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ABSTRACT
Robust, low latency road lane detection is essential to the safe
operation of an autonomous vehicle. Lane detection is performed
by searching an image for lane markers in order to form a model
of the lane that the vehicle can follow. Deep Learning CNNs are
able to form robust lane models that are able to operate in poor
conditions when classical computer vision algorithms will fail.
However CNNs are computationally expensive models that are not
yet able to detect lanes at the the necessary speed on a desktop
machine let alone an embedded device. The concept being explored
is how to leverage the visual power of CNNs but be able to obtain
information at close to real time speeds. The proposed system is a
segmentation CNN and a Bayesian tracking algorithm that is able
to achieve the necessary speed but with no loss of information so
that an autonomous vehicle can still safely drive within the lane.
A segmentation CNN, trained on the KITTI autonomous driving
dataset, outputs a dense pixelwise prediction of where the lane
is. Blob detection is then performed to extract the most likely
set of connected pixels. These predicted lane pixels are used to
compute the lane state, which we define as the lane’s inverse radius
of curvature and is analogous to the lanes centerline. Since the
state variable is continuous, it is nonlinearly discretized and then
tracked with a particle filter on a GPU. The particle filter’s output
is available even when no image data has been processed by the
CNN to provide information about where the lane is currently.

Keywords: Autonomous Vehicle Perception, Embedded GPU Com-
puting, Convolutional Neural Networks, Particle Filtering

1. INTRODUCTION
For an autonomous vehicle to function safely and effectively, it
must have precise knowledge about about it’s surroundings. This
encompasses but is not limited to detection of all other vehicles,
pedestrians, cyclists, stop lights, road signs, and lastly the road
itself. Before complex reasoning about the environment can be
made, an autonomous vehicle’s first task is to be able to identify
and safely drive within the current lane. Lane detection by itself
is a challenging problem with many different scenarios; there
are combinations of solid, striped and white, yellow lines and
sometimes there are no lane lines at all. To complicate things
further, lane lines can be occluded by other vehicles, glare from the
Sun can obscure the lines, or shadows on the road can provide false
detections. Given how many possible situations an autonomous
vehicle may encounter, it is advantageous to pursue the use of

Figure 1. Stanely, winner of the DARPA Grand Challenge in 2005
[1]

machine learning algorithms because of their power to accurately
generalize to many different inputs.

Once the lane the vehicle is traveling in, or travel lane, has
been identified, the lane information must be mapped into a value
which can be passed to the steering controller to keep the vehicle
in the lane. Some such values are the Cross Track Error (CTE) in
Frenet Coordinates or the lane’s radius of curvature. The steering
controller must be supplied with a Process Variable, the current
state, and Set Point, the desired state, at a high rate of speed in order
for the vehicle to be able to respond in it’s dynamic environment.
The controller’s time restraint requires the perception system to
identify the travel lane at higher rates of speed than are generally
achievable by computer vision algorithms.

In this research the development of a real time lane tracking
algorithm is proposed. In the algorithm, the travel lane is first
segmented from the current time step’s image using a high latency
convolutional neural network (CNN) which is used to form the
travel lane’s current radius of curvature. The radius of curvature
is then supplied as evidence to a particle filter which provides a
Markovian prediction for the travel lane’s radius of curvature at the
desired speed. Finally, future works of completing the development
of the lane tracking algorithm is proposed.

2. LITERATURE REVIEW
Ever since AlexNet in 2012, CNNs have become popular computer
vision algorithms for a variety of tasks [2]. The first semantic
segmentation, or pixelwise class labeling, network called Fully
Convolutional Network was introduced in 2014 [3]. Since then
CNN models have been developed specifically tailored for au-
tonomous driving applications [4][5]. A computationally efficient
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Figure 2. Cityscapes Test Set Input

Figure 3. Cityscapes Segmentation using ported PSPNet

CNN that is able to be deployed in real time called Efficient Neural
Network (ENet) was able to achieve 58.3 class Intersection over
Union (IoU) on the Cityscapes autonomous driving segmentation
dataset [6]. In comparison Pyramid Scene Parsing Network (PSP-
Net) was able to achieve 80.2 class IoU but is not able to provide
segmentation in real time. PSPNet utilizes a 101 convolutional
layer Residual Network (ResNet101) to perform feature extraction
which are then passed into a Pyramid Pooling Module. The
Pyramid Pooling Module performs segmentation with the extracted
features. ResNet101 has been extremely successful at image
classification so it is known to provide representationaly powerful
features [7]. The Pyramid Pooling Module takes the extracted
feature maps from ResNet101 and uses a billinear interpolartion
to resize them spatially to the the same size as the input image. A
series of bottleneck convolutions, average pooling operations, and
concatenation are then applied to the resized feature maps to create
the final segmentation.

3. METHODOLOGY
In this section, the segmentation CNN and particle filter develop-
ment is described. The algorithm is currently under development
so it will be explicitly stated whether or not each section has been
constructed or still needs to be built.

3.1 PSPNet Augmentation
PSPNet was first ported from its native Caffe implementation
trained on Cityscapes to a Tensorflow implementation [8]. This
included a trained weight conversion and also a network imple-
mentation.

After PSPNet was converted, a second Pyramid Pooling Module
was added branching off from the ResNet101 output and initialized
with the originally trained weights. All convolutional weights,
biases, batch normalization reparameterization weights, and mov-
ing mean and variances were frozen to their original values in

Figure 4. KITTI Test Set Input

Figure 5. Original Pyramid Pooling Module Output

Figure 6. Lane Pyramid Pooling Module Output

ResNet101 and the original Pyramid Pooling Module while the
added Pyramid Pooling Module values were left as trainable vari-
ables. The KITTI urban marked subsection of the lane detection
dataset was used to train the added Pyramid Pooling Module
parameters which consists of 94 labeled instances, the same data
augmentation as the original PSPNet training was performed. The
loss function that was optimized was the average pixel wise cross
entropy and added l2 normalized weight regularization with decay
value of 0.001. Training was performed for 30 epochs with a batch
size of 3. The Yellowfin optimizer was used due to it’s efficiency at
optimizing residual-like connections [9]. After the trained model
was obtained, the model was frozen and then kernel fusion was
performed to create the deployment ready model for an embedded
Nvidia Tegra system. All of the above mentioned pieces have been
completed.

3.2 Segmentation Post Processing
After the lane had been segmented out, Gaussian Blur kernel is
applied and then a connected component clustering search was
performed [10]. The clustering algorithm searches for groups of
spatially connected pixels. The group with the largest number of
pixels was selected to be the most probable group of lane pixels.
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Figure 7. Example of a Poorly Segmented Lane

Figure 8. Outputted Connected Components

Figure 9. Selected Lane Pixel Grouping

The poorly segmented lane can be seen in Figure 7, the output of the
Gaussian Blur and connected component search can been seen in
Figure 8, and the final selected lane grouping can be seen in Figure
9. All of the above mentioned functions have been implemented.

After the grouping of lane pixels has been selected, a second
order polynomial will be fit using least squares to the height and
width of each pixel location. The radius of curvature of the
travel lane is then computed using Equation 1 [11]. The radius
of curvature’s sign determines whether the lane is curving left or
right and an infinite radius of curvature indicates a straight travel
lane. The polynomial and curve fitting has not been implemented
yet.

R =
(1+( dx

dy )
2)

3
2

d2x
d2y

(1)

3.3 State Formulation
The radius of curvature of the travel lane is modeled to be a
continuous random variable, ranging from negative to positive
infinity, with evidence not available at every time step in a typical
first order Markov Chain, seen in Figure 10. In order to ease
the computational complexity of this problem the state variable is
discretized with an absolute range of 10m to 10,000m. This range
was chosen because an average car is not able to follow a sharper
curve and above 10,000m is a large enough value to approximate a
straight line. However there are two sets of these ranges; one from
-10,000m to -10m and 10m to 10,000m. These ranges oppose one
another because -10,000m and 10,000 meters both represent going
straight and -10m and 10m both represent turning away from one
another. In order to solve this, the inverse radius of curvature is
used as the state variable instead [12]. The range then becomes -.1
to .1 where 0 represents going straight.

The separation between the discretized values became a chal-
lenge. If one assumed a 0.1m separation between states to allow

Figure 10. First Order Markov Chain

Figure 11. Separation of Discrete State Values

for fine control for sharper curves then roughly 200,000 different
values would need to be included in each state. Instead it was
noted that closer to the -10m and 10m values a a fine level
of resolution is needed but at -10,000m and 10,000m a lower
resolution is acceptable. Therefore an exponentially growing
separation between states was used, seen in Equation 2 and Figure
11. A was determined to be 1

10,000 , B was determined to be 6.90776,
and n is the number of values in the discretization. These values
were determined by enforcing the boundary conditions of a 0.1m
separation at -.1 and .1 and 150m separation at 0. Equation 2 allows
for an arbitrary large discretization while providing finer resolution
where is is needed and coarser resolution where it is not. The state
formulation is not yet complete.

s(x) = Ae
Bx
n (2)

3.4 Transition and Sensor Model Formula-
tion

In order to form the transition model, the way the state of the travel
lane evolves of time needed to be determined. Qualitatively it was
determined that the lane will most likely stay at it’s current state
and will, with decreasing probability, deviate to the left or right.
The probability for one state to transition to another state is set to
be a Gaussian distribution with the mean centered at each state.
This means that each state is most likely to transition to the same
state in the next time step and with ever decreasing probability
transition to a state to either the left or right. Since a Gaussian
is a continuous distribution that ranges between − inf and inf, a
maximum transition range of 10% of the total states are populated
with non-zero probabilities. After these probabilities are assigned,
each row is normalized. An example transition matrix with 10
states can be seen in Equation 3.
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

0.9 0.1 0 0 0 0 0 0 0 0
0.1 0.8 0.1 0 0 0 0 0 0 0
0 0.1 0.8 0.1 0 0 0 0 0 0
0 0 0.1 0.8 0.1 0 0 0 0 0
0 0 0 0.1 0.8 0.1 0 0 0 0
0 0 0 0 0.1 0.8 0.1 0 0 0
0 0 0 0 0 0.1 0.8 0.1 0 0
0 0 0 0 0 0 0.1 0.8 0.1 0
0 0 0 0 0 0 0 0.1 0.8 0.1
0 0 0 0 0 0 0 0 0.1 0.9


(3)

The sensor model is implemented in much the same way as the
transition model. The found state from the image segmentation is
associated with the nearest state. Then a Gaussian centered at that
state’s index is used to create a vector of probabilities for each state
assuming only 10% of the states get a non-zero value. After the
Gaussian is applied, the vector is normalized. An example sensor
model vector with 10 states and found evidence at index 3 can be
seen in Equation 4.



0
0

0.1
0.8
0.1
0
0
0
0
0


(4)

3.5 Particle Filter Implementation
It is qualitatively assumed that to accurately predict the state of
the lane, a discretization of 3,000 values is needed. It is also
qualitatively assumed that for an accurate approximation of the
posterior, 3,000 particles is needed. Even simply an application
of the transition model with a 3,000 by 3,000 matrix is not able
to be done at 30Hz on a desktop CPU, let alone the CPU of a
Nvidia Tegra embedded system. To solve this problem, a GPU
implementation of the particle filter is developed that exploits the
natural parallelization of matrix operations and the particle filtering
algorithm.

The first major development is that the transition model must
be applied to the ith particle at time step t − 1 to propagate
it forward one unit in time, seen in Equation 5. However,
this is inefficient because it requires each particle to be done in
series. In order to parallelize this operation, a particle matrix is
formed, seen in Equations 6 and 7. This matrix operation now
computes the transition of every particle simultaneously. This
matrix multiplication is still slow using a CPU though. A speed
test was performed using the Eigen library in C++, the Numpy
library in Python, and the cuBLAS library in CUDA. Both CPU
implementations took over 4 seconds while the cuBLAS version
took less than 0.1 seconds. TODO: POPULATE W/ REAL
NUMBERS

~p(i)
t = T~p(i)

t−1 (5)

Figure 12. ROS Compute Graph

Pt =
[
~p(0)

t ~p(1)
t . . . ~p(N−1)

t

]
(6)

Pt = Pt−1T (7)

Another challenge that was overcome was the inefficiency of
normalizing the particle matrix. In order to efficiently normalize
each particle stored within the particle matrix, a vector of ones
is generated and the vectorized summation is performed using
Equation 8 using the cuBLAS library. After the summation ~αt
is found, a CUDA kernel was written to divide each element in
every column of Pt to perform the normalization. This GPU
implementation allows for quick normalization even with large
matrices.

~αt =~1Pt (8)

The library cuRAND is used to randomly initialize the prior
distribution of the particle matrix. The last implemented function
is to find the most probable state of the lane. In order to do this,
the sum over all particle’s states is formed in the same manner as
Equation 8 and then that column sum is summed to normalize the
final particle. After the normalized, average particle is found the
maximum index is found and mapped back to a given radius of
curvature of the travel lane.

The entire system is implemented in the Robotic Operating
System (ROS) [13]. The ROS framework was chosen in order
to be able to deploy this lane tracking system in real world
applications. There are two ROS nodes in the system, one Python
node to compute image segmentation and form the evidence and
a second C++ and CUDA node to perform the particle filtering,
seen in Figure 12. Currently, the particle filter publishes a
predicted state at it’s maximum rate and updates the particle matrix
whenever evidence is computed from the segmentation process.
The segmentation process occurs as fast as possible and when it is
done, publishes a single floating point value of the computed state.

4. FUTURE WORK
This research project is only in it’s infancy with many improve-
ments to be made and many steps still to be completed. To
complete the system, the particle filter likelihood weighting needs
to be implemented as does the particle resampling. Once these
are completed, an analysis of the convergence rate of the particle
filter needs to be performed. The proposed method to do so is by
generating artificial evidence of a straight lane with added Gaussian
noise and the number of steps to convergence to the correct state
will be counted. This process will also be performed with left
and right curving lanes. The results of these three analyses will
influence the search for the initialization of the particle matrix.

Accuracy results for the travel lane segmentation needs to be
performed as well. The proposed method for this is to form separate
the initial 94 labeled instances into a training and test set, retrain the
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model using the new training set, and form the RMSE of the radius
of curvature of the segmented lane versus the provided label in the
test set.

Lastly the overall accuracy of the tracker needs to be determined.
Since the KITTI dataset does not include sequences of images, a
unique dataset collected at 30Hz will need to be collected including
both straight and curved lanes. After which the segmentation
will be performed on each image and stored. Next the images
will be published at 30Hz and the output of the particle filter
using evidence from the segmentation whenever possible will be be
stored as well. Finally the image segmentation radius of curvature
and the output of the particle filter will be used to form a single
RMSE value.
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