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ABSTRACT

While the Nao humanoid is among the most advanced intelligent
robots accessible to the global public, it lacks high level support
for advanced intelligent walking activities. The robot has remark-
able low level intelligence embedded into itself, such as artificial
life with breath motions, and reasonable situation awareness with
human face recognition and tracing. It also has motion control sup-
port in terms of unreliable distance or velocity-based commands
for walking. However, building high level intelligent applications
on such robots still requires significant research and effort. In this
work we propose a framework of Artificial Intelligence (Al) mod-
els that create a platform for easy high level tasks specification and
implementation. The models are trained using a Nao humanoid un-
dergoing experimentation and the results are evaluated based on a
set of high-level tasks implemented with standard Al algorithms.
The models are described, as well as the test-beds and benchmarks
used for their evaluation. The work proves the large potential that
humanoids hold in the area of applications offering human support
in daily activities.
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1. Introduction

In this work we propose a probabilistic model for addressing the
Nao humanoid robot non-deterministic actions and sensors. These
models are designed for integration with high level artificial intelli-
gence techniques, usable for advancing towards a long term goal of
providing a software architecture for supporting Nao’s motion and
localization activities for general tasks.

A plethora of robotic hardware and test-beds are available for ed-
ucational, research, and application opportunities. However, while
the Nao humanoid robots are among the most advanced widely
available robots for household applications, there is a lack of widely
available software for supporting it in high level intelligent activi-
ties. This may be explained in part by the uncertainty introduced
due to the significant non-determinism in walking actions presented
by the Nao robot. Each single movement command and corre-
sponding localization with respect to the base introduce errors of
dozen of degrees in rotation, and dozens of centimeters in trans-
lation. Such errors can be compensated with inputs from sensors
such as sonars and vision, but sonars have high unreliability them-
selves, and the vision needs reliable landmarks as well as previous
knowledge about these landmarks. While the robot has two cam-
eras, they are not configured from factory for usage as a stereo rig,
being oriented in different directions and lacking synchronization
of capture.

The Nao robot is a humanoid robot that is designed to serve as
a human companion and can sustain well household environments.
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Figure 1. The benchmark setting: mazes with landmarks.

While its relatively small dimensions limit its usability for tasks re-
quiring strength or height and dexterity, it is well adapted to home,
hospital, and office environments to provide, for example, enter-
tainment and emergency support for children and seniors. While its
communication and emotional intelligence is meeting many expec-
tations, its movement and ability to localize with standard software
is reduced, and insufficient for most other tasks. A number of re-
search efforts have led to the description of successful applications
of simultaneous localization and mapping (SLAM) to certain tasks
such as wall following in mazes and localization in spaces filled
with landmarks [1]. However there is a lack of general software
packages applicable to new scenarios. In this work we take a step
towards designing such a general mapping and localization support
software architecture.

After introducing a benchmark problem based on mazes with
landmarks (Figure [T, and reviewing some of the related work, the
rest of the paper details the definition and training of probabilistic
models for the Nao sonars and visual landmark localization. These
probabilistic models are being tested by integration into particle-
filtering based SLAM reasoning or partially observable Markov de-
cision process (POMDP) formulation of planning problems. These
are significant building blocks for the software architectures that
we plan de address. Preliminary experimental results are presented
before the conclusions.

2. Problem Formalization

The problem is described by a grid of m x n cells where some of
the separating walls are missing, creating a maze. This can be for-
malized as two Boolean matrices Hy,1 1, and Vp, 11, where in
our example above, m = 4 and n = 4. The matrix H,,11, with
m+-1rows and n columns specifies the presence of separating walls
between east-west neighboring cells. The matrix V,, 41 speci-
fies the presence of separating walls between north-south neigh-
boring cells. The functions A : [1..m+ 1] x [1..n] x {S,N} — N and
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Figure 2. The shape of a maze used in experiments, in ASCII
representation.

vi[l.m] x[l.n+1] x {E,W} — N assign a distinguishing label
to each wall, corresponding to the elements in H,y, 1, and Vi, 41,
respectively. The image of the functions % and v is not defined on
inputs where H,, 11, and V,, .11 are false, respectively. The sets
{S,N} and {E,W} specify the sides of the wall whose label is con-
sidered: south, north, east, and west, respectively. The image of
the function can be a special pattern recognizable by a classifier,
or something as simple as a NAOmark label. In an extreme case,
where there is no distinguishing information between walls, the im-
age of the two functions would consist in a single value.

A robot is placed in this maze in a potentially unknown original
position and has to learn the elements H, V, h, and v. The robot can
move with non-deterministic actions inducing transition probabili-
ties that can be modeled as Gaussian. It also has noisy sensors that
can detect H and V (sonars) or v and h (vision).

The position 7 of the robot at a moment in time is jointly defined
by a maze cell (i,j) with i, j € [1..m] x [1..n], as well as a position
and orientation in the cell defined with respect to its south-west
corner (x,y,0).

The past trajectory of the robot, acts as a weight gauging the
confidence of the robot in particular components of the belief. The
trajectory can be maintained with various levels of detail. The a
temporal trajectory of the robot is defined as a Boolean matrix T, ,
where elements are set to true for maze cells that have been visited
in the past.

A belief concerning the structure of the maze and position of the
robot is a probability distribution b over the complete set of possible
data structures T, H, V, h, v, and 7.

For mapping or SLAM problems in this setting, the above data
structures, namely H, V, h, and v, as well as the belief concerning
the final position of the robot, are requested outputs while the inputs
may consist in:

e values for m and n,

e specification of landmarks for distinguishing walls (e.g., NAO
marks at 1/2 size)

e dimensions for cells (e.g., 21in x 21in), as well as

e a belief regarding the current position of the robot in the de-
scribed space.

The task is to have a mobile robot explore and localize itself
within a maze. The map of the maze is assumed initially unknown
to the robot other than that it consists of cells, which are analogous
to rooms or parts of rooms in an office environment, and the cells’
shapes are in a predefined finite set of possibilities. For simplicity,
the cells shapes are assumed empty squares with 53.34cm sides,
each being possibly a wall/object as depicted in Figure[2]
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Figure 3. Landmark examples, each consists of a unique integer
conveyed in the NAOmarks pattern.
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Figure 4. Probabilistic Sonar Model.

3. NaoS5 Robot Specifications

Our experiments, and corresponding probabilistic models obtained
for sensors and actions, are constructed with a Nao robot at ver-
sion 5. This robot boasts 2 sonars on the chest, bumpers on the
feet, and two cameras placed vertically on the face. Nao has multi-
ple other sensors in its actuators. The sonars and landmark recogni-
tion modules have significant noise, as highlighted by the described
experiments. The landmarks utilized, which require the software to
only be informed about their size, are recognized by the built-in
ALLandMarkDetection software package, and are shown in Fig-
ure 3] The package provides an estimate for the abscissa, ordi-
nate, and projection angle of the smallest line of sight relative to
the robot’s camera and the NAOmarks. Furthermore, adjusting the
yaw of the head and joints of the limbs can be performed with high
accuracy, but walking and turning have significant error.

4. Probabilistic Sensor Model

Measurements of the Nao sensors response as a function of the
distance between the Nao torso and walls, are shown in Figure 4]
Sonar readings are taken while the robot is rotating its body 360°.
In each image in the Figure[d] the robot was placed in the same cell
but with different position and angle. The sonar reading are in cm
in the y-axis, while the x-axis is in a unit of time, which is propor-
tional to the robot’s body rotational angle captured uniformly while
the robot motion was active.

Although the robot was supposed to take 360° (degrees) to turn
around, it usually needs approximately 390°. Consequently, the
direct scattering of these distance readings in an x-y plane is appar-
ently not straightforward. The x- and y- axes in the Figure [f] are
in cm. The motion started when the robot was exactly facing the
positive x-axis and ended around the axis. Notice that the initial
distance to the wall was 10cm while it landed at 15cm from the
same wall.
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Figure 5. The localization results of five tests.

Figure 6. Shape of sonar signal during robot rotation.

Based on such measurements, statistics are used for training a
probability distribution of the sensor readings with respect to wall
distance.

5. Landmark Detection Models

A visually based localization algorithm is proposed which utilizes
a probabilistic sensor fusion approach. On-board the humanoid
Nao robot are a stereo camera and two sonars. The Nao is prepro-
grammed to perform an image space search for NAOmarks, seen
in Figure[3] and provide the vector separating the Nao robot from
the marker. However, it is unknown what the underlying algorithm
for this search is and it also provides noisy measurements, most
likely due to its required generalizability to all scenarios. A naive
approach to reduce the uncertainty due to the noise of the Nao’s
built-in localization would be to form an estimator of the true value
by forming a sample and computing the expected value. The sam-
ple variance could also be computed to act as an error bound for
the estimator. In any case, it is inconvenient to form a large enough
sample required to place small enough bounds on the error.

An improvement is proposed, as follows. The robot is surrounded
by at most three Nao marks if a wall is present. The Nao captures
images using both camera’s of what is directly in front of it. The
images are then rectified using the known camera intrinsics and
then the epipolar lines are searched to compute the stereo pair’s dis-
parity map. The disparity map is then mapped to a depth map using
the camera extrinsics. This depth map provides two purposes; the
first is to augment each pixel location with a depth value and also
to create a Cartesian 3D point cloud using the camera’s Projection
matrix.

Next the reference camera’s image is passed through the Hough
Circle Transform to retrieve any possible circular like regions of
interest (ROI) in the image. In order to separate out the NAOmarks

from this noisy set of ROI’s, a Histogram of Oriented Gradients
(HOG) feature vector is extracted from each region. Each ROI’s
feature vector is passed through a binary Support Vector Machine
(SVM) to classify whether the ROI is a Nao mark or an extraneous
detection. After the true Nao mark pixel locations have been iden-
tified, the mean depth for each mark is computed from the depth
map and the mean offset, in both axis, is computed using the point
cloud.

This provides a set of vector’s to any potential Nao markers in
the Nao’s current field of view. During this processing time, sam-
ples from the Nao’s application programming interface (API) have
been collected and stored to be used later. If any Nao marks have
been found, the sonar values are also aggregated. Although the
sonar measurements will not directly pick up the Nao mark, they
will pick up the distance to the wall it is placed upon. Finally we
have a set of three different measurement types; our own visually
based set of vectors, a set of Nao API based vectors, and a set of
sonar radial distance measurements. The expected value of these
three sets are then computed however each set has a different prob-
ability associated with it. We place a probability of 50% to our own
measurement, a probability of 30% to the Nao API’s sample mean,
and finally a probability of 20% to the sonar depth measurement.
This expected value performs a fusion on the three different sets of
data to provide a more accurate localization than a single stream of
data alone.

The process is then repeated with the Nao’s head turned left and
right. This eliminates the data stream from the sonar’s however this
is the more optimal solution to having Nao’s entire body turn which
introduces motion noise in addition to sensor noise.

6. Motion Planning

The Nao robot has a significant amount of noise in it’s movements.
The noise is primarily attributed to the asynchronicity of it’s dif-
ferent operational threads; thus, making the Nao an ideal robot for
developing probabilistic models. The first step in developing any
autonomous capabilities of the Nao is creating an accurate motion
model. In order to simplify the transition model, a priori knowl-
edge of the maze and the Nao is used to reduce the set of possible
transitions. For example, the Nao will be assumed to not be able to
move in the direction opposite to the command. Since the location
the Nao will occupy in a single cube is continuous, the position is
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discretized into a four by four grid of possible locations the Nao
could occupy. This discretization reduces the complexity of the
transition model. The transition between the Nao going from one
cube to another can be seen in Figure[7} The Nao is marked with
a red circle, the current discretized cube is shown in green and the
set of possible states it can transition to are shown in blue. The blue
region extends past a single cube because its non-deterministic mo-
tion model allows for a small probability to pass beyond its given
command.

In order to help decrease uncertainty that the Nao has moved
to the expected location of the transition model, a NAOmark was
located in the cell that the transition is set to move into. When the
Nao is ready to move, it will lock with the NAOmark and gather
readings continuously while transitioning into the next cell. The
readings consist of X, y, z positions from the marker as well as
rotation along each axis which can be converted to angles of view
of the NAOmark. These angles of view allow the Nao to align
perpendicularly to the NAOmark it has a lock onto. From there, the
next set of readings can be taken to localize in that cell. The results
of five tests are illustrated in Figure[3] It is assumed that there will
be 2 or 3 NAOmarks in each cell, having distinct numbers within
the cell; however, other cells in the maze can contain NAOmarks
with the same number. It is also assumed that each NAOmark is
placed in the center of a wall; with this known and the length of
a single wall known, using just the sensor readings, the Nao can
position itself very close to the center of the cell during transition.
This can be used as input motion model to the Sequential Monte
Carlo Method described in the next section.

Figure 7. Transition of the Nao from one cell to another

7. Sequential Monte Carlo Method

The Kalman Filters are a powerful class of algorithms commonly
used for a variety of probabilistic tasks [2]. However, they have
strong requirements for both Gaussian distributions and linear mod-
els. In order to address these stringent limitations for real world
applications, Extended Kalman filters and Unscented Kalman fil-
ters were introduced, allowing for the use of non-linear models [3}
4]l. However, many applications cannot be assumed to be Gaussian,

making the Kalman Filter family of algorithms unsuitable. For ex-
ample, skewed normal distributions also appear in several applica-
tions. On the other hand, the Sequential Monte Carlo Method, or
Particle Filter, is a robust probabilistic method that is able to deal
with any distribution and non-linear transitions. Although there is
no general proof of convergence for particle filters, they empirically
provide accurate results with much less time complexity. For our
applications, particle filters will be used for both localization and
for Simultaneous Localization and Mapping (SLAM).

Figure 8. Particle filtering for Monte-Carlo Localization in a maze
cell. The thick line represents a generated hypothesis whose at-
tributes are proportional to the arithmetic mean of the population of
the hypotheses.

For Monte Carlo localization, particles described by specific hy-
potheses (H,V,h,v, ), are generated and weighted according to the
likelihood of the evidence (i.e. history of sensor readings) in the
corresponding world. The robot first considers all possible world
cases, in which the robot may be placed. The hypotheses space
is weighted after each sensor reading taken after a robot motion.
While the hypotheses are weighted, new particles are generated (re-
sampled) according to the new weight distribution. In our settings,
a particle directly conveys the state of the world as oppose to the
state of the robot in the world, and thus the shape of the cell, in
which the robot is, is one of the discrete parameters that a parti-
cle can describe. The other attributes, such as the x- and y- axes
as well as the rotation of the hypotheses, have continuous dimen-
sions. Since the Nao’s sensors behave differently when the sensed
objects are closer than 20cm, a Boolean distance measure sets the
weights of the particles that match to a corresponding value (e.g.,
0.5). Additionally, the particles whose features are beyond the hy-
pothesis space are regenerated. Finally, a constant weight (e.g., 10
percent) is given to particles that have not been observed by the
sensor model, to preserve the unseen hypotheses unless particles
with very high certainty emerge in the hypothesis population.

Figure 0] depicts three iterations during a Monte Carlo Local-
ization search in a situation when the robot is rotating in a single
cell. Each assembly of same-color lines resembles a particle. The
number of particles in each conducted experiment is 3000, and a
momentum was added to the weights to compensate for the first
degree Markov transition assumption. The later the iteration num-
ber, the more aligned the particles are, as can be seen in Figure 0]
The thick blue lines, in the figure, resemble a particle whose place-
ment was at the arithmetic means of the continuous attributes of
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Figure 9. Particle filtering for Monte-Carlo Localization in a maze cell. The first row shows three iteration states. Time is illustrated from

left to right, and the second row presents the particles in the three states.

the 3000 particles. The only discrete attribute is the shape of the
cell; therefore, the shape of the resulting hypothesis is the shape of
the majority of the particles. The module gave consistent results
as the shape of the cell differed. Figure rll;l portrays two other ex-
amples, from left to right, when the number of walls modeled by
the particles was one and three respectively. Our configurations
allow for more complex settings than the assumed simple squared
cells. The stopping criterion of our algorithm was when 99% of
the population had the same shape; hence, the convergence of the
particles. The configuration with two parallel walls was also tested.
The large blue and green discs picture the centers of the adjacent
cells to which the robot could move. The module was backed by
the breadth-first shortest path search and a database that records the
cells and passages which were visited and found.

- .
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Figure 10. Two examples of the particle-filtering-based localization
when the number of cell sides vary.

8. Related Work

The problem of simultaneous localization and mapping (SLAM)
for a Nao robot placed in a room with multiple Nao marks placed
at random locations, at the height of the cameras of Nao, was ad-
dressed in [T]]. The effort led to new SLAM approaches for real-
time incorporation of new landmarks in exploration.

Probabilistic reasoning for localization has been used with mo-
bile robots to address various types of problems. If the map of the
explored world is known, then Monte Carlo Localization can em-
ploy particle filtering [3].

Motion planning in partially observable non-deterministic envi-
ronments of this type can be modeled with Partially Observable
Markov Decision Processes (POMDPs), for which various tech-
niques have been proposed to tame the complexity challenges. All

these techniques can employ a dynamic belief network representa-
tion of the problem [6]).

9. Conclusion

In this work we build a probabilistic model of the humanoid robot
Nao sensors and actions, enabling the application of high level in-
telligent algorithms for tasks such as localization, mapping, and
planning. Preliminary results are described and several compact
methods of representation that enable efficient reasoning were de-
veloped.

The Nao robot is found to have significant non-determinism in
walking and rotation actions. Additionally, its sonar sensors have
significant noise and built-in visual NAOmark landmark detection
shows noise that increases when the head’s yaw rotational angles
are larger than 80 degrees. The proposed models can be used in
POMDPs and SLAM solvers.
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