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INTRODUCTION 
Distributed constraint reasoning is concerned with modeling and solving naturally 

distributed problems.  It has application to the coordination and negotiation between 
semi-cooperative agents, namely agents that want to achieve a common goal but would 
not give up private information over secret constraints. When compared to centralized 
constraint satisfaction (CSP) and constraint optimization (COP), here one of the most 
expensive operations consists in communication and major problems arise from 
coherence and privacy. We review approaches based on asynchronous backtracking and 
depth-first search spanning trees. 

Distributed constraint reasoning started as an outgrowth of research in constraints 
and multi-agent systems. Take the sensors network problem in Figure 1, defined by a set 
of geographically distributed sensors that have to track a set of mobile nodes. Each sensor 
can watch only a subset of its neighborhood at a given time. Three sensors need to 
simultaneously focus on the same mobile node in order to locate it. Approaches modeling 

and solving this problem with distributed constraint reasoning are described in (Bejar, 
Domshlak, Fernandez, Gomes, Krishnamachari, Selman, &Valls, 2005). 

 

 
 

 
                                                                                                        

Figure 1: Sensor Network. 
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There are two large classes of distributed constraint problems. The first class is 
described by a set of Boolean relations (aka constraints) on possible assignments of 
variables, where the relations are distributed among agents. They are called distributed 
constraint satisfaction problems (DisCSPs). The challenge is to find assignments of 
variables to values such that all these relations are satisfied. However, the reasoning 
process has to be performed by collaboration among the agents. There exist several 
solutions to a problem, and ties have to be broken by some priority scheme. Such 
priorities may be imposed from the problem description where some agents, such as 
government agencies, are more important than others. In other problems it is important to 
ensure that different solutions or participants have equal chances, and this property is 
called uniformity. When no solution exists, one may still want to find an assignment of 
the variables that conflict as few constraints as possible. The second class of problems 
refers to numerical optimization described by a set of functions (weighted constraints) 
defined on assignments of variables and returning positive numerical values. The goal is 
to find assignments that minimize the objective function defined by the sum of these 
functions. The problems obtained in this way are called distributed constraint 
optimization problems (DisCOPs). Some problems require a fair distribution of the 
amount of dissatisfaction among agents, minimizing the dissatisfaction of the most 
unsatisfied agent. 

 

There are also two different ways of distributing a problem. The first way consists 
of distributing the data associated with it. It is defined in terms of which agents know 
which constraints. It can be shown that any such problem can be translated into problems 
where all non-shared constraints are unary (constraints involving only one variable), also 
called domain constraints.  Here one can assume that there exists a single unary 
constraint for each variable. It is due to the fact that any second unary constraint can be 
reformulated on a new variable, required to be equal to the original variable. The agent 
holding the unique domain constraint of a variable is called the owner of that variable. 
Due to the availability of this transformation many solutions focus on the case where only 
the unary constraints are not shared by everybody (also said to be private to the agents 
that know them). Another common simplification consists in assuming that each agent 
has a single unary constraint (i.e., a single variable). This simplification does not reduce 
the generality of the addressable problems since an agent can participate in a computation 
under several names, e.g., one instance for each unary constraint of the original agent. 
Such false identities for an agent are called pseudo-agents (Modi, Shen, Tambe, & 
Yokoo,  2005), or abstract agents (Silaghi & Faltings, 2005). 

The second way of distributing a problem is in terms of who may propose 
instantiations of a variable. In such an approach each variable may be assigned a value 
solely by a subset of the agents while the other agents are only allowed to reject the 
proposed assignment. This distribution is similar to restrictions seen in some societies 
where only the parliament may propose a referendum while the rest of the citizens can 
only approve or reject it. Approaches often assume the simultaneous presence of both 
ways of distributing the problem. They commonly assume that the only agent that can 
make a proposal on a variable is the agent holding the sole unary constraint on that 
variable, namely its owner (Yokoo, Durfee, Ishida, & Kuwabara, 1998). When several 
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agents are allowed to propose assignments of a variable, these authorized agents are 
called modifiers of that variable. An example is where each holder of a constraint on a 
variable is a legitimate modifier of that variable (Silaghi & Faltings, 2005). 

BACKGROUND 
The first addressed challenge concerned the development of asynchronous 

algorithms for solving distributed problems. Synchronization forces distributed processes 
to run at the speed of the slowest link. Algorithms that do not use synchronizations, 
namely where participants are at no point aware of the current state of other participants, 
are flexible but more difficult to design. With the exception of a few solution detection 
techniques (Yokoo & Hirayama, 2005), (Silaghi & Faltings, 2005), most approaches 
gather the answer to the problem by reading the state of local agents after the system 
becomes idle and reaches the so called quiescence state (Yokoo et al., 1998). Algorithms 
that eventually reach quiescence are also called self-stabilizing (Collin, Dechter, & Katz, 
1991). A complete algorithm is an algorithm that guarantees not to miss any existing 
solution. A sound algorithm is a technique that never terminates in a suboptimal state. 
 

Another challenge picked by distributed constraint reasoning research consists of 
providing privacy for the sub-problems known by agents (Yokoo et al., 1998). The object 
of privacy can be of different types. The existence of a constraint between two variables 
may be secret as well as the existence of a variable itself. Many approaches only try to 
ensure the secrecy of the constraints, i.e., the hiding of the identity of the valuations that 
are penalized by that constraint. For optimization problems one also assumes a need to 
keep secret the amount of the penalty induced by the constraint. As mentioned 
previously, it is possible to model such problems in a way where all secret constraints are 
unary (approach known as having private domains). Some problems may have both 
secret and public constraints. Such public constraints may be used for an efficient 
preprocessing prior to the expensive negotiation implied by secret constraints. Solvers 
that support guarantees of privacy at any cost employ cryptographic multi-party 
computations (Yao 1982). There exist several cryptographic technologies for such 
computations, and some of them can be used interchangeably by distributed problem 
solvers. However, some of them offer information theoretical security guarantees 
(Shamir, 1979) being resistant to any amount of computation, while others offer only 
cryptographic security (Cramer, Damgaard, & Nielsen, 2000) and can be broken using 
large amounts of computation or quantum computers. The result of a computation may 
reveal secrets itself and its damages can be reduced by being careful in formulating the 
query to the solver. For example, less information is lost by requesting the solution to be 
picked randomly than by requesting the first solution. The computations can be done 
cryptographically by a group of semi-trusted servers, or they can be performed by 
participants themselves. A third issue in solving distributed problems is raised by the size 
and the dynamism of the system.  
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DISTRIBUTED CONSTRAINT REASONING 

Framework 
A common definition of a distributed constraint optimization problem (DisCOP) 

(Modi et al., 2005) consists of a set of variables X={x1, ..., xn} and a set of agents A={A1, 
..., An}, each agent Ai holding a set of constraints. Each variable xi can be assigned only 
with those values which are allowed by a domain constraint Di. A constraint Φj on a set 
of variables Xj is a function associating a positive numerical value to each combination of 
assignments to the variables Xj. The typical challenge is to find an assignment to the 
variables in X such that the sum of the values returned by the constraints of the agents is 
minimized. 

A tuple of assignments is also called partial solution. A restriction often used with 
DisCOPs requires that each agent Ai holds only constraints between xi and a subset of the 
previous variables, {x1,...,xi-1}.   Also, for any agent Ai, the agents {A1, ..., Ai-1}  are the 
predecessors of Ai and the agents  {Ai+1, ..., An}, are its successors. 

To understand the generality and limitations of this restriction, 
consider a conference organization problem with 3 variables x1 (time), 
x2 (place), and x3 (general chair) and 3 constraints Φ12 (between x1 and 
x2), Φ23 (between x2 and x3), and Φ13 (between x1 and x3), where Alice 
has Φ12, Bob enforces Φ23, and Carol is interested in Φ13, Figure 3.   

This problem can be modeled as a DisCOP with 4 agents.  Alice 
uses two agents, A1 and A2. The original participant is called physical 
agent and the agents of the model are called pseudo-agents. Bob uses 
the agent A3 and Carol uses an agent A4. The new variable x4 of the 
agent A4 is involved in a ternary constraint Φ134 with x1 and x3. The 
constraint Φ134 is constructed such that its projection on x1 and x2 is 
Φ13. 

However the restricted framework cannot help general purpose algorithms to learn 
and exploit the fact that agents A1 and A2 know each other's constraints. It also requires 
finding an optimal value for the variable x4, which is irrelevant to the query. To avoid 
aforementioned limitations some approaches remove the restriction on which variables 
can be involved in the constraints of an agent and can obtain some improvements in 
speed (Silaghi & Faltings, 2005). Other frameworks typically used with hill-climbing 
solvers, with solvers that reorder agents, and with arc consistency, assume that each agent 
Ai knows all the constraints that involve the variable xi. This implies that any constraint 
between two variables xi and xj is known by both agents Ai and Aj. In general, a problem 
modeled as a DisCOP where any private constraint may be hold by any agent can be 
converted to its dual representation in order to obtain a model with this framework. When 
penalties for constraint violation can only take values in {0,∞}, corresponding to {true, 
false}, one obtains distributed constraint satisfaction problems. 

A protocol is a set of rules about what messages may be exchanged by agents, 
when they may be sent, and what may be contained in their payload. A distributed 
algorithm is an implementation of a protocol as it specifies an exact sequence of 
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operations to be performed as a response to each event, such as start of computation or 
receipt of a message. Autonomous self-interested agents are more realistically expected 
to implement protocols rather than to strictly adhere to algorithms. Protocols can be 
theoretically proved correct. However experimental validation and efficiency evaluation 
of a protocol is done by assuming that agents strictly follow some algorithm 
implementing that protocol.  

 

 

Efficiency metrics 

The simplest metric for evaluating DisCOP solvers uses the time from the 
beginning of a distributed computation to its end. It is possible only with a real 
distributed system (or a very realistic simulation). The network load for benchmarks is 
evaluated by counting the total number of messages exchanged or the total number of 
bytes exchanged. The total time taken by a simulator yields the efficiency of a DisCOP 
solver when used as a weighted CSP solver. Another common metric is given by the 
highest logic clocks (Lamport, 1978) occurring during the computation. Lamport's logic 
clocks associate a cost with each message and another cost with each local computation. 
When the cost assigned to each message is 1 and the cost for local computations is 0, the 
obtained value gives the longest sequential chain of causal messages (Silaghi & Faltings, 
2005). When all message latencies are identical, this metric is equivalent to the number of 

 
Figure 2: Translating between DisCOP frameworks 
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rounds of a simulator where at each round an agent handles all messages received in the 
previous round (Yokoo et al., 1998). If the cost assigned to each message is 0 and the cost 
of a constraint check is 1, the obtained value gives the number of non-concurrent 
constraint checks (NCCC) (Meisels, Kaplansky, Razgon, & Zivan, 2002). When a 
constraint check is assumed to cost a fraction of a message then the obtained value gives 
the equivalent NCCCs. One can evaluate the actual fraction between message latencies 
and constraint checks in the operating point (OP) of the target application (Silaghi & 
Yokoo, 2007). However many distributed solvers do not check constraints directly but 
via nogoods and there is no standardized way of accounting the handling of the latter 
ones. 
 

Techniques 
Solving algorithms span the range between full centralization, where all constraints 

are submitted to a central server that returns a solution, through incremental 
centralization (Mailler & Lesser, 2004), to very decentralized approaches (Walsh, Yokoo, 
Hirayama, & Wellman, 2003). 

The Depth-First Search (DFS) spanning trees of the constraint graph proves useful 
for distributed DisCOP solvers. When used as a basis for ordering agents, the assignment 
of any node of the tree makes its subtrees independent (Collin, Dechter, & Katz, 2000). 
Such independence increases parallelism and decreases the complexity of the problem. 
The structure can be exploited in three ways. Subtrees can be explored in parallel for an 
opportunistic evaluation of the best branch, reminding of iterative A* (Modi et al., 2005). 
Alternatively a branch and bound approach can systematically evaluate different values 
of the root for each subtree (Chechetka & Sycara, 2006). A third approach uses dynamic 
programming to evaluate the DFS trees from leaves towards the root (Petcu & Faltings, 
2006). 

Asynchronous usage of lookahead techniques based on maintenance of arc 
consistency and bound consistency require handling of interacting data structures 
corresponding to different concurrent computations. Concurrent consistency achievement 
processes at different depths in the search tree have to be coordinated giving priority to 
computations at low depths in the tree (Silaghi & Faltings, 2005). 

The concept at the basis of many asynchronous algorithms is the nogood, namely a 
self contained statement about a restriction to the valuations of the variables, inferred 
from the problem. A generalized valued nogood has the form [R,c,T] where T specifies a 
set of partial solutions {N1,...,Nk} for which the set of constraints R specifies a penalty of 
at least c. A common simplification, called valued nogood (Dago & Verfaille, 1996), 
refers to a single partial solution, [R,c,N]. Priority induced vector clock timestamps called 
signatures can be used to arbitrate between conflicting assignments concurrently 
proposed by several modifiers (Silaghi & Faltings, 2005). They can also handle other 
types of conflicting proposals, such as new ordering. 

ADOPT-ing is an illustrative algorithm unifying the basic DisCSP and DisCOP 
solvers ABT (Yokoo et al., 1998) and ADOPT (Modi et al., 2005). It works by having 
each agent concurrently chose for its variable the best value given known assignments of 
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predecessors and cost estimations received from successors (Silaghi & Yokoo 2007). 
Each agent announces its assignments to interested successors using ok? messages. 
Agents are interested in variables involved in their constraints or nogoods. When a 
nogood is received, agents announce new interests using add-link messages. A forest of 
DFS trees is dynamically built. Initially each agent is a tree, having no ancestors. When a 
constraint is first used, the agent adds its variables to his ancestors list and defines his 
parent in the DFS tree as the closest ancestor. Ancestors are announced of their own new 
ancestors. Nogoods inferred by an agent using resolution on its nogoods and constraints 
are sent to targeted predecessors and to its parent in the DFS tree using nogood messages, 
to guarantee optimality. Known costs of DFS subtrees for some values can be announced 
to those subtrees using threshold nogoods attached to ok? messages. 

 

Example  
An asynchronous algorithm could solve the problem in Figure 2 using the trace in 

Figure 3. In the messages of Figure 3, constraints are represented as Boolean values in an 
array. The ith value in this array set to T signifies that the constraints of Ai are used in the 
inference of that nogood. The agents start selecting values for their variables and 
announce them to interested lower priority agents.  The first exchanged messages are ok? 
messages sent by A1 to both successors A2 and A3 and proposing the assignment x1=1. A2 
sends an ok? message to A3 proposing x2=2.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Simplified trace of an asynchronous solver (ADOPT-ing 
(Silaghi & Yokoo, 2007)) on the problem in Figure 3. 

 
Figure 3: The constraint graph of a DisCOP. The fact that the penalty associated 
with not satisfying the constraint x1≠x2 is 4, is denoted by the notation (#4).  
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A3 detects a conflict with x1, inserts A1 in its DFS tree ancestors list, and sends a 
nogood with cost 2 to A1 (message 3).  A1 answers the received nogood by switching its 
assignment to a value with lower current estimated value, x1=2 (message 4). A2 reacts by 
switching x2 to its lowest cost value, x2=1 (message 5). A3 detects a conflict with x2 and 
inserts A2 in its ancestors list, which becomes {A1, A2}. A3 also announces the conflict to 
A2 using the nogood message 6. This nogood received by A2 is combined with the 
nogood locally inferred by A2 for its value 2 due to the constraint x1≠x2(#4). That 
inference also prompts the insertion of A1 in the ancestors list of A2. The obtained 
nogood is therefore sent to A1 using message 7. A1 and later A2 switch their assignments 
to the values with the lowest cost, attaching the latest nogoods received for those values 
as threshold nogoods (messages 8, 9 and 10). At this moment the system reaches 
quiescence. 
 

FUTURE TRENDS 
The main remaining challenges with distributed constraint reasoning are related to 

efficient ways of achieving privacy and with handling very large problems. 

CONCLUSION 
The distributed constraint reasoning paradigms allow easy specification of new 

problems. The notion varies largely between almost any two researchers. It can refer to 
the distribution of subproblems or it can refer to the distribution of authority in assigning 
variables. The reason and goals of the distribution vary as well, where either privacy of 
constraints, parallelism in computation, or size of data are cited as major concern. Most 
algorithms can be easily translated from one framework to the other, but they may not be 
appropriate for a new goal.  
 

REFERENCES 
Bejar, R., Domshlak, C., Fernandez, C., Gomes, C., Krishnamachari, B., Selman, B., 

&Valls, M. (2005). Sensor networks and distributed CSP: communication, 
computation and complexity. Artificial Intelligence, 161(1-2):117-147. 

Chechetka, A., & Sycara, K. (2006). No-commitment branch and bound search for 
distributed constraint optimization. In AAMAS, 1427-1429. 

Cramer, R., Damgaard, I., & Nielsen, J.B. (2000). Multi-party Computation from 
Threshold Homomorphic Encryption. BRICS RS-00-14. 

Collin, Z.; and Dechter, R.; and Katz,S. (1991). On the feasibility of distributed 
constraint satisfaction. IJCAI, 318-324. 

Collin, Z., Dechter, R., & Katz,S. (2000). Self-Stabilizing Distributed Constraint 
Satisfaction. Chicago Journal of Theoretical Computer Science, 3(4). 



In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007. 

Dago, P., & Verfaillie, G. (1996). Nogood recording for valued constraint satisfaction 
problems. In ICTAI, 132-139 

Lamport, L. (1978). Time, Clocks and the Ordering of Events in a Distributed System. 
Communications of the ACM. 21(7):558-565. 

Mailler, R., & Lesser, V. (2004). Solving distributed constraint optimization problems 
using cooperative mediation. In AAMAS, 438-445. 

Meisels, A., Kaplansky, E., Razgon, I., & Zivan, R. (2002). Comparing Performance of 
Distributed Constraints Processing Algorithms. DCR, 86-93. 

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous 
Distributed Constraint Optimization with Quality Guarantees. Artificial 
Intelligence Journal 161(1-2). 

Petcu, A., & Faltings, B. (2006). ODPOP: an algorithm for open/distributed constraint 
optimization. In AAAI. 

Shamir, A. (1979). How to share a secret. Communications of the ACM. 22:612-613. 

Silaghi, M.-C., & Faltings, B. (2005). Asynchronous aggregation and consistency in 
distributed constraint satisfaction. Artificial Intelligence Journal 161(1-2):25-53. 

Silaghi, M.-C., & Yokoo, M. (2007). Dynamic DFS Tree in ADOPT-ing. AAAI. 

Walsh, W.E.,  M. Yokoo,M.,  K. Hirayama, K., & M.P. Wellman, M.P. (2003). On 
market-inspired approaches to propositional satisfiability. Artificial Intelligence. 
144: 125-156. 

Walsh, T. (2007). Traffic light scheduling: a challenging distributed constraint 
optimization problem. In DCR. 

Yao, A. (1982). Protocols for secure computations. FOCS. 160-164. 

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The Distributed 
Constraint Satisfaction Problem: Formalization and Algorithms. In IEEE TKDE, 
10(5) 673-685. 

Yokoo, M., & Hiramaya, K. (2005). The Distributed Breakout Algorithm. Artificial 
Intelligence Journal. 161(1-2), 229-246. 

TERMS AND DEFINITIONS 
Agent: A participant in a distributed computation, having its own constraints 

Constraint: A relation between variables specifying a subset of their Cartesian 
product that is not permitted. Optionally it can also specify numeric penalties for 
those tuples 

DisCOP:  Distributed Constraint Optimization Problem framework (also DCOP) 

DisCSP:  Distributed Constraint Satisfaction Problem framework (also DCSP) 

Nogood: A logic statement about combinations of assignments that are penalized due 
to some constraints 
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Optimality: The quality of an algorithm of returning only solutions that are at least as 
good as any other solution 

Quiescence: The state of being inactive. The system will not change without an 
external stimulus.  


