
In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

Distributed Constraint Reasoning

Marius C. Silaghi, msilaghi@fit.edu
Makoto Yokoo, yokoo@is.kyushu-u.ac.jp

INTRODUCTION
Distributed constraint reasoning is concerned with modeling and solving naturally

distributed problems. It has application to the coordination and negotiation between
semi-cooperative agents, namely agents that want to achieve a common goal but would
not give up private information over secret constraints. When compared to centralized
constraint satisfaction (CSP) and constraint optimization (COP), here one of the most
expensive operations consists in communication and major problems arise from
coherence and privacy. We review approaches based on asynchronous backtracking and
depth-first search spanning trees.

Distributed constraint reasoning started as an outgrowth of research in constraints
and multi-agent systems. Take the sensors network problem in Figure 1, defined by a set
of geographically distributed sensors that have to track a set of mobile nodes. Each sensor
can watch only a subset of its neighborhood at a given time. Three sensors need to
simultaneously focus on the same mobile node in order to locate it. Approaches modeling

and solving this problem with distributed constraint reasoning are described in (Bejar,
Domshlak, Fernandez, Gomes, Krishnamachari, Selman, &Valls, 2005).

Figure 1: Sensor Network.

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

There are two large classes of distributed constraint problems. The first class is
described by a set of Boolean relations (aka constraints) on possible assignments of
variables, where the relations are distributed among agents. They are called distributed
constraint satisfaction problems (DisCSPs). The challenge is to find assignments of
variables to values such that all these relations are satisfied. However, the reasoning
process has to be performed by collaboration among the agents. There exist several
solutions to a problem, and ties have to be broken by some priority scheme. Such
priorities may be imposed from the problem description where some agents, such as
government agencies, are more important than others. In other problems it is important to
ensure that different solutions or participants have equal chances, and this property is
called uniformity. When no solution exists, one may still want to find an assignment of
the variables that conflict as few constraints as possible. The second class of problems
refers to numerical optimization described by a set of functions (weighted constraints)
defined on assignments of variables and returning positive numerical values. The goal is
to find assignments that minimize the objective function defined by the sum of these
functions. The problems obtained in this way are called distributed constraint
optimization problems (DisCOPs). Some problems require a fair distribution of the
amount of dissatisfaction among agents, minimizing the dissatisfaction of the most
unsatisfied agent.

There are also two different ways of distributing a problem. The first way consists
of distributing the data associated with it. It is defined in terms of which agents know
which constraints. It can be shown that any such problem can be translated into problems
where all non-shared constraints are unary (constraints involving only one variable), also
called domain constraints. Here one can assume that there exists a single unary
constraint for each variable. It is due to the fact that any second unary constraint can be
reformulated on a new variable, required to be equal to the original variable. The agent
holding the unique domain constraint of a variable is called the owner of that variable.
Due to the availability of this transformation many solutions focus on the case where only
the unary constraints are not shared by everybody (also said to be private to the agents
that know them). Another common simplification consists in assuming that each agent
has a single unary constraint (i.e., a single variable). This simplification does not reduce
the generality of the addressable problems since an agent can participate in a computation
under several names, e.g., one instance for each unary constraint of the original agent.
Such false identities for an agent are called pseudo-agents (Modi, Shen, Tambe, &
Yokoo, 2005), or abstract agents (Silaghi & Faltings, 2005).

The second way of distributing a problem is in terms of who may propose
instantiations of a variable. In such an approach each variable may be assigned a value
solely by a subset of the agents while the other agents are only allowed to reject the
proposed assignment. This distribution is similar to restrictions seen in some societies
where only the parliament may propose a referendum while the rest of the citizens can
only approve or reject it. Approaches often assume the simultaneous presence of both
ways of distributing the problem. They commonly assume that the only agent that can
make a proposal on a variable is the agent holding the sole unary constraint on that
variable, namely its owner (Yokoo, Durfee, Ishida, & Kuwabara, 1998). When several

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

agents are allowed to propose assignments of a variable, these authorized agents are
called modifiers of that variable. An example is where each holder of a constraint on a
variable is a legitimate modifier of that variable (Silaghi & Faltings, 2005).

BACKGROUND
The first addressed challenge concerned the development of asynchronous

algorithms for solving distributed problems. Synchronization forces distributed processes
to run at the speed of the slowest link. Algorithms that do not use synchronizations,
namely where participants are at no point aware of the current state of other participants,
are flexible but more difficult to design. With the exception of a few solution detection
techniques (Yokoo & Hirayama, 2005), (Silaghi & Faltings, 2005), most approaches
gather the answer to the problem by reading the state of local agents after the system
becomes idle and reaches the so called quiescence state (Yokoo et al., 1998). Algorithms
that eventually reach quiescence are also called self-stabilizing (Collin, Dechter, & Katz,
1991). A complete algorithm is an algorithm that guarantees not to miss any existing
solution. A sound algorithm is a technique that never terminates in a suboptimal state.

Another challenge picked by distributed constraint reasoning research consists of
providing privacy for the sub-problems known by agents (Yokoo et al., 1998). The object
of privacy can be of different types. The existence of a constraint between two variables
may be secret as well as the existence of a variable itself. Many approaches only try to
ensure the secrecy of the constraints, i.e., the hiding of the identity of the valuations that
are penalized by that constraint. For optimization problems one also assumes a need to
keep secret the amount of the penalty induced by the constraint. As mentioned
previously, it is possible to model such problems in a way where all secret constraints are
unary (approach known as having private domains). Some problems may have both
secret and public constraints. Such public constraints may be used for an efficient
preprocessing prior to the expensive negotiation implied by secret constraints. Solvers
that support guarantees of privacy at any cost employ cryptographic multi-party
computations (Yao 1982). There exist several cryptographic technologies for such
computations, and some of them can be used interchangeably by distributed problem
solvers. However, some of them offer information theoretical security guarantees
(Shamir, 1979) being resistant to any amount of computation, while others offer only
cryptographic security (Cramer, Damgaard, & Nielsen, 2000) and can be broken using
large amounts of computation or quantum computers. The result of a computation may
reveal secrets itself and its damages can be reduced by being careful in formulating the
query to the solver. For example, less information is lost by requesting the solution to be
picked randomly than by requesting the first solution. The computations can be done
cryptographically by a group of semi-trusted servers, or they can be performed by
participants themselves. A third issue in solving distributed problems is raised by the size
and the dynamism of the system.

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

DISTRIBUTED CONSTRAINT REASONING

Framework
A common definition of a distributed constraint optimization problem (DisCOP)

(Modi et al., 2005) consists of a set of variables X={x1, ..., xn} and a set of agents A={A1,
..., An}, each agent Ai holding a set of constraints. Each variable xi can be assigned only
with those values which are allowed by a domain constraint Di. A constraint Φj on a set
of variables Xj is a function associating a positive numerical value to each combination of
assignments to the variables Xj. The typical challenge is to find an assignment to the
variables in X such that the sum of the values returned by the constraints of the agents is
minimized.

A tuple of assignments is also called partial solution. A restriction often used with
DisCOPs requires that each agent Ai holds only constraints between xi and a subset of the
previous variables, {x1,...,xi-1}. Also, for any agent Ai, the agents {A1, ..., Ai-1} are the
predecessors of Ai and the agents {Ai+1, ..., An}, are its successors.

To understand the generality and limitations of this restriction,
consider a conference organization problem with 3 variables x1 (time),
x2 (place), and x3 (general chair) and 3 constraints Φ12 (between x1 and
x2), Φ23 (between x2 and x3), and Φ13 (between x1 and x3), where Alice
has Φ12, Bob enforces Φ23, and Carol is interested in Φ13, Figure 3.

This problem can be modeled as a DisCOP with 4 agents. Alice
uses two agents, A1 and A2. The original participant is called physical
agent and the agents of the model are called pseudo-agents. Bob uses
the agent A3 and Carol uses an agent A4. The new variable x4 of the
agent A4 is involved in a ternary constraint Φ134 with x1 and x3. The
constraint Φ134 is constructed such that its projection on x1 and x2 is
Φ13.

However the restricted framework cannot help general purpose algorithms to learn
and exploit the fact that agents A1 and A2 know each other's constraints. It also requires
finding an optimal value for the variable x4, which is irrelevant to the query. To avoid
aforementioned limitations some approaches remove the restriction on which variables
can be involved in the constraints of an agent and can obtain some improvements in
speed (Silaghi & Faltings, 2005). Other frameworks typically used with hill-climbing
solvers, with solvers that reorder agents, and with arc consistency, assume that each agent
Ai knows all the constraints that involve the variable xi. This implies that any constraint
between two variables xi and xj is known by both agents Ai and Aj. In general, a problem
modeled as a DisCOP where any private constraint may be hold by any agent can be
converted to its dual representation in order to obtain a model with this framework. When
penalties for constraint violation can only take values in {0,∞}, corresponding to {true,
false}, one obtains distributed constraint satisfaction problems.

A protocol is a set of rules about what messages may be exchanged by agents,
when they may be sent, and what may be contained in their payload. A distributed
algorithm is an implementation of a protocol as it specifies an exact sequence of

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

operations to be performed as a response to each event, such as start of computation or
receipt of a message. Autonomous self-interested agents are more realistically expected
to implement protocols rather than to strictly adhere to algorithms. Protocols can be
theoretically proved correct. However experimental validation and efficiency evaluation
of a protocol is done by assuming that agents strictly follow some algorithm
implementing that protocol.

Efficiency metrics

The simplest metric for evaluating DisCOP solvers uses the time from the
beginning of a distributed computation to its end. It is possible only with a real
distributed system (or a very realistic simulation). The network load for benchmarks is
evaluated by counting the total number of messages exchanged or the total number of
bytes exchanged. The total time taken by a simulator yields the efficiency of a DisCOP
solver when used as a weighted CSP solver. Another common metric is given by the
highest logic clocks (Lamport, 1978) occurring during the computation. Lamport's logic
clocks associate a cost with each message and another cost with each local computation.
When the cost assigned to each message is 1 and the cost for local computations is 0, the
obtained value gives the longest sequential chain of causal messages (Silaghi & Faltings,
2005). When all message latencies are identical, this metric is equivalent to the number of

Figure 2: Translating between DisCOP frameworks

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

rounds of a simulator where at each round an agent handles all messages received in the
previous round (Yokoo et al., 1998). If the cost assigned to each message is 0 and the cost
of a constraint check is 1, the obtained value gives the number of non-concurrent
constraint checks (NCCC) (Meisels, Kaplansky, Razgon, & Zivan, 2002). When a
constraint check is assumed to cost a fraction of a message then the obtained value gives
the equivalent NCCCs. One can evaluate the actual fraction between message latencies
and constraint checks in the operating point (OP) of the target application (Silaghi &
Yokoo, 2007). However many distributed solvers do not check constraints directly but
via nogoods and there is no standardized way of accounting the handling of the latter
ones.

Techniques
Solving algorithms span the range between full centralization, where all constraints

are submitted to a central server that returns a solution, through incremental
centralization (Mailler & Lesser, 2004), to very decentralized approaches (Walsh, Yokoo,
Hirayama, & Wellman, 2003).

The Depth-First Search (DFS) spanning trees of the constraint graph proves useful
for distributed DisCOP solvers. When used as a basis for ordering agents, the assignment
of any node of the tree makes its subtrees independent (Collin, Dechter, & Katz, 2000).
Such independence increases parallelism and decreases the complexity of the problem.
The structure can be exploited in three ways. Subtrees can be explored in parallel for an
opportunistic evaluation of the best branch, reminding of iterative A* (Modi et al., 2005).
Alternatively a branch and bound approach can systematically evaluate different values
of the root for each subtree (Chechetka & Sycara, 2006). A third approach uses dynamic
programming to evaluate the DFS trees from leaves towards the root (Petcu & Faltings,
2006).

Asynchronous usage of lookahead techniques based on maintenance of arc
consistency and bound consistency require handling of interacting data structures
corresponding to different concurrent computations. Concurrent consistency achievement
processes at different depths in the search tree have to be coordinated giving priority to
computations at low depths in the tree (Silaghi & Faltings, 2005).

The concept at the basis of many asynchronous algorithms is the nogood, namely a
self contained statement about a restriction to the valuations of the variables, inferred
from the problem. A generalized valued nogood has the form [R,c,T] where T specifies a
set of partial solutions {N1,...,Nk} for which the set of constraints R specifies a penalty of
at least c. A common simplification, called valued nogood (Dago & Verfaille, 1996),
refers to a single partial solution, [R,c,N]. Priority induced vector clock timestamps called
signatures can be used to arbitrate between conflicting assignments concurrently
proposed by several modifiers (Silaghi & Faltings, 2005). They can also handle other
types of conflicting proposals, such as new ordering.

ADOPT-ing is an illustrative algorithm unifying the basic DisCSP and DisCOP
solvers ABT (Yokoo et al., 1998) and ADOPT (Modi et al., 2005). It works by having
each agent concurrently chose for its variable the best value given known assignments of

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

predecessors and cost estimations received from successors (Silaghi & Yokoo 2007).
Each agent announces its assignments to interested successors using ok? messages.
Agents are interested in variables involved in their constraints or nogoods. When a
nogood is received, agents announce new interests using add-link messages. A forest of
DFS trees is dynamically built. Initially each agent is a tree, having no ancestors. When a
constraint is first used, the agent adds its variables to his ancestors list and defines his
parent in the DFS tree as the closest ancestor. Ancestors are announced of their own new
ancestors. Nogoods inferred by an agent using resolution on its nogoods and constraints
are sent to targeted predecessors and to its parent in the DFS tree using nogood messages,
to guarantee optimality. Known costs of DFS subtrees for some values can be announced
to those subtrees using threshold nogoods attached to ok? messages.

Example
An asynchronous algorithm could solve the problem in Figure 2 using the trace in

Figure 3. In the messages of Figure 3, constraints are represented as Boolean values in an
array. The ith value in this array set to T signifies that the constraints of Ai are used in the
inference of that nogood. The agents start selecting values for their variables and
announce them to interested lower priority agents. The first exchanged messages are ok?
messages sent by A1 to both successors A2 and A3 and proposing the assignment x1=1. A2
sends an ok? message to A3 proposing x2=2.

Figure 4: Simplified trace of an asynchronous solver (ADOPT-ing
(Silaghi & Yokoo, 2007)) on the problem in Figure 3.

Figure 3: The constraint graph of a DisCOP. The fact that the penalty associated
with not satisfying the constraint x1≠x2 is 4, is denoted by the notation (#4).

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

A3 detects a conflict with x1, inserts A1 in its DFS tree ancestors list, and sends a
nogood with cost 2 to A1 (message 3). A1 answers the received nogood by switching its
assignment to a value with lower current estimated value, x1=2 (message 4). A2 reacts by
switching x2 to its lowest cost value, x2=1 (message 5). A3 detects a conflict with x2 and
inserts A2 in its ancestors list, which becomes {A1, A2}. A3 also announces the conflict to
A2 using the nogood message 6. This nogood received by A2 is combined with the
nogood locally inferred by A2 for its value 2 due to the constraint x1≠x2(#4). That
inference also prompts the insertion of A1 in the ancestors list of A2. The obtained
nogood is therefore sent to A1 using message 7. A1 and later A2 switch their assignments
to the values with the lowest cost, attaching the latest nogoods received for those values
as threshold nogoods (messages 8, 9 and 10). At this moment the system reaches
quiescence.

FUTURE TRENDS
The main remaining challenges with distributed constraint reasoning are related to

efficient ways of achieving privacy and with handling very large problems.

CONCLUSION
The distributed constraint reasoning paradigms allow easy specification of new

problems. The notion varies largely between almost any two researchers. It can refer to
the distribution of subproblems or it can refer to the distribution of authority in assigning
variables. The reason and goals of the distribution vary as well, where either privacy of
constraints, parallelism in computation, or size of data are cited as major concern. Most
algorithms can be easily translated from one framework to the other, but they may not be
appropriate for a new goal.

REFERENCES
Bejar, R., Domshlak, C., Fernandez, C., Gomes, C., Krishnamachari, B., Selman, B.,

&Valls, M. (2005). Sensor networks and distributed CSP: communication,
computation and complexity. Artificial Intelligence, 161(1-2):117-147.

Chechetka, A., & Sycara, K. (2006). No-commitment branch and bound search for
distributed constraint optimization. In AAMAS, 1427-1429.

Cramer, R., Damgaard, I., & Nielsen, J.B. (2000). Multi-party Computation from
Threshold Homomorphic Encryption. BRICS RS-00-14.

Collin, Z.; and Dechter, R.; and Katz,S. (1991). On the feasibility of distributed
constraint satisfaction. IJCAI, 318-324.

Collin, Z., Dechter, R., & Katz,S. (2000). Self-Stabilizing Distributed Constraint
Satisfaction. Chicago Journal of Theoretical Computer Science, 3(4).

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

Dago, P., & Verfaillie, G. (1996). Nogood recording for valued constraint satisfaction
problems. In ICTAI, 132-139

Lamport, L. (1978). Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM. 21(7):558-565.

Mailler, R., & Lesser, V. (2004). Solving distributed constraint optimization problems
using cooperative mediation. In AAMAS, 438-445.

Meisels, A., Kaplansky, E., Razgon, I., & Zivan, R. (2002). Comparing Performance of
Distributed Constraints Processing Algorithms. DCR, 86-93.

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous
Distributed Constraint Optimization with Quality Guarantees. Artificial
Intelligence Journal 161(1-2).

Petcu, A., & Faltings, B. (2006). ODPOP: an algorithm for open/distributed constraint
optimization. In AAAI.

Shamir, A. (1979). How to share a secret. Communications of the ACM. 22:612-613.

Silaghi, M.-C., & Faltings, B. (2005). Asynchronous aggregation and consistency in
distributed constraint satisfaction. Artificial Intelligence Journal 161(1-2):25-53.

Silaghi, M.-C., & Yokoo, M. (2007). Dynamic DFS Tree in ADOPT-ing. AAAI.

Walsh, W.E., M. Yokoo,M., K. Hirayama, K., & M.P. Wellman, M.P. (2003). On
market-inspired approaches to propositional satisfiability. Artificial Intelligence.
144: 125-156.

Walsh, T. (2007). Traffic light scheduling: a challenging distributed constraint
optimization problem. In DCR.

Yao, A. (1982). Protocols for secure computations. FOCS. 160-164.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The Distributed
Constraint Satisfaction Problem: Formalization and Algorithms. In IEEE TKDE,
10(5) 673-685.

Yokoo, M., & Hiramaya, K. (2005). The Distributed Breakout Algorithm. Artificial
Intelligence Journal. 161(1-2), 229-246.

TERMS AND DEFINITIONS
Agent: A participant in a distributed computation, having its own constraints

Constraint: A relation between variables specifying a subset of their Cartesian
product that is not permitted. Optionally it can also specify numeric penalties for
those tuples

DisCOP: Distributed Constraint Optimization Problem framework (also DCOP)

DisCSP: Distributed Constraint Satisfaction Problem framework (also DCSP)

Nogood: A logic statement about combinations of assignments that are penalized due
to some constraints

In Encyclopedia of Artificial Intelligence. Information Science Reference, 2007.

Optimality: The quality of an algorithm of returning only solutions that are at least as
good as any other solution

Quiescence: The state of being inactive. The system will not change without an
external stimulus.

