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ABSTRACT

Locating known objects is an important task for robots.
When a robot has a single camera located in its arm,
the robot can use it to get pictures from multiple points
of view. These pictures can be used for locating in 3D
a desired object, when the object is found on the floor
within a bounded distance from the robot.

Here we propose a technique for planning a sequence
of arm positions to be used for capturing the camera
snapshots that can locate the object with given precision.
Heuristics are used to reduce the number of steps (i.e.,
camera snapshot taking operations) performed by the
robot following the obtained contingency plan.
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1 INTRODUCTION

In common industrial applications the robotic hand is
supposed to know precisely where to find the object that
it has to manipulate. However, errors and unexpected
events may place the target object in unexpected
locations and orientations.

A stereo vision system surveying the whole operational
environment can locate the target object and let the robot
update its working plan accordingly. However, such a
setup can encounter problems if the view of the target
object is obstructed by some features of the environment.

Furthermore, when the robotic hand is placed on a
mobile platform, the environment of the robot may be

too large to be efficiently covered by an external stereo
vision system.

It has been therefore considered relevant to address the
problem of locating target objects using cameras found
in the arm of the robot. Such a setup gives the robot
significant flexibility in searching for objects in complex
environments.

While one can place a stereo vision system in the
arm of the robot, a single camera can also be sufficient,
since the mobility of the arm enables the robot to
dynamically construct its stereo vision with images taken
from multiple points of view.

Compared to a stereo vision system located in the arm,
the limited precision of the arm movement, combined
with other errors in stabilizing the robot support, may
lead to higher errors in the 3D location inferred from two
given images captured using a single camera. However,
the robotic arm can take an unlimited number of pictures
from a multitude of points of view, compensating for these
errors at the expense of a set of extra movements.

Besides the problem of computing the exact location
of the object from stereo vision, a planning technique
needs to be designed for exploring the environment of the
robot in search of cues for the occurrence of the object.
We propose to identify the object using a combination
of features, namely using a Bayesian Network to fuse
separate detectors based on color, shape and texture of
the object.

In this work we assume that the object is placed within
a bounded distance from the trunk of the robotic arm.
We report experiments with a ST12 robotic arm equipped
with a Sentech ST-MC33 camera in its hand and which



looks for a green box within a square of 1.14 meters,
centered in its base.

2 RELATED WORK

Our work is at the intersection of research in planning,
search, vision, and Bayesian sensor fusion. Planning
is the process of thinking about and organizing the
activities required to achieve the goal. It involves creation
and maintenance of a plan. Search involves finding
an item with specified properties among a collection
of items. Vision perception is the ability to interpret
the surrounding environment by processing information
contained in visible sight.

Search The most widely known form of best-first
search is called A∗ search. The A∗ algorithm evaluates
nodes by combining g(n), the cost to reach the node, and
h(n), the estimated cost to get from the node to the goal:

f (n) = g (n) + h (n) (1)

Since g(n) gives the path cost from the start node to
node n, and h(n) is the estimated cost of the cheapest
path from n to the goal, we have:
f(n) = estimated cost of the cheapest solution through n.
Thus, if we are trying to find the cheapest solution,
a reasonable thing to try first is the node with the
lowest value of g(n) + h(n). Provided that the heuristic
function h(n) satisfies certain conditions, A∗ search is
both complete and guaranteed to find a solution with
optimal direct path cost.

Greedy Best First search tries to expand the node that
is closest to the goal, on the grounds that this is likely
to lead to a solution quickly. Thus, it evaluates nodes by
using just the heuristic function; that is, f (n) = h (n).

Bayesian Recognition Consider a set of objects
oi, i ∈ {1, ..., n} and a camera facing an object whose
class and pose are to be identified. Let the camera
measurement be parameterized by a feature vector d,
which depends on the identity oi of the object, its pose
θ and the viewing position v. Under uncertainty, this
relationship can be represented through a probability
density function

p (d | oi, θ, v) , i = 1, ..., n; θ ∈ S2, v ∈ V

(where S2 is the surface of a unit sphere and V denotes
the set of possible camera viewpoints) whose parameters
are assumed to be learned or modeled off-line through
some training procedure [12].

Bayesian Networks The Bayesian Network represents
the dependencies among variables. Bayesian Networks
can represent essentially any full joint probability
distribution and in many cases can do so very concisely. A
Bayesian Network is a directed graph in which each node
is annotated with quantitative probability information.
The Bayesian network formalism allows for efficient
representation and reasoning with uncertain knowledge
[16].

A directed graph G can be defined as an ordered pair
that consists of a finite set V of nodes and an irreflexive
adjacency relation E on V . The graph G is denoted as
(V,E). Each (x, y) ∈ E represents an arc (directed edge)
from node x to node y. In the graph, this is denoted by
an arrow from x to y, and x and y are called the start
point and the end point of the arrow respectively. We also
say that node x and node y are adjacent or x and y are
neighbors of each other. x is also called a parent of y and
y is called a child of x. By using the concepts of parent
and child recursively, we can also define the concept of
ancestor and descendant. We also call a node that does
not have any parent, a root node. By irreflexive adjacency
relation we mean that for any x ∈ V , (x, x) 6∈ E, i.e., an
arc cannot have a node as both its start point and end
point.

A Bayesian network is a directed graph in which:

1. Each node corresponds to a random variable, which
may be discrete or continuous.

2. A set of directed links or arrows connects pairs of
nodes. If there is an arrow from node X to node Y ,
X is said to be a parent of Y . The graph has no
directed cycles, and hence is a directed acyclic graph
(DAG).

3. Each node Xi is associated with a conditional
probability distribution P (Xi|Parents (Xj)) that
quantifies the effect of the parents on the node.

The topology of the network (i.e., the set of
nodes and links), specifies the conditional independence
relationships that hold in the domain. The intuitive
meaning of an arrow from X to Y is that X has a
direct influence on Y shielding Y from the influence of
indirect ancestors of X. As a heuristic one uses causes as
parents of effects. It is usually easy for a domain expert
to decide what direct influences exist in the domain,
based on cause-effect relations. Once the topology of
the Bayesian network is laid out, one needs to be able
to specify a conditional probability distribution for each
variable, given its parents [16].

We use a Bayesian network to determine the
probability of detecting the object. The Bayesian network



can be used to model a world and to answer probabilistic
queries about the random variables that describe this
world. For example, the network can be used to update
the knowledge about the state of a subset of variables
(query variables) when other variables (the evidence
variables) are observed. This process computes the
posterior distribution of query variables given evidence by
probabilistic inference. The posterior helps choose values
for a subset of variables to minimize some expected loss
function, for instance the probability of decision error [6].

Object Recognition Gradient based features are
included in our analysis because they can be used to
detect local changes in color, texture, and brightness.
Here, we use the computational architecture of gradient
features in [13].

The emphasis on local texture descriptors [17], is
the dominant approach today. The appearance based
descriptors summarize local texture information in the
form of histograms of gradients [8], shape context [1], and
geometric blur [2]. While prominent edges are roughly
encoded, exact shape location has been replaced by a
representation of texture.

Various linear or non-linear filtering operations are
available for 2D images such that for each pixel location
(x, y) in the source image, its neighborhood is considered
and used to compute the response. In case of a linear
filter, this is a weighted sum of pixel values. In case of
morphological operations, the filter exploits the minimum
or maximum values.

The computed response is stored in the destination
image at the same location (x, y). The output image is of
the same size as the input image. Normally, the functions
support multi-channel arrays, in which case every channel
is processed independently. Therefore, the output image
will also have the same number of channels as the input
one [3].

Robotic Arm Vision A perception driven object
recognition process was implemented in [4] that allows a
humanoid robot to recognize objects by actively resolving
ambiguities. It also demonstrates in simulation and
in real life experiments that by employing additional
viewpoints, objects can be identified faster. It generates
plans in the joint angle space of the robot, which resulted
in speeding up the recognition process [4].

A strategy for optimal action selection with the
purpose of recognizing objects based on a database of
predefined images can be used to reduce uncertainty and
ambiguity [9]. An extension to stereo vision is described
by [18].

Bayesian approaches have been used for actively
selecting camera parameters in order to recognize a given
object from a finite set of object classes. A Gaussian
process regression is applied to learn the likelihood of
image features in [10] given the object classes and camera
parameters. The object recognition task was treated as
a Bayesian state estimation problem.

Decomposition into regions can be used in a similar
way to the local interest points extracted from gray-level
images, but to capture shape rather than texture [11].
The new kind of shape feature based on annular regions
was proposed for recognition in presence of occlusion and
clutter. For detecting generic objects in static images,
the active basis model (ABM) [5] utilizes, a grey-value
local power spectrum to find a common template and
deformable templates from a set of training images and
to detect an object in unknown images by template
matching using color based features.

The local contour descriptors can complement texture
descriptors for object recognition [17]. Object contours
are a strong representation of shape, whereas texture-
based representations summarize contours to avoid
matching them to an object exactly. In [17] a local
contour representation complements texture features by
encoding junction information and curvature. The
representation discretizes contour orientation at interest
points and records the intensity of the contour at
each angle as feature elements. A hierarchical system
building an increasingly complex and invariant feature
representation is described in [19].

Active object recognition is the technique to reduce
the uncertainty of single view recognition, by planning
sequences of views, actively obtaining these views, and
integrating multiple recognition results [7]. Under-
standing recognition as a sequential decision problem
challenges the visual agent to select discriminating
information sources. Bayesian sensor fusion can be used
in disambiguate initial object hypotheses [15]. Instance
based learning is used for training module parameters.
Using a parameterized appearance based model [14],
the fusion of successive probabilistic interpretations
integrates information about the spatial structure of
the object model. The view planner favors the
object hypotheses which are consistent with learned
observations trajectories in feature space. To enable real-
time control, an instance based classifier is outlined to
derive a decision policy directly from the stream of action
sequences induced by the Bayesian planner.

In Bayesian interpretation with uncertain and noisy
environments, classification on the basis of a crisp
mapping from observations y to symbols oi is replaced



by a sensor model [15]. Given the object oi under
visual parameter ϕ, the likelihood of obtaining feature
vector y is denoted by p (y | oi, ϕ). The likelihood is
estimated from a set of sample images with fixed oi
and ϕj , capturing the inaccuracies in the parameter ϕj
such as moderate light variations or segmentation errors.
From the learned likelihoods one obtains via Bayesian
inversions [15]:

P (oi, ϕ | y) = p (y | oi, ϕj)P (ϕj | oi)
P (oi)

p (y)
(2)

and a posterior estimate with respect to the object
hypotheses oi is given by P (oi | y) =

∑
j P (oi, ϕj | y).

Note that a corresponding estimate for pose ϕj is
determined by

P (ϕj | oi, y) =
P (oi, ϕj | y)

P (oi | y)
(3)

3 PROBLEM FORMALIZA-
TION

The problem we address is the use of a robotic arm
equipped with a camera in its hand to determine the
position of an object (green box) of known dimensions.
This object can be placed at any location and with any
orientation within the robot work-space.

Based on its environment, i.e., planning in a partially
observable space, our problem falls in the category
of problems best modeled as partially observable

Markov decision processes (POMDP). However, un-
like most POMDPs, in our problem there is no
uncertainty in the transition, as the robotic arm is
considered to be controlled in a reliable manner and we
assume that the rest of the environment is static.

In a partially observable environment, every percept
(sensor reading) helps narrow down the set of possible
states the agent and environment might be in, thus
making it more probable for the agent to achieve its goals.
So the solution to a problem is not a sequence of actions
but a contingency plan (also known as a strategy) that
specifies what to do depending on what sensor values are
obtained [16].

A sequential decision problem for a fully observable,
stochastic environment with a Markovian transition
model and additive rewards is called a Markov decision

process, or MDP. An MDP is formalized as a set S of
states (with an initial state so), a set A of actions for each
state, a transition model M specifying the probability
of transition between any two states s1 and s2 given
a taken action a P (s2|s1, a), and a reward function Ks

associating each state with an utility of visiting it for a
unit of time [16].

MDP Model It is common to address a POMDP
by reducing it to an MDP, namely where the states
are redefined to describe points in the space of possible
beliefs [16]. If we define the state of our process as a tuple,
including both the position of the robot and a current
belief map about the position of the searched object, then
the problem obtained is an MDP defined as follows:

• S: a set of states S = {si}i (a state si =<
ri, {σk, pk}k > is an arm position ri and a belief
map associating a set of areas σk covering the search
space, with object occurrence probabilities pk)

• A: a set of actions of type Try(X), consisting of
moving the arm to a pose X and capturing an
image to analyze the seen area. Each such action
has a certain cost (e.g., time, energy). The sum
of all actions cost over the whole plan should be
minimized.

• M: a set of transitions probabilities {Mat
i,j}i,j,k (from

each belief map si to each new belief map sj , given
an action at).

• G: a goal state (belief map with a FOUND state or
all REJECT/UNKNOWN states)

Since the number of possible actions is large, the
obtained MDP model is complex and its exact solving
is left for future work. However, we use it as a source of
inspiration for the following heuristic solver.

Initially, we did consider the A∗ search model, but the
A∗ algorithm considers the cost to reach the node. In
our problem, we already reached the node. To avoid the
re-optimization, for this thesis we decided to explore a
solution based on modeling the problem using the General
Search Framework [16].

General Search Problem While this is a planning
problem, one heuristic that we use here is to represent
it as a search problem and to extract the plan as the
physical execution of an efficient general search algorithm
for this problem. The problem can thus be represented as
a general search problem with parameters (S,A,M,G):

• S: a set of states S = {si}i (a state si =<
ri, {σk, pk}k > is an arm position ri and a belief
map associating a set of areas σk covering the search
space, with object occurrence probabilities pk)



• A: a set of actions of type Try(X), consisting of
moving the arm to a pose X and capturing an
image to analyze the seen area. Each such action
has a certain cost (e.g., time, energy). The sum
of all actions cost over the whole plan should be
minimized.

The solution (plan) in this case consists in the steps of
the search algorithm used to solve this search problem.
We propose to use the Greedy Best First Search [16].
Greedy Best First Search is an instance of the A search

algorithm. This technique is appropriate since it
does not try to optimize the cost of already achieved
operations, which cannot be recovered once the robot has
spent time and energy performing them. The Greedy
Best First Search maintains a frontier of the explored
search space, extending at each step the most promising
one (the state believed to be closer to the solution).

Figure 1: (a) Focal point relationship. (b) Angle
calibration

Viewpoint Selection The object recognition problem
can be defined as that of finding the viewpoint selection
strategy that minimizes the number of observations
required to perform recognition of an unknown object
with a particular level of confidence. This strategy
is dependent on the relationship between camera
observations, object class, object pose and camera
parameters (i.e. viewing position).

In order to determine an object’s position in space
from the image captured by camera, the focal point
of the camera must be known. If the focal point
of the camera is not known in advance, it can be
experimentally determined. In our case this was done
by taking advantage of the relation of the angle between

the lens and field of view and the angle between the lens
and the focal point as seen in Figure 1.a. The angle
was determined by photographing an object of known
dimensions at a known vertical distance away as seen in
Figure 1.b.

4 PLANNING TECHNIQUE

In the current work we experiment with a planning
technique based on performing the Greedy Best First
Search algorithm in a belief space. This technique
evaluates the quality of each state (its belief state), based
on analyzing the image captured by the camera at that
particular location.

Analyzing the image and the association of a posterior
probability for the occurrence of the object at that
location is achieved via Bayesian sensor fusion. The
sensors involved in this process are in fact algorithms
using different types of visual features.

4.1 Visual Features

We use the following sensors (outputs of detection
algorithms) as random variables in the Bayesian fusion
employed to detect the object in the work-space.

1. Object’s Color match score

2. Object’s Shape match score

3. Object’s Texture match score

Now we introduce the features used by each of these
sensors.

4.1.1 Color Feature

To detect and segment an object from an image one
can use its color. The colors in the object and the
background should have a significant difference in order
to provide information for the segmentation. For this
sensor, initially one needs to determine which colors to
find and how to separate the object from the background
colors.

In this case we transform the image from the Red-
Green-Blue (RGB) color space to the Hue Saturation
Value (HSV) color space. We use a filter function to
specify scalar lower and upper bound parameters for
the color threshold. Color thresholds can be learned
automatically by comparing images of the known target
object with images of the background, and can be
trained using support vector machines (SVMs). In our
experiments the threshold value filter applies for the green



color, as detected by the OpenCV SVM functionality in
function cvLatentSvmDetectObjects [3].

4.1.2 Shape Feature

Another important family of features describe the shape
of the object. To segment the shape, we convert the
color image to gray. Then we find the contour using
the technique proposed in [20]. For this purpose, we use
the OpenCV SurfFeatureDetector.detect keypoint
detector. Keypoints are computed both for the template
and for the candidate images. The Hamming distance
between the keypoints of a candidate and a template
is evaluated using the technique BFMatcher.match from
OpenCV, and we use the percentage of the matching as
the output of this sensor.

4.1.3 Texture Feature

The texture match sensor employs a set of template im-
ages for the object. Five template points-of-view/images
are provided, and are shown in a later section. We com-
pare a template image against overlapped image regions
using the square differences method (CV TM SQDIFF
in OpenCV’s matchTemplate function). The minimum
and maximum element values and their positions are
calculated using the minMaxLoc function. The extremes
are searched across the whole array in the specified region.

4.1.4 Image segmentation and feature extraction

The object in the robot work-space occupies only some
area of the image obtained from the robot camera. To
separate the background area from the object we train a
Gaussian Mixture Model (GMM). GMMs are commonly
used for background removal tasks. They are specified by
K normal distributions Nk (µk,

∑
k) with mean µk and

convariance
∑
k as well as a weight wk [4].

Figure 2 shows the Segmentation Process: A
background model is trained on the area and applied to
the image. Low values in the resulting probability map
indicate the presence of an object.

Figure 2: Image segmentation and feature extraction.

The probability PBGR of an image pixel I being
considered as background is computed by evaluating

the weighted probability density function (PDF) of the
multivariate distribution defined by [4]:

PBGR =

K∑
k=1

wk√
| 2Π

∑
k |
· e 1

2 (I−µ)
T ∑−1

k (I−µ) (4)

We consider all image locations with background
probability smaller than a fixed threshold as being
occupied by the object. Finally morphological operations
are applied to remove clutter and artifacts.

5 PLANNING THE SEARCH

We detail the planning process for the search of the
known object in the environment of the robot. The
original search space where the object is believed to
be found is first split into sub-regions as described in
Section 5.1. Further, a plan is followed to explore some of
these regions and, if needed, regions are further split into
smaller regions according to heuristics. The presence of
the object in a given area is evaluated using the sensor
fusion technique detailed is Section 5.3.

5.1 Search Space Splitting

The robot recursively divides its current work-space into
2D regions. The robot scans each region and processes the
pictures for detection. A fragment of a sample top-level
division into regions is shown in a schematic top-view of
the environment in Figure 3.

Figure 3: Fragment of a top view for the robot work-
space.

When the output of the sensors is processed for a
region using the Bayesian sensor fusion, we obtain a
posterior probability of the occurrence of the object in the
region. In each step, the region with the highest current
posterior probability of containing the object is further
split into sub-regions with overlapping margins, as shown
in Figure 4.a.

The current region is further divided into a number
of sections and the obtained sections are added to the



Figure 4: (a) Robot’s workspace frontier extending. (b)
Robot’s worskspace frontier after extension.

frontier with the score of the match obtained for them
from the image of the parent area. An illustration of
the implicit hierarchy in the scan process is illustrated in
Figure 5. The space is fragmented up to a certain depth
(MAXDEPTH), after which the camera would come too
close to the object for a reliable analysis.

Figure 5: Robot’s work-space scan diagram.

Figure 6.a shows the starting point of scanning the
work-space, corresponding to the first top region in
Figure 5. Once the robot decides that it has found the
matching object, it determines the x, y and z coordinates
of its corners. Figure 6.b shows a view of the object placed
in the work-space.

Figure 6: (a) Scanning start position. (b) Scanning in
the work-space.

5.2 Object Finding Algorithms

To find the object in a given work-space of the robot, we
have followed the logic and procedure which are described
in Algorithms 1 and 2. Algorithm 1 expands the search
frontier by splitting the work-space received as parameter
into sub-areas, hierarchically, capturing and passing the
image of the most promising one to Algorithm 2. This

Algorithm 1: Find the object by scanning the Robot’s
work-space

1 function FindObjectBySearch(SearchSpace)
2 add to RegionsQueue result of

InitialSplit(SearchSpace) with object presence
probability given by prior probability

#splits ;

3 forever do
4 if empty(RegionsQueue) then break;

crt region← extractHead(RegionsQueue);
5 Position robot camera to capture crt region;
6 Capture image;
7 (status, location, probability) ←

FindObject(image);
8 if (status = FOUND) OR (status = REJECT)

then
9 return (status, location);

10 end
11 if scanDepth(crt region) == MAXDEPTH

then
12 updateBestFound(probability,location)
13 else
14 add(RegionsQueue, split(crt region, image));

15 end

16 end
17 return (bestFound, location);

2nd algorithm calculates the probability of the occurrence
of the target object based on Bayesian network inference.
It decides whether the object is present in the region,
absent in the region, or if more search is needed, based
on the obtained probability value. The conclusion is
returned to Algorithm 1 in a tuple containing a status,
location and probability value for the image. Based
on the data which is received, Algorithm 1 decides
whether the object is found and if the condition is met,
it would return the status and location of the object
to the user. Otherwise, if more search is needed, it
splits the region and adds its fragments tagged with the
corresponding probability of the occurrence value into the
Regions priority queue. A priority queue is a data
structure which helps extracting efficiently the area with
the highest probability value on each query.

The techniques loops while the Regions queue is not
empty. It retrieves the most promising region (with the
highest probability of occurrence for the object) from
the queue and analyzes it. First the current-region

is analyzed by Algorithm 2 to extract the status of the
detection, the location of the object and its probability



Algorithm 2: Find the object in a given image

1 function FindObject(image)
2 Calculate probability value and assign them;
3 ColorMatchV al← Get color match score;
4 ShapeMatchV al← Get shape match score;
5 TextureMatchV al← Get texture match score;
6 ImgProbV alue =

BN(ColorMatchV al, ShapeMatchV al, TextureMatchV al);

7 location ← FindObjectDistance(image);
8 if current Scan Depth == MAXDEPTH then
9 return (UNKNOWN, ImgProbValue);

10 end
11 if (ImgProbV alue≥MaxProbV alue) then
12 return (FOUND, location, ImgProbV alue);
13 end
14 if (ImgProbV alue<MinProbV alue) then
15 return (REJECT, location, ImgProbV alue);
16 end
17 return (LIKELY, location, ImgProbV alue);

value. If more search is needed, one checks whether the
scan depth reached the maximum depth value. If it is
reached, then the obtained probability and location is
used to update the current best found hypothesis for the
object location (if the occurrence probability is higher
then previously found ones). If the scan depth has not
reached the maximum depth, then Algorithm 1 would
split it and add its fragments and their corresponding
probabilities to the Regions priority queue. The split

function used by the above algorithm breaks the region
in 4 areas and tags each of them with their corresponding
posterior probability obtained from the corresponding
part of the image.

Algorithm 3 shows the step by step procedure to
calculate the object’s distance or location. The current
image will be loaded and converted from BGR color space
to GRAY color space. This allows for applying a Gaussian
Blur filter to take any extra noise in the image. After
filtering the image, apply the Canny Edge technique to
detect the edges of the object. We extract its contour,
and using contour approximation technique we remove
unrelated contours. Calculate the keypoints to detect and
match the object. Then calculate the area of the object.

In this algorithm, to determine the distance from the
camera, we are going to utilize the technique called
triangle similarity. For example, if we have a object with a
known width W . We then place this object some distance
D from the camera. We take a picture of our object using

Algorithm 3: Find the object distance or location for
a given image

1 function FindObjectDistance(crt image)
2 Load crt image;
3 if empty(crt image) then
4 image not valid;
5 crt image← setDistance(0);
6 break;

7 end
8 Convert the image to gray-scale, blur it, and detect

edges.;
9 gray image←

applyColorConversion BGR TO GRAY;
10 blur image← applyGaussianBlur(gray image);
11 canny image← applyCannyEdges(blur image);
12 contour image← findContours(canny image);
13 applyContourApproximation(contour image);
14 keypoint match←

applyKeyPointDetectAndMatch;
15 AreaRectangle← CalcArea(contour image);
16 calibrate focal len← loadCalibrateImage;

17 distance = (width ∗ focal length)
image pixels ;

18 return (distance);

the camera and then measure the apparent width in pixels
P . This allows us to derive the perceived focal length F
of the camera
Focal Length = (Pixels ∗ Distance)

Width

When we move the camera both closer and farther away
from the object, we can apply the triangle similarity to
determine the distance of the object to the camera by
using the following technique.

Distance = (Width ∗ Focal Length)
Pixels

Triangle Similarity Two geometrical objects are
called similar if they both have the same shape, or one
has the same shape as the mirror image of the other.
More precisely, one can be obtained from the other
by uniformly scaling (enlarging or shrinking), possibly
with additional translation, rotation and reflection. This
means that either object can be re-scaled, re-positioned,
and reflected, so as to coincide precisely with the other
object. If two objects are similar, each is congruent to
the result of a particular uniform scaling of the other. A
modern and novel perspective of similarity is to consider
geometrical objects similar if one appears congruent to
the other when zoomed in or out at some level.



Figure 7: Flow diagram for the object detection process.

5.3 Bayesian Network

The Bayesian network formalism was invented to allow
efficient representation of, and rigorous reasoning with
uncertain knowledge. The approach allows for learning
from experience, and it combines the best of classical AI
and neural nets [16]. The formal definition for Bayesian
Networks was detailed in Section 2. The combination of
the topology and the conditional distributions suffices to
specify (implicitly) the full joint distribution for all the
variables specified in our example.

Figure 8: Bayesian Network Model.

Figure 8 shows the Bayesian Network Model used in
our experiments. We use the Equation 5 to calculate
the probability for the given image, where O stands for
Object Present, C stands for Color Match, S stands
for Shape Match and T stands for Texture Match.

p (O | CST ) =
p (C | O) p (S | O) p (T | O) p (O)

p (CST )
(5)

p (CST ) =
∑
o

p (C | o) p (S | o) p (T | o) p (o) (6)

5.4 Bayesian Network Design

The Bayesian Network was built to model the relation
between the real presence of an object in an image and the
quality of the hypothesised matches proposed by various
techniques/sensors (color match, shape match, texture
match). In our experiments we use three different sensors
to detect the object.

5.5 Bayesian Network Training

We train the Bayesian Network, inferring the posteriors
in its conditional probability tables from experiments.
When we process an image with our three different
techniques (e.g., Color, Shape, and Texture), each of
them computes a matching score for the object. The
Bayesian Network is trained, helping to merge these
scores into a probability of the match.

We perform supervised training, namely where each
image is tagged as either containing or not containing
the target object. Originally all entries in the CPT are 0.
For each image analyzed, we obtain the classification for
the current detectors, and we increment the entry in the
corresponding table entry. After all training images are
analyzed, each row is normalized by dividing each entry
by the sum of the two entries in the row.

6 EXPERIMENTS

In our experiments, a Bayesian Network was trained using
images taken of the search-space from 6 different positions
and with 3 different environment luminosity. We ran 100
experiments using the aforementioned algorithm.

6.1 Scanning and Detection Experiments

This section contains the experiments with more sensor
images. During the training phase of algorithm, a
Bayesian Network has been used to train the table and
generate Conditional Probability Table (CPT) for each



Figure 9: Bayesian Network Diagram with CPTs. The CPT/prior of the root is given in the problem formulation.

sensor. The following tables are generated based on the
experimental results.

The conditional distributions in Figure 9 are shown as
a conditional probability table (CPT). This form of table
can be used for discrete variables: other representations,
including those suitable for continuous variables. Each
row in a CPT contains the conditional probability of each
node value for a conditioning case. A conditioning case
is just a possible combination of values for the parent
nodes. Each row will be normalized and they must sum
to 1, because the entire represent an exhaustive set of
cases for the variable. In general, a CPT table for a
Boolean variable with k Boolean parents contains two
independently specifiable rows of probabilities.

Table 1: Training phase of CPT for Color matching.

Object CRejected CUnlikely CLikely CFound

T 12 21 74 2893
F 2886 78 23 13

6.2 Receiver Operating Characteristic
(ROC) Curve for Object Scanning

A Receiver Operating Characteristic (ROC) curve is a
graphical plot that illustrates the performance of a binary
classifier system as its discrimination threshold is varied.

Table 2: Training phase of CPT for Shape matching.

Object SRejected SUnlikely SLikely SFound

T 11 18 54 2917
F 2904 71 19 6

Table 3: Training phase of CPT for Texture matching.

Object TRejected TUnlikely TLikely TFound

T 7 13 42 2938
F 2929 55 12 4

The curve is created by plotting false positives rate
against false negatives rate at various threshold settings.
We conducted 100 experiments to evaluate the Receiver
Operating Characteristic (ROC). The Figure 10 shows
the obtained False Positives vs. False Negatives ROC
curve.

Case Study: A case study has been conducted on the
experiments to find out how many images are required to
detect the object in a given work-space. Object detection
experiments have been done with two scenarios. First
scenario is where the object was present in the given work-
space. In this case, we did process and analyze 15 images



Figure 10: ROC Curve for Object Scanning.

to detect the object. But this could vary based on where
the object is located in that work-space. The worst case
scenario would be having to process a total of 21 images.
The second scenario is where the object was not present
in the given work-space. In this case the robot captures
all the regions images, and processes and analyzes them
to find the object. As we know that the object cannot
be detected in those images, the algorithm processes
and analyzes a maximum of 6 images. Therefore the
total number of analyzed images is 21. Table 4 shows
both scenarios along with the number of images each
scenario analyzed. The error of the object location is
approximately 1 cm.

Table 4: Case study on how many images required to
detect object.

Scan No. of Images

Object Present 15
Object Not Present 6

7 CONCLUSION AND
FUTURE WORK

We addressed the problem of locating a known object
within a predefined search space reachable from a robotic
arm equipped with one camera on its arm. A planning
technique is proposed based on heuristics for reducing
the number of snapshot-capturing steps. This planning
is based on running the greedy best first search algorithm
over a formulation of the problem based on the general
search problem framework. The heuristic employed by
the search algorithm is based on the posterior probability
of the object occurrence as generated by a Bayesian
network fusing the output of three different sensors.

The original search space is segmented into a set of
areas based on the maximum view range of the camera.
After a global image is taken of an area, a probability of
occurrence is assigned to it. Based on the planner, the
most promising areas are further split until the object is
found or is declared absent.

Once a first location of the object is hypothesized,
the 3D position in refined using a sequence of snapshots
captured on a path that the arm is following in
approaching the target object. In our case study for the
ST12 robot using a ST-MC33 camera, the target object
(a green box) was detected in 21 snapshots.
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