
Laser Curve Tracing for Robotic Arms

Timothy K. Findling, Marius C. Silaghi

Florida Institute of Technology
Computer Science

150 W University Blvd
Melbourne, FL 32901

tfindling2014@my.fit.edu, msilaghi@fit.edu

ABSTRACT

Applications such like soldering require robotic arms to
follow the soldering line as present on a surface. We as-
sume here that the surface to be soldered is remote from
the robotic arm, that the soldering is performed via a
laser beam, and that the line to be followed can be an
irregular curve that may self-intersect (e.g. a crack in the
material).

We describe research conducted using a robotic arm
pointing a laser for tracing a remote line on a smooth
surface. The line is converted to a one pixel width skele-
ton line generated from images using a hit-and miss al-
gorithm. The robotic arm guides the laser dot along a
series of target positions based on a set of processed line
segments. A camera is used to validate and correct the
movement of the robotic laser arm by measuring position
accuracy.
Keywords
Robotic Arm, laser, camera, skeletonize, templates, line
segments

1 INTRODUCTION

Automating a welding process and maintaining a good
welding quality requires the alignment of the torch along
a welding seam. A robotic arm that guides the welding
torch must be able to accurately follow a welding seam
and compensate for tolerances in the machinery and local
distortions in materials.

We address the problem of automating the control of a
robotic laser arm that is tasked with soldering a crack on
a material posted at a certain distance from the arm. The
robot is supposed to solder the crack using a laser beam

directed at the crack. The laser has to be moved along the
crack to produce a good welding. The robot detects the
crack using a camera. It processes the image and directs
its laser beam based on the visual parameters estimated
using its camera and the estimations of the points where
the beam intersects the surface.

Many complex challenges can occur in this setting, such
as surface irregularities and heat based fumes that can
blur vision. The surface may also suffer deformations due
to heat. In this research we assume a simpler case where
all these additional complications are already solved and
we just have to ensure that the torch is correctly directed
and following the crack. One has to minimize the number
of defects consisting of the laser abandoning the line and
welding already correct areas of the surface, or skipping
some segments of the crack. A couple of algorithms are
investigated and their efficiency is measured by compar-
ing the areas welded without need, and the total length
of skipped segments.

In the next section we describe the related work and
background concerning robotic soldering and visual line
processing and tracing algorithms. In Section 3 we de-
scribe the addressed problem in technical details. The
techniques investigated in this research are introduced in
Section 4. After describing data collection and precision
experiments with a laser robotic arm, we conclude with
an analysis of the obtained quality and potential future
work.

2 BACKGROUND

Robotics can be classified into two categories, servo and
non-servo robots. Servo robots operate in a closed loop
controlled environment and non-servo robots operate in

an open loop controlled environment. Robots that oper-
ate in an open loop controlled environment have discrete
check points and are rigid in their preprogrammed op-
erations. These robots cannot adapt to changes in their
environment. Robots that operate in a closed loop envi-
ronment are much more flexible to changes in their envi-
ronment and find their applications in computer numer-
ical control (CNC) of milling machines, painting, assem-
bling, bio-medical, remote controlled mobile, inspecting
and welding [2, 1]. Industrial applications further expand
into laser mapping, distance measuring and target track-
ing, as well as laser cutting.

A laser visual sensing system for welding with robotic
arms was described in [3]. Difficulties in laser tracking
welding seams arise from variations in the depth of the
seam and deviations in the surface reflectivity. The study
in [3] includes research of a Missing-Point algorithm that
interpolates a path where target points are missing. Laser
spot detection is further described in [4], and a compre-
hensive historical review of robotics applied to welding
with vision based seam identification is provided in [6].

3 DETAIL PROBLEM
DESCRIPTION

We address the problem of soldering a line on a remote
surface using a laser beam. Algorithms are proposed and
evaluated for achieving this task. This research evaluates
a low end robotic laser arm’s execution of algorithms for
soldering cracks on a surface. In evaluation experiments,
the laser dot traces benchmark cases comprised of var-
ious types and shapes of skeletonized lines. Images of
hand drawn lines are captured to a repository, and they
are further processed to produce these templates. Tem-
plates are comprised of skeleton lines, which are further
divided into line segments. Every n-th pixel on a line seg-
ment is declared a target position. The robotic arm must
traverse these target positions in sequence and meet their
coordinate positions within an accuracy D. Moving the
laser dot to each target position in sequence, effectively
reproduces the skeleton line.

A camera system provides position feedback to the con-
trolling software by capturing the current position of the
laser dot. The feedback is used to create new position
commands which are issued to the robot in order to min-
imize tracking errors. As the robot moves the laser dot
towards the target positions, pixel coordinates of the laser
dots are recorded and superimposed onto a trajectory
record.

The tracking error is calculated by overlaying the tra-

jectory of the laser dots onto the template. The area of
the surface between the two lines is computed. A greater
area expressed in pixels indicates a larger tracking error.
The percentage of pixels missed along a skeleton line is
also provided.

Formally we define the problem as follows:

Definition 1 Given a surface S, a band of maximum
width d drawn on the surface, and a laser positioned in
the arm of a robot located at point O, with dot of diameter
D, the problem is to define a plan and a control scheme
for the robot handling the laser such that the laser dot
traverses the band with a minimum number of interrup-
tions, such that the laser dot covers the whole band but
covers a minimum area outside of the band.

A time constraint may also have to be addressed later,
where it could be requested that the laser dot abides a
minimal amount of time over each portion of the band.

4 TECHNIQUES

The software developed for this research is comprised of
three major components:

• the Arduino micro-controller embedded software
(sketch),

• the image processing software, and

• the control software.

The sketch configures the Digital IO and the six Pulse
Width Modulated (PWM) output signals for the servo
motors. The sketch also enables communications via the
USB port between the control software and the micro-
controller. When the control software issues a position
command, the micro-controller processes the commands
and returns the current positions of the servo motors.

Skeleton-based Jumping The first algorithm we re-
port here for this problem is called Skeleton-based jump-
ing, as additional algorithms are being currently investi-
gated. Figure 1 shows the top level diagram of the com-
mand processing. Namely, each image is loaded and a set
of filters is applied on it to skeletonize the crack line that
has to be soldered. The skeletonized line is then processed
into a path with a start and an end position. Further, in
a loop, a control algorithms focuses the laser dot within
a given distance from various positions selected along the
skeletonized line being followed.

Figure 2 shows in more detail the steps applying the
filters to the images. It can be observed that line thinning

Figure 1: Control Software

is interleaved with smoothing. A tree/graph is built with
the obtained skeleton at the end of this processing.

4.1 Control Software

The control software issues position commands to the
micro-controller to traverse the line based on the prede-
termined target positions. The target positions are vis-
ited in the order as determined a tree/graph traversal al-
gorithm. Camera feedback and position information ob-
tained from the micro-controller corrects the robotic arm
to place the laser dot onto each target position within
D pixel accuracy. On the tested robotic arm, the rela-
tive position commands may be as small as half a degree,
incrementally steering the laser dot to its target.

Figure 2: Filters

Algorithm 1 Control Software

Given Laser Position L and Target Position T
while Target Available do

if L.X < T.X and |L.X - T.X | > D then
X Motor += 2us

else if L.X > T.X and |L.X - T.X | > D then
X Motor -= 2us

end if
if L.Y < T.Y and |L.Y - T.Y | > D then

Z Motor += 2us
else if L.Y > T.Y and |L.Y - T.Y | > D then

Z Motor -= 2us
end if
if |L.X - T.X | <= D and |L.Y - T.Y | <= D then

Target Met
Increment Target

end if
end while

Figure 3: Structured pairs B1 and B2 including their 90◦,
180◦, and 270◦ rotations B3-B8

4.2 Image Processing Software

Figure 4 displays an image, captured by camera, of a
curved line forming a loop. The image is first converted
into a B&W image. During this conversion image noise
and variations in the background are removed. A hit-
and-miss algorithm [5] is looped on the pixels of the line
to minimize the line thickness. The algorithm uses sev-
eral 3x3 transforms shown in Figure 3, which are applied
to the B&W line to reduce the line to one pixel width
while maintaining a continuity of the line. This process
is completed by looking for black pixels that match the
operators and corresponding 90 degree variants of Fig-
ure 3. Each black pixel of the line is tested as the center
point of the operator. The pixel is converted to white if a
match is found. End points and intersections are located
during the last iteration of the algorithm. An intersection
is defined as a point with three or more neighbors.

Algorithm 2 Line Thinning (Hit-and-miss Transform)

Given structuring pairs B1, ..., B8 from Figure 3
while Image X not converged do
X ⊕B1⊕B2⊕ ...⊕B8

end while
Mark pixels with 3 or more neighbors as intersections
Mark pixels with 1 neighbor as end points

A smoothing operator is applied to the skeleton line
to reduce the number of neighboring intersections. This
process further matches pixels to specific operator cases,
where a pixel is either shifted or removed. The line thin-
ning algorithm is called a second time after the smother-
ing operator in order to relabel the intersections.

Once a template is created, a list of line segments are
determined. These line segments are derived from the
endpoints and existing intersections. The first line seg-
ment is measured from the starting point to the first inter-
section by following the path of the pixels. Line segments
between two intersections are determined by calculating
the length of the two possible paths. The majority of in-
tersections formed are the result of very short branches

(a) Line 1

(b) Line 2

(c) Line 3

(d) Line 4

(e) Line 5

Figure 4: Original and B&W Image

Algorithm 3 Line Segmentation

Set starting point as current pixel P
Start new line segment
while Unvisited neighboring pixels > 1 do

Add P to line segment
if P equals intersection then

Start New Line Segment
Count pixels to next intersection or end point in
both available paths
Increment P in direction of larger count

else
Increment P to neighboring pixel.

end if
end while
Add end point to line segment

splitting off from the main line. The longer path is se-
lected to be kept. No pixel is allowed to be revisited once
added to a line segment.

Each line segment is further divided into target po-
sitions. For this research every n-th pixel is used as a
target position, where n is a function of the distance be-
tween the laser and the remote surface. Figure 6 shows
the movements of the robotic arm tracing the skeleton
template generated from the lines in Figure 4. Every n-
th pixel of the line is declared a target point that the laser
dot must meet before moving on to the next target point.
Feedback from the camera and the micro-controller en-
sures that the laser dot meets the target within D pixel
accuracy.

5 EXPERIMENTS

For this research the robotic laser arm was positioned
32 inches away from a whiteboard as seen in Figure 5.
The camera was mounted next to the robotic laser arm
separately. A small repository of images was created.
The images are comprised of a set of hand drawn lines
which vary in complexity and size. Figure 4 displays a
few examples of these images. The robotic laser arm is
directed by the control software to trace the skeleton line.
For this research the accuracy of the trace was set to
D = 0.4 mm (which has to be calibrated based on the
camera resolution, lenses, and distance to the traced line).
Feedback from the camera is recorded to file and then the
position points are superimposed onto the skeleton line.
The results are displayed in Figure 6.

The range of position commands that can be issued to
the Arduino micro-controller is between 600 – 2400 usec,
which translates into 0.1 degree movement per 1 usec.

Figure 5: Experimental Setup

Although position commands can be giving as small as
0.1 degrees or in 1 usec increments, the servo motors can-
not easily respond to such a small command. The servo
motors must overcome friction and resistance of move-
ment by the wires in order to move. Positioning within
0.1 degrees accuracy is possible as long as the position
command itself is larger. In this experiment the position
commands are given in 2 usec increments. Figure 6 shows
the differences between the skeleton lines and the trace
of the laser dot.

The line traces show that every tenth pixel is a target
position and therefore the laser dot follows the curves in
small straight line segments. The disparity between the
two curves can be expressed as an error by counting the
pixels in the areas between the two curves. An area of 0
would imply a perfect trace. The results are documented
in Table 1. The laser tracing the line may not be the
same width of the original line. Table 1 also documents
the percentage of pixels in the B&W image not covered
by the laser during the trace.

6 CONCLUSION

For this research we used a low cost robotic laser arm
comprised of six servo motors which are controlled by
an Arduino micro-controller. The micro-controller con-
verts the position commands into pulse width modulated
signals which provide for 0.1 degrees or 1 microsecond
position commands.

The operational speed of the robotic arm is limited as
it has to process commands serially. The steps include
issuing position commands, obtaining position data from
the micro-controller, and obtaining and processing images

(a) Line 1

(b) Line 2

(c) Line 3

(d) Line 4

(e) Line 5

Figure 6: Tracing Robot Movement

Table 1: Results

Line Pixels
in
B&W
Line

Error
(Area)

0.5
mm
Wide
Laser
(% Er-
ror)

1.0
mm
Wide
Laser
(% Er-
ror)

1.5
mm
Wide
Laser
(% Er-
ror)

1 2190 927 26.67 2.15 0.68
2 2968 572 34.54 5.86 0.81
3 2539 358 26.82 2.72 0.39
4 2801 662 19.67 1.64 0.18
5 1613 499 27.71 6.51 2.11
Average 2422.2 603.6 27.08 3.78 0.83

from the camera.

A repository of images was created to test the pro-
cedure. The skeletonizing algorithm followed by the line
segmentation algorithm successfully provided for position
commands. These benchmarks can be executed at any
time producing repeatable results, and will be made pub-
licly available. The system provides for a high degree of
flexibility and is ideal for many manufacturing environ-
ments.

Our research shows that the robotic arm successfully
traced the benchmark lines with limited error. Compar-
ison with additional algorithms is being currently inves-
tigated. Some of the errors were caused by stickiness
of the low-end physical system, but may be reduced on
higher-end arms. The motor would randomly fail to move
the appropriate distance when a position command is is-
sued. Subsequent position commands caught the motor
back up and caused the laser to slip from the target posi-
tions. This error could be significantly reduced by moving
the laser and camera closer to the surface, or introduc-
ing extra-delays for feedback and correction. This would
improve the accuracy of the servo motor position com-
mands.

The effect of choosing the longest path between inter-
sections to be traced maintains the original shape of the
majority of the lines. The exception case involves lines
that contain a loop. This scenario is reflected in Fig-
ure 6.a. When the longest path was selected between
intersection points, a gap was formed at the bottom of
the loop. The algorithm could be adapted to remove the
gap in future work. However this would require allowing
the laser to trace over pixels already traced when tracing
through the intersection of the loop.

Figure 7: Block Diagram

DESCRIPTION OF THE
ROBOTIC ARM

The robotic laser arm is controlled by positioning soft-
ware running on a PC using visual feedback provided by
a single camera. The robotic arm is comprised of six
servo motors controlling position and orientation of the
endpoint, where a 5 mw laser (650 nm) is mounted. An
Arduino micro-controller generates six pulse-width mod-
ulated (PWM) signals to position the servo motors. The
servo motors can rotate 0 to 180 degrees, which corre-
sponds to 600 - 2400 usec, respectively. The servo motors
are physical centered at 90 degrees (1500 usec) at power
of the robot.

The Arduino micro-controller receives position com-
mands from the PC, which are converted to PWM signals
to position the servo motors. Communication between
the PC and the micro-controller is established using a
universal serial bus (USB). Whenever a command is send
from the PC to the micro-controller, the micro-controller
executes the command, and returns the current servo mo-
tor positions. The laser state can be set to either on or
off; and can also be set to blink at some periodic rate.

The analog joysticks are used to manually position the
robotic arm. While manually positioning the robotic
arm, the USB port to the Arduino micro-controller must
be disconnected since PC positioning commands override
analog commands. This feature is highly instrumental
when manually bore sighting the system. The robotic

arm should be adjusted such that traveling along the X-
axis and the Z-axis does not generate significant cross-
talk. The Y-axis is aligned orthogonal (depth) to the tar-
get range and the servo motors should remain centered
or 90 degrees +/- a small offset.

Figure 7 shows the physical dimensions of the robotic
arm. Each position and orientation servo motor is set to
90 degrees (1500 usec). While maintaining orthogonality
to the range, the robotic arm can travel a maximum dis-
tance of 43.254 cm along the x-axis and 23.127 cm above
its horizontal plane (z-axis). Moving below the horizon-
tal plane is limited by the distance to the ground plane
which is approximately 15 cm.

REFERENCES

[1] Yinshui He, Yanling Xu, Yuxi Chen, Huabin Chen,
and Shanben Chen. Weld seam profile detection
and feature point extraction for multi-pass route
planning based on visual attention model. Robotics
and Computer-Integrated Manufacturing, 37:251–261,
2016.

[2] M.S Hussin, Daut Firdaus, and Jufriadi A. Shahril.
Robotics application in arc welding a review on cur-
rent progress. Int. J. of Mechanical Computational
and Manufacturing Research, 2(1):1–5, 2013.

[3] Hong Luo and Xiaoqi Chen. Laser visual sensing for
seam tracking in robotic arc welding of titanium al-
loys.

[4] Štefan TOTH Matej MEŠKO. Laser spot detec-
tion. Journal of Information, Control and Manage-
ment Systems, 11(1), 2013.

[5] Roger Boyle Milan Sonka, Vaclav HIavac. Image Pro-
cessing, Analysis, and Machine Vision. Thomson
Corp, 2007.

[6] Hairol Shah, Marizan Sulaiman, Ahmad Shukor,
Muhammed Jamaluddin, and Mohd Rashid. A re-
view paper on vision based identification, detection
and tracking of weld seams path in welding robot en-
vironment. Modern Applied Science, 10(2):1913–1952,

2016.

