport proposes in [11] a way, called logic clocks to construct a tag,
called logic time (LT), for each event and concurrent message in a distributed



% RL is the number series generator from which message latencies are extracted using
function next()
% E = {e1, ..., ek} is a vector of k local events
% T = {t1, ..., tk} is a vector of (logic) costs for events E

when event ej happens do

LTi = LTi + tj ;

when message m is sent do

LT (m) = LTi + next(RL));

when message m is received do

LTi = max(LTi, LT (m));

Algorithm 1: Lamport’s logic time maintenance for participant Pi. Use of pa-
rameters LT 〈RL, E, T 〉 unifies previous versions for usage with DisCSPs found
in (Zhang& Mackworth 1991; Yokoo, Durfee, Ishida& Kuwabara 1992; Silaghi,
Haroud& Faltings 2000; Meisels, Kaplansky, Razgon& Zivan 2002; Silaghi& Falt-
ings 2004; Chechetka& Sycara 2006).

computation such that whenever an event e1 causally precedes e2 then the logic
time of e1 should be smaller than the logic time of e2. If LT (e) denotes the logic
time of an event e, then we can write LT (e1) < LT (e2). Otherwise, the logic time
does not reflect the real time and some messages with smaller logic time may
actually occur after concurrent messages with bigger logic time. Each process Pi

maintains its own logic clock with logic time (LTi) initially set to zero. Whenever
Pi sends a message m, it attaches to m a tag, denoted LT (m), set to the value
of LTi at that moment. The process Pi increments LTi by the logic duration,
te, of each local event (computation) e. Assume Pi receives a new message mk

from a process Pj . Pi has to make sure that the logic time LTi of its future local
events is higher than the LTj of the past events at Pj . This is done by setting
LTi = max(LTi, LT (mk) + L), where L is a logic time (duration) assigned to
each message passing. We give in Algorithm 1 the procedures proposed in [11],
tailored to unify the different metrics used for DCOPs. Certain authors use
random values for the logic time of a message [6] and therefore we allow this in
our framework by specifying a number series generator (NSG) RL from which
each message logic time (logic latency) is extracted with a function next(). A
logic time system we will use here is therefore parametrized as LT 〈RL, E, T 〉
where E is a vector of types of local events and T a vector of costs, one for each
type of event. For measurements assuming a constant latency of messages set to
a value L, the RL parameter used consists of that particular number, L, (written
in bold face).

An experiment may simultaneously use several logic time systems,
LT 1〈R1

L, E1, T 1〉, ..., LT N〈RK
L , EK , T K〉. Each process Pi maintains a separate

logic clock, with times LT u
i , for each LT u〈Ru

L, Eu, T u〉. Also, to each message
m one will attach a separate tag LT u(m) for each maintained logic time system
LT u〈Ru

L, Eu, T u〉. This is done in order to simultaneously evaluate a given algo-



rithm and set of problems for several different scenarios (MIMD, LAN, remote
Internet).

A common metric used to evaluate simulations of DCR algorithms is given
by the logic time to stability of a computation. The logic time to stability is given
by either:

– the highest logic time of an event occurring before quiescence is reached [25];
– the logic time tagging the message that makes the solution known to whoever

is supposed to be informed about it [19].

Quiescence of an algorithm execution is the state where no agent performs any
computation related to that algorithm and no message generated by the algo-
rithm is traveling between agents.

NB coordinate axis (Oy) ordinates axis (Ox) example usage

LTS1 (logic) time to stability (latency=0) log – ring size – [25]
LTS2 speedup – size 800 – number of processors [25]
TSL number of time steps (aka ENCCCs) message delay (time steps) [23]
ECL (equivalent) checks (aka ENCCCs) checks/message (w. lat. 0) [20]
NCT NCCCs (ENCCCs latency=0) (constraint) tightness [13]
ECT ENCCCs (at fix checks/message) (constraint) tightness [1]
ST seconds constraint tightness [8]
CT #checks constraint tightness [8]
MT #messages constraint tightness [8]
CBR checks constraint tightness [4]

Table 1. Summary of the systems of coordinates used for comparing efficiency of
distributed constraint reasoning.

Uses of logic time for multiprocessors The operation environment targeted by
Zhang and Mackworth [25] consists of a network of transputers. The metric
employed in [25] with simulations for a constraint networks with ring topology
is based on the logic time system LT 〈1, {semijoin}, {1}〉, where the number
series generator 1 outputs the value 1 at each call to next(). Note that the
single local event associated in [25] with a cost is the semijoin, which is due
to the fact that the algorithms being tested there were not based on constraint
checks but on semijoin operators (which consist of composing constraints and
then projecting the result on a subset of the involved variables). Graph axes
used in [25] depict logic time to stability vs problem size as (log scale) number of
variables, and logic time vs. number of processors (aka agents) at a given size of
the DisCSP distributed to those agents (see Entries LTS1 and LTS2 in Table 1).

A theoretical analysis of the time complexity of a DisCSP solver is presented
by Collin, Dechter & Katz in 1991 [2]. Logic time analysis is presented there un-
der the name parallel time, targeting MIMD multiprocessors, where each value



change (aka visited search-tree node in regular CSP solvers) has cost 1. Note that
the obtained metric is LT 〈0, {value-change}, {1}〉, where message passing is con-
sidered instantaneous. A sequential version of the same algorithm is also evalu-
ated in [2] using the logic time LT 〈0, {value-change, privilege-passing}, {1, 1}〉.
The term coined by Kasif in 1990 [9] for a similar theoretical analysis of the
time complexity in parallel computations is sequential time.

4 Evaluation for applications targeting Internet

Distributed constraint reasoning algorithms targeting the Internet had to ac-
count for the possibly high cost of message passing between agents on remote
computers. The latency of message passing in this context is a function on the
distance and available connections between the locations. As mentioned above,
the theoretical lower bound on this latency can be 67ms, eight orders of magni-
tude larger than a basic operation on a computer (of the order of 1ns).

Network Simulators While some experiments use agents placed on distinct com-
puters on a LAN, such experiments can somewhat shew the results since:

– agents are geographically closer to each others than in Internet applications,
and therefore the latency of messages can be 2-3 orders of magnitude smaller
(1-2 ms instead of 100-200ms) [5].

– due to the shared medium used by the typical Ethernet implementation of
LANs, the bandwidth is shared and communication between a pair of agents
slows down communication between any other pair of agents.

These two issues act in different directions and it is not clear in which actual
direction are the results skewed. This makes another argument toward evaluating
performance on a simulated network. It is worth noting that early research, such
as [25] perform experiments both with simulators and with actual execution on
multiprocessors (and we also provide here both simulation and LAN results).

Metrics for Internet One of the first algorithms targeting Internet is the Asyn-
chronous Backtracking solver in [23]. That work experimented with a set of
different logic times, LT 1, ..., LT 25, where LT i is defined by the parameters

LT i〈i, {constraint-check}, {1}〉, ∀i ∈ [1, 25] (1)

[23] reports the importance of the message latency in deciding which algorithm is
good for which task. Note that a curve in the obtained type of graph (see Entry
TSL in Table 1) reports several metrics, but for a single problem size/type.

The time steps introduced in [23] correspond to the cost of a constraint check.
A similar results graph is used in [20] having as axes checks vs checks/message,
i.e., the logic time cost for one message latency when the unit is the duration
of a constraint check (see Entry ECL in Table 1). This last graph also reports
logic time for the latency L = 0

LT 0〈0, {constraint-check}, {1}〉, (2)



which corresponds to simulation of execution with agents placed on the pro-
cessors of a MIMD with very efficient (instantaneous) message passing (similar
to [2], but using the constraint check as the logic unit).

Cycles/SMs After the Yokoo et.al’s work in 1992, most DCOP research focused
on agents placed on remote computers with problem distribution motivated by
privacy [24]. Due to the small ratio between the cost of a constraint check and the
cost of one message latency in Internet, the standard evaluation model selected in
many subsequent publications completely dropped the accounting of constraint
checks. A common assumption adopted for evaluation is that local computations
can be made arbitrarily fast (local problems are assumed small and an agent
can make his computation on arbitrarily fast supercomputers). Instead, message
latency between agents is a cost that cannot be circumvented in environments
distributed due to privacy constraints. The metric in [24] is:

cycles (aka. sequential messages) = LT 〈1, ∅, ∅〉

The original name for this metric is cycles, based on the next theorem (known
among some researchers but not written down in this context).

Theorem 1. In a network system where all messages have the same constant
latency L and local computations are instantaneous, all local processing is done
synchronously only at time points kL (in all agents).

Proof. One assumes that all agents start the algorithm simultaneously at time
L, being announced by a broadcast message, which reaches all agents at exactly
time L (due to the constant time latency). Each agent performs computations
only either at the beginning, or as a result of receiving a message.

Since each computation is instantaneous, any message generated by that
computation is sent only at the exact time when the message triggering that
computation was received. It can be noted that (induction base) any message
sent as a result of the computation at the start will be received at time 2L, since
it takes messages L logic time units after the start to reach the target.

Induction step: All the messages that leave agents at time kL, will reach
their destination at exactly time (k+1)L (due to the constant latency L). There-
fore the observation is proven by induction.

As a consequence of this observation, any network simulation respecting these
assumptions (that local computations are instantaneous and that message la-
tencies are constant) can be performed employing a loop, where at each cycle
each agent handles all the messages sent to it at the previous cycle. As such,
LT 〈1, ∅, ∅〉 is given by the total number of cycles of this simulator.

NCCCs and ENCCCs Researchers voiced concerns1 about the lack of accounting
for local computation in SMs. A subsequent re-introduction of logic time in the

1 At the CP 2001 conference.



form of the metric in Equation 2 is made in [13], proposing to build graphs with
axes labeled NCCCs (non-concurrent constraint checks) versus problem type
(Entry NCT in Table 1). Cost of messages in NCCCs is typically restricted to
only 0, reporting solely constraint checks, as in [2].

However, the importance of the latency of messages has been rediscovered
recently and logic time cost for message latency is reintroduced in [1] under the
name Equivalent Non-Concurrent Constraint Checks (ENCCCs). ENCCCs is a
new name for the metric in Equation 1. Current ENCCCs usage in graphs typi-
cally differs from earlier usage of the metric by being depicted versus constraint
tightness or versus density of constraint-graph (with a label specifying the value
of the logic latency L, i.e. the number of checks/message-latency). Each graph
depicts the behavior of several problem types for one message latency, rather
than the behavior of one problem type for several message latencies (Entry ECT
in Table 1).

Evaluations not related with the logic time Three other important metrics (not
based on logic time) for evaluating DCOPs algorithm were introduced in [8] in
conjunction with a DisCSP solver.

– the total running time in seconds (Entry ST of Table 1);
– the total number of constraint checks for solving a DisCSP (or DCOP) with

a simulator (see Entry CT of Table 1), and
– the total number of exchanged messages (Entry MT of Table 1).

Cycle-based runtime (CBR) gives the ENCCCs on a modified version of the
algorithm, which adds synchronizations before sending each message [4].

5 A new methodology

Next we describe a new methodology for evaluating DCOP algorithms that we
decided to employ recently [21], but which has not yet been introduced in suffi-
cient detail.

Let us first mention the weaknesses in currently common methodologies, and
which we want to fix with our new proposed approach:

– the weakness of the cycles/sequential-messages metric is that its assump-
tions do not apply to DCOP solvers with extensive local processing at each
message (such as in the recent DPOP algorithm [18]). DPOP has very few
messages and very expensive local computation at each message.

– NCCCs (in the version with message cost zero) do not take into account
message latencies, which are an important cost for many typical DCOP
algorithms. Moreover, (see the Experiments section) the cost of a constraint
check grows linearly with the problem size (for the same algorithm), causing
misleading curves.

– ENCCCs require depicting many graphs, one for each checks/latency ratio,
and still does not help to know which ratio is relevant to a given application.



This is because the cost that has to be associated with a constraint check
depends on many factors, being a function of the algorithm, of the program-
ming language, and (as we report here) even function of the problem size.
Plots of different algorithms on the same ENCCCs graph are not comparable
since their units often have different meaning and relevance (and may not
even be bounded by a polynomial relation).

– time in seconds of experiments on a LAN, besides the fact that its measuring
requires important hardware resources, it does not apply to remote Internet
applications, or to other hardware, and cannot be replicated.

Our proposal is, given any well defined application scenario, to start by first
computing the expected latency/checks ratio, following the next procedure.

Proposed Evaluation Method Congestion can lead to variable latency, vary-
ing according to a distribution where a lower bound on latency is given by cat-
alog values [16]. Various such distributions can be designed and used directly
in the experiments. For simplicity, the following description assumes a future
where bandwidth improvements will remove congestion and therefore where the
latency will be constant.

1. Retrieve the typical latency Ls in seconds for messages in the type of network
of the targeted application. Such information is found in technical catalogs,
encyclopedias, and technical articles. For example, some typical message
latencies for remote machines on Internet are found in [16].

2. Compute the total execution time in seconds, tp, for solving each complete
test set of problems at size p using the simulator. Note that this is machine
and programming language dependent, and therefore the used machine and
programming language have to be specified.

3. Select a computation unit CU (e.g., constraint check, CC). Compute the
total number of computation units, #CUp, at each problem size p [8].

4. Compute the cost in seconds that should be associated with a computation
unit by computing the ratio tp/#CUp.

5. We note that for a given machine and programming language this ratio,
tp/#CUp, may depend on the problem size p, varying as much as an order
of magnitude. For example, our C simulator for ADOPT on the problems
in [15] uses between 3 to 28 microseconds per constraint check on a Linux
PC at 700MHz. The smaller value was found at problems with 8 agents and
8 variables and the larger one at problems with 40 agents and variables.
We discuss later our explanation for this phenomenon. If this happens we
recommend the selection of a different CU (as shown later) and return at
the Step 3 until the ratio is practically constant for different p.

6. Compute the Operating Point (i.e., ratio message-latency/computation-unit)
for the given problem size p as Lp = Ls ∗ #CUp/tp.

7. Compute the graph in the Operating Point.

As it follows from the aforementioned weaknesses, the main problem with
reporting ENCCCs is that we can find out neither where is a particular la-
tency/check ratio relevant, nor which latency/check ratio is relevant for a given



LT
i〈i, {constraint-check, nogood-inference, nogood-validity, nogood-applicability},

{1, 3, 2, 2}〉,∀i > 0 (3)

application. Our proposal solves this problem by offering a little bit of additional
information besides ENCCCs graphs. To compute the graph based on Equiv-
alent Non-concurrent Computation Units (ENCCUs) in the Operation Point
(ENCCU-OPs) we identify the following alternatives:

– the ENCCUs/ENCCCs graph with the logic time cost given by the tar-
geted/average value of Lp as interpolated from values for the different prob-
lem types p, or

– the ENCCUs graph with the value of the logic message latency L as the i that
is closest to the targeted values of Lp, among the different values of i used
for the logic times schemes LT i evaluated in experiments (see Equation 1).

The term operating point comes from graphs depicting behavior of transistors.
The operating point is the area of these graphs that is of real interest for an
application.

The advantage of our method is that it can be performed using only a sim-
ulator, its results are reproducible, and can be applied to difficult to evaluate
experimentally settings, such as remote Internet connections.

EML As an extension of SMs, one can also draw graphs representing the Equiva-
lent Message Latencies in the Operating Point (EML-OP) from the ENCCC-OP
graph, where each ordinate is divided by the latency/computation-unit ratio L
of the graph. The axis of ordinates shows the number of (equivalent) message
delays. This graph has the advantage that the the ordinate has an easy to under-
stand meaning, namely the message latency in the targeted destination, which
is readily available. EMLs can also be plotted against abscissae showing dif-
ferent ratio latency/checks, to illustrate better how algorithms behave in areas
neighboring the operating point.

Yet an additional metric can be obtained measuring the logic simulated sec-
onds, where each event is measured in the number of (micro)seconds it lasts
(in average) as observed during experimentation. This has the advantage over
actual seconds that they can be replicated and verified by other researchers.
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Fig. 1. ADOPT performance: operating point ENCCUs.
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Fig. 2. The running time associated with a computation-unit for two metrics: checks
and CUs.

Accounting for nogood validation Certain DCOP algorithms are not based on
checking constraints repeatedly, but rather they compile information about con-
straints into new entities called nogoods. Afterward, these techniques work by
performing inferences on such nogoods. Nogoods are a kind of constraints them-
selves. In such algorithms it makes sense to attribute costs to the different impor-
tant operations on nogoods such as nogood inference, nogood validity check, and
nogood applicability check. The new method (computation-unit) for computing
logic times at various message latencies is the Equation 3, where the coefficients
of different nogood handling operations are selected based on a perceived com-
plexity for those operations. The nogood inference operation is typically the
most complex of these operations as it accesses two nogoods to create a third
one (suggesting a logical cost of 3). Nogood-validity and nogood-applicability
both typically involved the analysis of a nogood and of other data, local as-
signments and remote assignments, to be compared with the nogood (hence a
logical cost of 2). These costs do not typically have an exact value since the
sizes of nogoods vary within the same problem. A constraint check for binary
constraints is cheaper than the verification of an average-sized nogood, and is
given the logical cost of 1.

Our experiments reported here confirm that computation units selected ac-
cording to Equation 3 are closer to constant, with slightly higher cost per com-
putation unit at small problem size (Figure 2). The slightly higher cost at small
problem size is likely due to the overhead of creating and initializing data struc-
tures at the beginning of the execution, and which is evened out at problems
larger than 10 variables. It may be fixed in the future by adding an event ac-
counting for the creation of such data structures.

Why cost of checks varies with the problem size An interesting question raised
by our experimental results is: Why do experiments reported here show that the
cost associated with a constraint check varies with the size of the problem?

The cost associated with a constraint check (as measured above) consist of
an aggregation of the costs of all other operations executed by DCOP algo-
rithm in preparation of the constraint check and in processing the results of the
constraint check. Typically there are several data structures to maintain and
certain information to validate, and these data structures may be larger with
large problem sizes than with small problem sizes. The variation may also come



p (agents) 8 10 12 14 16 18 20 25 30 40

tp (total seconds) 0.1404 0.1528 0.3012 0.5516 1.0068 2.5708 4.1176 47.7112 174.06 3767.38

#CCp total checks 43887.8 38279.3 70279.4 116080 191501 381415 516835 4.1*106 10.9*106 132*106

microseconds(tp)

check(#CCp)
3.199 3.992 4.286 4.752 5.257 6.74 7.967 11.47 15.98 28.4

Lp= ( checks
latency(200ms)

) 62518.3 50103.8 46666.3 42088.5 38041.6 29672.9 25103.7 17437.3 12519 7041.1

(106) ENCCC L=104 7,94 6,32 10,5 14,8 21,6 41,8 54,1 343 694 6594

(106) ENCCC L=105 79 63 105 148 216 417 541 3429 6939 65880

simulated time (s) 142 113 188 266 388 751 974 6175 12500 118759
microseconds(tp)

comp−unit(#CUp)
0.81 0.743 0.636 0.54 0.487 0.493 0.475 0.476 0.439 0.442

Table 2. Sample re-evaluation of ADOPT with our method. Columns represent prob-
lem size.

from approximations in the way in which the cost of a constraint check is eval-
uated in comparison to operations for handling other data structure (such as
nogoods [24]).

In certain situations, algorithms change their relative behavior in situations
that are close to the operating point. Then precise measurements are important,
and it makes sense to try to tune the logic time associated with each opera-
tion, in order to reduce the variation of the meaning of a unit of logic time
with the problem size. One can approach this problem by trying many different
combinations, or trying a hill climbing approach that tunes successively each of
the parameters. One has to run complete sets of experiments for each of these
possible costs (which is computationally expensive). A valuable future research
direction consists in finding an efficient way of tuning these parameters.

However, a currently simpler alternative is to report efficiency in simulated
seconds [21, 12], where each significant event is given a logic cost equal with the
average time in microseconds as obtained from experiments.

6 Experiments

We will describe here how we conduct experiments with ADOPT [15], as an
example of how our evaluation method can be applied to other algorithms. The
illustration is based on a sample of Teamcore random graph coloring problems
with 10 different sizes, ranging between 8 agents and 40 agents, with graph
density 30%. The results are averaged over 25 problems of each size [15]. The
targeted application scenario consists of remote computers on Internet.

Following the steps of our method we report the following:

1. The catalog message latency for our scenario is 200ms, varying between
150ms and 250ms (see [16, 10]).

2. Simulated ADOPT with randomized latencies is implemented in C++ and
runs on a the 700MHz node of a Beowulf (Linux Red Hat). The total time
in seconds is given in the second row of Table 2.

3. The total number of constraint checks #CCp for each problem size is given
in the third row of Table 2.



4. The cost in (micro)seconds associated with each constraint check is computed
as tp/#CCp. It is given in the fourth row of Table 2.

5. The ratio is not constant. We repeat the analysis with the CU in Equation 3.
6. The message-latency/constraint-check ratio (Lp) is computed by dividing

the average latency found at Step 1 (200ms) by the items in the 4th row.
The results are given in the 5th row of Table 2.

7. The operating point is defined by the fourth and fifth rows. The last step
consists of reporting the results for this operating point (here we will use a
Table rather than a graph, to make the processing more visible). We per-
formed the experiments using several logic time systems, the available ones
that are the closest to the obtained operating point are L = 100, 000 and
L = 10, 000. It is now possible to re-run the experiments with all the Lp

values found in our table. Here we will just report the results of the closest
L, which is 10,000 for most problem sizes (one also can use L = 100000 for
problems with 8 and 10 agents), see the 6th and 7th rows of Table 2. One
can also interpolate the time between the predictions based on L = 10, 000
and L = 100, 000, function of the predicted Lp at each problem size.
Next, for example, one can also report the simulated time (in simulated
seconds) by multiplying each logic time (in ENCCU-OPs) with the corre-
sponding cost per logic unit (here reported in the third row). We interpo-
late (linearly) the time between the predictions based on L = 10, 000 and
L = 100, 000, function of the predicted Lp at each problem size. We report
the simulated time in the 8th row of Table 2. This simulated time represents
the average actual time (in seconds) that a problem of the corresponding
size is expected to need in our operating point.

The last row in Table 2 shows the cost of computational units (CU) at differ-
ent problem sizes when their computation is based on Equation 3. As mentioned
earlier, we can observe that this computational unit respects better standard
assumptions. At the chosen operation-point L, the choice of the computation
unit does not have a strong impact on the ENCCCs measurement which is over-
whelmingly influenced bu the number of sequential messages. The equivalent
non-concurrent CUs (ENCCU) measure, corresponding to ENCCCs in the pre-
vious method, yields almost the same numbers at these L values. The impact
of the computational units due to local computation starts to be visible in our
ADOPT implementation only at L < 1000. This highlights the importance of
correctly selecting the operation point.

It is remarkable that that the cost associated with constraints checks varies
with the problem size even for the same implementation of the same algorithm.
We therefore felt the need to verify this observation on a different implementa-
tion, and in particular on a LAN solver. We therefore run a set of experiments
using DCOPolis [12]. Here the agents are distributed on five HP-TC4200 tablet
PCs with 1.73Ghz Intel Pentium M processors and 512M of RAM connected
via Ethernet to a Netgear FS108 switch, isolated from the Internet and running
Ubuntu Linux (see Figure 3). These experiments show similar large variability
of the checks.
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Fig. 3. Results on a LAN with DCOPolis

7 Conclusion

We started introducing a framework unifying the representation of different logic
clocks-based metrics used for efficiency evaluation of DCOPs. We identify con-
tradictions between basic assumptions and common evaluation methodologies in
the case of ADOPT. We propose a new methodology to analyze DCOPs, extend-
ing the one known as Equivalent Non-Concurrent Constraint Checks (ENCCCs).
Our extension shows how to select a computation unit that is constant across
problem sizes. We also show how to identify the ENCCCs graph that fits a given
application scenario (named operation point). The obtained metric counts the
equivalent non-concurrent computational units in the operation point (ENCCU-
OPs) and its construction requires the evaluation of several other metrics, such
as the total number of constraint-checks (or computation-units) and the total
time to run the simulator as a centralized solver. A different computation unit
may be appropriate for each family of algorithms. Our method to select compu-
tation units that correctly show the efficiency and scalability trends apply easily
to other (even centralized) algorithms using nogoods.

We discuss remarkable experimental results showing that cost associated with
constraint checks can vary by orders of magnitude with the size of the problem
even for the same implementation of the same algorithm, and skewing efficiency
graphs. Further we present results on a real network with DCOPolis, confirming
our finding. We discuss the possible explanations, their implications, and how
the issue can be handled (including open research directions). The impact of the
computational units due to local computation starts to be visible in our ADOPT
implementation only at L < 1000. This highlights the importance of correctly
selecting the operation point.
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