Information Theory to Optimize Plans for Intelligent Robotic
Arm Search of Known Objects

Roger Ballard Timothy Atkinson Taher Patanwala
Zubin Kadva Zemeng Wang Chimiao Wang
Zongqgiao Liu Rajaa Rahil Marius C. Silaghi
School of Computing
Florida Institute of Technology
ABSTRACT as with itself. In this work the problem of path planning in-

We propose an approach based on information theory and
probabilistic models to plan optimized search processes of
known objects by intelligent eye in hand robotic arms.
Searching and reaching for a known object (a tool) in one’s
office is an operation that humans perform frequently in their
daily activities. Intelligent robotic arms also encounter this
problem in the various applications in which they are ex-
pected to serve.

The problem suffers from uncertainties coming from the lack
of information about the position of the object, from noisy
sensors, imperfect models of the target object, imperfect
models of the environment, and from approximations in com-
putations. The use of information theoretic and probabilistic
models helps us to mitigate at least a few of these challenges,
approaching optimality for this important task.

Author Keywords
Eye-in-arm, Search, Information Theory

INTRODUCTION

Robotic arms are traditionally used as automates that follow
predefined trajectories, but recently they are combined with
sensors to provide more intelligent functions such as abilities
to open doors and grasp unknown objects. Here we address
a seemingly more mundane problem of locating a known ob-
ject in a partially known and bounded environment. In our
problem we assume that the robotic arm has a single camera
positioned in the arm. The problem is in fact challenging if
we consider the need to optimize the number of movements,
speed of localization, and certainty of result [5]. The lack
of stereo vision can be compensated by taking pictures from
multiple positions of the end effector, an additional challenge
that adds up to the aforementioned problems.

Among motivating applications we list manufacturing lines,
tool search by robotic arms on autonomous vehicles or in
space, and medical robotic arms trying to find the right place
to perform a blood drawing.

One of the commonly used approaches to path planning is
based on search in the configuration space, where the arm is
avoiding collision with elements in the environment, as well

FCRAR 2017 .

cluding collision with other objects and among its own seg-
ments, is assumed to be solved in a different module, not dis-
cussed here. In our own experiments, path planning is per-
formed in the robot driver. Here we are concerned about the
planning of a sequence of movements that maximizes the cer-
tainty of the localization of the searched object in a minimal
number of image captures.

The environment, with potential positions of the object, can
be segmented in partly overlapping areas, each of them being
a possible view from the camera in the hand of the robot. The
search proceeds by selecting the views to acquire and analyze
next. The order is given by a heuristic for maximizing the
information about the location of the searched object. The
information concerning what is known is maintained in a be-
lief map. With each picture, the belief changes and the next
picture point of view is planned such as to increase this infor-
mation. After covering some of the background and related
work in the next section, we continue by describing formally
the problem and the proposed heuristics. We end with discus-
sions and conclusions.

BACKGROUND

Planning problems have been addressed by robotics research
for multiple decades. An important evolution of this research
area consisted in the adoption of probabilistic models to rep-
resent in a scientific way the uncertainty existing in most real
problems.

The source of uncertainly is constituted jointly by ignorance
(e.g., concerning exact position of objects, luminosity and
shape) and by the high computational complexity of known
algorithms to access and process data. The ignorance is man-
ifested not only in the lack of data but also in the incomplete
modeling of physical phenomena, or in the approximations
selected for modeling them.

Several other approaches had been proposed to address uncer-
tainty, including default logic, fudge factors and fuzzy logic,
but the community has largely concentrated on probabilistic
approaches, which are accepted as being better scientifically
founded among alternatives.

Probabilistic models generally use “statements” as ontologi-
cal commitments (nature of reality) and probabilities as “epis-
temological” commitments (possible states of knowledge),

interpretable as “degrees of belief” or as “frequency”, po-
tentially describing objective properties of the world. The
basic objects/statements are represented using random vari-
ables. States of the world correspond to assignments of values
to these random variables.

The use of probabilistic models does not automatically reduce
errors from uncertainty in reasoning except in as much as the
probabilistic models do address that particular uncertainty.
For example, most probabilistic models still make significant
approximations concerning the actual relations (or absence
of relation) between facts. Another common approximation
is in discretizing time and space, and studies have addressed
the convergence of these approximation towards their con-
tinuous counterparts [1]. Probabilities can be modeled and
learned with technologies such as artificial neural networks
and Bayesian networks.

Bayesian Nets

One of the most influential techniques for creating proba-
bilistic models of phenomena is the Bayesian Network. The
Bayesian Networks are graphical probabilistic models where
statements (random variables) are depicted with nodes and
conditional dependence relations between these concepts are
displayed with directed arcs. The strength of Bayesian Net-
works come from the fact that not all dependence relations
have to be depicted, since some of them can be inferred from
others. In general, a random variable does not need to be
linked to a second variable if they are independent given vari-
ables on already specified paths between them. The illustra-
tion in Figure 1 shows a simplified belief network for detect-
ing known objects based on signals from camera interpreted
as shape, color, and texture [9], in the presence of various
orientations and lighting conditions:

Object Present

Figure 1. Sketch Belief Network showing potential conditional depen-
dence assumptions between variables involved in the detection of an Ob-
ject, without showing conditional probability tables.

For planning problems in environments with uncertainty in
sensors or actions outcome, an alternative to continuous re-
planning is to build contingent plans or policies. A policy is a
mapping from each belief state of the agent into a plan to be
executed in that state.

Addressing the robotic eye-in-arm search problems with Par-
tially Observable Markov Decision Processes (POMDPs) has
been first suggested in [8]. A POMDP (X, A, T, R,Q,0,7)
is described by a set 3 of states, a set A of actions, a set T’
of conditional transition probabilities between states (given
performed actions), a reward function R : ¥ x A — R, a set
Q of possible observations, a set O of conditional observation
probabilities and a discount factor ~y. Several algorithms were
proposed for efficiently solving POMDPs, such as value iter-
ation, policy iteration, point-based value iteration [3, 2, 4].
With POMDPs the goal is to maximize the expected utility,

Figure 2. Sample Search Problem: (a) Space and (b) Object

defined as the scalar (dot) product between belief (vector of
probabilities for each state) and the utility of the correspond-
ing states.

Information Theory and Decision Trees

In this work we propose to address the problem using a dif-
ferent approach, namely information theoretical decision tree
learning (ID3) [6]. Decision trees are a technology largely
used for learning and classifying one concept. A decision tree
consists of a tree data structure where each node represents a
question and each branch is a possible answer to that ques-
tion. Leaves stand for answers to the classification problem
represented by the tree.

It is assumed that a user classifying a sample traverses the
tree from its root towards one leaf, at each node asking the
corresponding question represented by it, and once its answer
is obtained, following on the corresponding branch. The leaf
reached in this way tells the classification result for the given
sample.

ID3

The question of building decision trees that minimize the
number of questions needed for classifying one sample has
been heavily researched in the past. It has to be noticed that
the number of possible decision trees is exponential and their
enumeration is generally out of question. A heuristic com-
monly proposed for building such trees given available train-
ing data is based on information theory. The idea is to ask
a question that reduces the expected entropy of the data in a
training sample.

Algorithm 1: Pseudocode for Object Search

1 procedure ObjectSearch() do

2 b = Init_Belief();

3 for (;;)do

4 if Object identified and reached, or space exhausted

then
5 | return(b);
6 q = Best_Next_Viewpoint(b);
7 capture_image(q);
8 Update_Belief(b,q);

THE ROBOTIC ARM EYE IN HAND SEARCH PROBLEM

A robotic arm controls an area within which it searches for
a known object. For example, the area in our experiments
is depicted in Figure 2.a and the searched object is shown in
Figure 2.b. The algorithm used in [9] for this problem has
similarities with the approach proposed here and a pseudo-
code for it that is reusable here is given in Algorithm 1.

The problem is formally represented as a lattice x; ; of pos-
sible positions for the object (assumed to lay on a flat table).
The object can occupy a set of several neighboring elements
of the lattice, function of its position and orientation. The ob-
ject may also not be present in the environment. The ratio
of the lattice is given by the desired resolution of the detec-
tion. Experiments in this work use a pixel-level representa-
tion while some of the previous approaches were aiming at
resolutions as rough as 10 cm [9, 7].

Originally the probability distribution of the position of the
object is uniform across the lattice. The lattice can be an-
alyzed from any point out of a set of points of observation,
each of them covering a different quadrilateral’s intersection
with a subset in the lattice (function of the orientation, height,
and location of the camera). At each step, one of the possible
points of observation is selected such as to maximize the ex-
pected amount of information gathered about the position of
the object. This solution is related to ID3.

We assume that, given uncertainties, capturing the object
from immediate positions (1cm) corresponds to fully localiz-
ing it. Given that binary search is known to efficiently scan an
organized data set, it can be expected that an efficient search
will start by taking remote snapshots from higher altitude and
converge towards close-up captures.

Note that if the camera would allow for zooming, then the
same snapshot could theoretically be taken from multiple po-
sitions. However, our camera does not have zooming capa-
bilities, and we will not simulate them by magnifying image
areas, as this is assumed to yield lower quality detection.

SOLUTION BASED ON ID3

We note that the problem can be modeled as a learn-
ing/classification problem where we are trying to detect the
position of the searched object by asking repeated questions.
Each snapshot taking can be seen as such a question. A rel-
evant algorithm that tries to minimize the number of asked
questions is ID3, where each step minimizes the entropy.

Adapted ID3
The idea is to measure the entropy of each belief distribu-
tion b;(s) representing the knowledge at a given time ¢ about

the possible exhaustive and mutually exclusive states s using
Shannon’s formula H (b;) = >, —b:(s) logy by (s).

The informational gain expected from a given question ¢ at
time ¢ can be computed as the difference between the entropy
before asking the question and the expected entropy after ask-
ing the question. The belief at time ¢ is denoted b; and each
of the possible beliefs obtainable after learning the answer ¢ if
question ¢ is posed at this moment, is denoted b7;’;. Assum-
ing each answer i is expected to question g with a probability
p(bt, q,1), as it can be computed from the belief b, the ex-
pected information gain from question q is:

G‘Lt = H(bt) - Zp(btvqa Z)H(bg-ﬁl)

Therefore, the question that the ID3 heuristic recommends to
be asked at moment ¢ is:

q(t) = argmax <H<bt) - Zp(bu q, i)H(b?.fl)>

q

In common learning problems, the classification outcome
(belief b;) is given by some set of samples in a training set
that are matching questions asked so far, and is represented
via counts of positive and negative training samples. Such
a decision tree is first built once with large training sets of
samples and later reused to classify new incoming samples.

In this research, we do not pre-compute and store such trees
due to their sheer size given the number of possible ques-
tions. Rather, we recompute the tree on the fly by predicting
p(bt, q,17) using by.

The aforementioned general procedure being proposed is
summarized in the generic pseudocode of Algorithm 2.

Algorithm 2: Generic Pseudocode for Information Theoret-
ical Search

1 procedure Init_Belief{) do

2 b = lattice representing the whole search space, each
node being the probability of the object center (or its
parts) being in the corresponding area;

3 return b;

4 procedure Best_Next_Viewpoint(b) do

5 V =set of IV views sampled with chosen distribution
across possible views;

6 B = evaluate(V,b); // e.g., set of views with expected

belief maps and information gain;
7 v = best of B;

8 for (;;) do
9 if (timeout) then
10 L return (v,B(v),H(B(v)));
11 V =resample N views based on B;
12 B = evaluate(V,b); // e.g., based on expected
information gain;
13 v = best of B;
Belief Updates

Each snapshot taking function updates the belief. The effect
of the analysis of the snapshot capture at position and orien-
tation (p, o) which observes the set of states (subset of the lat-
tice with possible positions) given by a function View(p, o)
is a belief function update w(7), with the properties that

w(7) : View(p,0) — [0,1]
and that

Y. w1t

j€View(p,o0)

If the belief before the snapshot is o', the belief update is a
function w:

b=u,w)

One of the possible ways to integrate the new observation is
incremental update:

. w(j) + (1L =7)b'(4)
b’Y(]) = 1_Zj€View(p.o)(b’Y(j)) 1.
2 igView(p,o) 0 (7) b (])

if j € View(p, o)

otherwise
(D

In the above approach, a learning factor « is used for up-
dating the belief about recently observed areas, modeling
the classification error probability, and this factor can de-
crease in time as the snapshots are taken zooming closer to
the search area. The belief about areas not observed in this
round is updated by normalization to make the total belief in-
tegrate to 1, which is done by multiplying it with the factor
1= eview(n,o) by ()

2 ieView(po) 0 (F) T
Aggregated History
An alternative approach is to gather all the features from im-
ages captures so far and to use a single classifier (e.g. ANN)
to generate a posterior probability for each location. A third
approach is to keep the classification given by the snapshot
taken from the position from which the area has the largest
projection in the image. The approach taken in one of the ex-
periments is to multiply the new object detection probability
with the previous belief and with an observation probability
modeling the uncertainty of the image analysis.

The next question

In a given state of the search, we can evaluate the next ques-
tion to ask by enumerating a subset of the candidate ques-
tions (positions and orientations). For each candidate ques-
tion, there are two possible outcomes:

- object found with probability limited by the zoom level (size
of the corresponding area in snapshot)

- object not found

The probability of each of these outcomes happening is based
on the current probability mass assigned to the correspond-
ing region. Therefore the utility of each question can be
computed as the expected utility along the aforementioned
branches.

Stochastic Search of Questions

The set of positions and orientations considered for the next
snapshot is explored using a stochastic search method. A
set of P capture positions are distributed throughout the
workspace. For example, one can use a density that is higher
in the height of the last snapshot than at other heights. At each
position, a number of O orientations towards the searched
surface are considered.

The information gain is estimated for each of these points.
During a set of k£ rounds repeating the above procedure, the
positions are redistributed into 3D cubic cells centered at pre-
vious points, proportionally with the information gain found

at that position. The size of the cells halves with each round.
The orientations at each new point are similarly sampled
in rectangles centered in previous directions at the previous
point, and distributed proportionally with the corresponding
information gains.

Computational Considerations

A trade-off exists between the number of positions P and ori-
entations O to consider at each round and the number of states
s (surface resolution) where belief of object presence is eval-
uated. Potential ways to alleviate this complexity is to start
with a lower resolution and to increase it with each snapshot
being taken, as a function of the height of the snapshot, such
that the maximum resolution is obtained when the height is at
the minimum accepted value.

Look-ahead

Just as with decision trees, the algorithm needs not be limited
to evaluating only the next question at a time. Instead, just
as with decision trees, game playing, and POMDP solvers,
policies consisting in sequences of multiple actions can be
evaluated before deciding the next questions. As with gen-
eral look-ahead techniques, cheap evaluations/predictions at
a given search state can make a good trade-off with deeper
look-ahead steps (see Algorithm 3).

Algorithm 3: Look-ahead in evaluation

1 procedure evaluate(V:view, b: belief) do
2 for g in V do

3 for i as outcome of snapshot q do

4 b, ; = update(b,q,i);

5 if (not deepest level) then

6 | (¢,by,;, H') = Best-Next_Viewpoint(b, ,);

7 H=aggregate_expected_gain(q) over all ;

8 return maximum (q,b,H);

Algorithm 4: Pseudocode for Greedy Hierarchical Search

1 procedure /nit_Belief() do

2 b = an empty tree with root representing whole search
space and an empty ordered queue with the leaves of
the tree;

return b;

w

procedure Best_Next_Viewpoint(b) do
for (;;) do
v = most likely node in b;
if (v is known and not minimal) then
split v in overlapping views;
L insert splits in b;

E-IE- R B WY I SN

10 return v;

DISCUSSION
A solution that was not based on a lattice but on a dynam-
ically expanding belief tree enforcing a hierarchical search

was proposed in [9] and is described in Algorithm 4. Its main
drawbacks with respect to the lattice approach used here and
in the POMDP model [7] is that views location cannot be flex-
ibly optimized in case objects are detected in border areas, or
are so well identified that multiple levels of splitting can be
jumped at once.

View Ordering Heuristics

The ID3 approach is an alternative to the common approach
to action planning which is based on decision theory asso-
ciating a reward with various states. There the state has to
describe knowledge [7]. Alternative heuristics to the ID3 are
possible, such as where each action (snapshot taking) is ex-
pected to add extra information, and the reward is defined as:

e the mode of the belief function b(s),

e the variance of the obtained belief function b(s).

There can also be alternative ways of sampling the search
space for candidate next questions. Instead of the described
version of stochastic search, one can use:

e akind of beam search where predefined transitions are tried
and only the /N most promising ones are extended further.

e simulated annealing transitions from each out of the set of
N positions.

IMPLEMENTATIONS AND EXPERIMENTS
Two implementations are detailed together with their evalua-
tion: baseline and optimized search.

Baseline

The baseline algorithm makes the assumption that in a blind
search (with no extra information), all optimal algorithms be-
come equal and it is only after a detection that the search
heuristic makes a difference. It further posits that the loca-
tion of the object may be gleaned from the image directly.

Algorithm Initialization

The Bayesian Network model of the object and its colors de-
scribed in Figure 3 is first trained from a set of sample images.
A sequence of viewing angles is built where each next view
is selected to maximize marginal information gain assuming
lack of object detection with previous views.

Figure 3. Baseline belief network.

Image processing

After each snapshot is taken, this method calculates both
where the object could be located in the image and the prob-
ability that the object is indeed present.

First the image is scanned for all red and green pixels based
on the Hue and Saturation from HSV. These pixels are set in

a red and green binary image. Contours are found and their
size is estimated based on their minimal enclosing rectangle.
Rectangles with too small of an area for the respective color
are pruned. One more sensor is added, an ' onEdge’ de-
tection, which evaluates the statement, “Is this blob on the
edge of the captured picture?”. It is calculated by projecting
the corners of the rectangle back onto the image and seeing if
any of them falls off the image. We call each rotated rectangle
with properties like color and onEdge, blobs.

An attempt is then made to pair multiple blobs together form-
ing Red-Green-Red chains or Green-Green chains referred to
as detections. In order for red to combine to a green, the
two colors must be next to each other and match orientation
(orientation can be flipped by 180 degrees as detections can-
not tell front from back). Green-green is allowed based on
the assumption that there was an undetected red. Unlike red-
green pairings, green-green pairings must have a space be-
tween them. Not only must the orientation of the green blobs
match each other, but the space is treated as an invisible rect-
angle whose orientation must also match. The one exception
to matching orientation is when an object is onEdge’, in
which case we ignore that object’s orientation (for example
detecting the edge of a square will look like a triangle in the
image, and the resulting blob will have an orientation radi-
cally off from where it really is at). If a matching only occurs
due to the ' onEdge’ flag, then that object is considered to
not have the proper ’ shape’.

This could theoretically lead to a detection of Green-Green-
Green or Red-Green-Red-Green-Red-Green (or longer)—
these detections are broken down so that each detection has
no more than two greens and no more than three reds follow-
ing the rules noted above. Each of these detections then have
their location estimated based on the camera and its position.

Next, if the robot’s position is not optimal for estimating the
object’s location; a new image needs to be taken from a better
position. In order to place the new image in the queue, the
algorithm calculates the object occurrence probability based
on the Bayesian network.

The Bayesian network responds to the blobs that were trained
together. If there is only one green, then it is greenl, two
greens will result in greenl and green2. The first red
detected will be red1, the second will be red?2 and the third
red3. The one exception is if detection links the blobs with
the pattern green-red-green and instead the evidence will be
greenl, red2, green? as the red?2 represents the middle
red of the tube.

Object Localization

To simplify the detection of the object location, the robot’s
camera is oriented along the robot’s waist such that an x offset
in the image can be directly attributed to a shift of the waist
in the robot’s configuration space.

The procedure is shown in Algorithm 5. This algorithm
scores matches by their probability and can deal with objects
not located on the table. However, it has a several weak-
nesses. Its biggest problem is that its initial search success
depends on serendipity. Due to the involved computational

Algorithm 5: Detailed Baseline
1 procedure /nit_Belief() do

2 b = a set of potential view angles with initial weight of
.5;
3| img = null;
4 procedure Best_Next_Viewpoint(b) do
5 while (b # 0) do
6 ¢ = first item in queue send c to the robot;
7 if (img # null) then
8 blobs = processImage(img);
9 dets = processBlobs(blobs);
10 score all detections;
1 add all detections to b based on object
occurrence probability;
12 | return image from last command ¢ to robot;

complexity, the selected initial sequence may not be optimal.
For example, in a first version, it took 48 moves to search
the space in a worse case where the object is in the very last
location and there are no purposeful distraction objects (ob-
viously every false match object will take an extra move). A
slight improvement to the used approximation, and the search
could be reduced to 23 moves for a worse case scenario.

Optimized Implementation

In this approach, significantly more effort was put into the
planning portion of the algorithm than the computer vision
portion of the algorithm. In order to simplify the computer
vision task, the vision problem was reduced from “find the
given object on the table” to “find a pink blob on the table.”
By finding the location of the three pink blobs on the object,
the exact location and orientation of the object can be deter-
mined.

Representing Belief States

For this problem, the 1m x 1m table being searched was dis-
cretized into 1lem X lem regions, resulting in a 100 x 100
region grid. A belief state is simply a probability distribu-
tion of the location of the target pink blob over this grid. An
example initial belief state is shown in Figure 4

Evaluating Belief States

In order to be able to evaluate potential actions for planning,
we need to be able to evaluate the utility of their resulting
belief states. We experimentally compare two methods for
evaluating a belief state: entropy and weighted standard devi-
ation.

For the entropy measure, the entropy of a belief state is de-
fined to be the entropy of the probability distribution:
|B
H(B) = —B[n]log, Bn] 2)
n=1

Where |B| is the number of regions in the belief state, and
Bln] is the belief that the target is in region n. From a deci-
sion theoretic perspective it can be considered that the utility

Figure 4. Initial belief state, where black regions have 0 probability and
white regions have the maximum probability over the distribution.

of the belief state is simply taken to be the negative of its
entropy:

U(B) = —H(B) 3)

For the weighted standard deviation measure, the weighted
standard deviation of a distribution with locations associated
with the domain of the distribution is defined as follows:

|B|
center(B) = Z B(n)loc|n] 4)
n=1

|B|
variance(B) = Z d(loc[n], center(B))? ®)
n=1

stdev(B) = +/variance(B) (6)

Where |B| is the number of regions in the belief state, B(n) is
the belief that the target is in region n, loc[n] is the location of
region n, and d is the distance metric used. The utility of the
belief state is simply taken to be the negative of its weighted
standard deviation:

U(B) = —stdev(B) @)

The motivation for the weighted standard deviation measure
is the fact that the entropy measure does not take into account
the spatial information of the belief state. Due to this lim-
itation, using the entropy measure (without look-ahead) can
lead to plans that leave unexplored regions interleaved with
explored regions, potentially leading to a greater overall num-
ber of steps required to find the target.

Updating Beliefs

The current belief state can be maintained at all times and
can be updated using Bayesian inference. Given a prior belief
state B and a piece of evidence E, the following two rules are
sufficient to produce a new belief state B’, such that:

Vn € {1..N}: B'(n) = B(n|FE) 8)

Algorithm 6: Pseudocode for Action Space Exploration

1
2
3
4
5
6
7
8
9

10
11

—

2

mostPromising = a new empty list of regions;
insert a region representing t*he whole configuration space into mostPromising;
for (int depth = 0; depth < search_depth; depth++) do

for (int dim =0; dim < dimensionality; dim++) do
newMostPromising = a new empty list of regions;

insert each sub-box into newMostPromising;

replace mostPromising with newMostPromising;

return best element of mostPromising;

split each box into mostPromising into three sub-boxes, splitting on the dimension dim;

remove any invalid configurations from newMostPromising;
//Some configuration space coordinates are invalid in the workspace;
filter newMostPromising to the beam_width boxes with the highest utility;

a b

C d

Figure 5. a) Initial belief state for finding the second point. This takes the form of a ring centered on the first point b) The effect of using already-taken
photographs to update the belief state for the second point before even beginning the search c) Initial belief state for finding the third point. This takes
the form of two radial Gaussians based on the found location of the first two points d) The effect of using already-taken photographs to update the belief
state for the third point before even beginning the search

Position 1 Position 2 Position 3
Figure 6. Location of the target object in three position.

o Target not Detected in Image: If the target is not detected

in the image, then the update rule is given as follows:

B'[n] = a *x Bln] x false_neg_prob if visible(n,c)
o * B[n] otherwise

(€))
Where c is the configuration of the robot arm that the image
was taken from, and visible(n,c) is true iff region n is
visible in configuration c¢. A normalization factor, «, is
also employed.

Target Detected in Image: If the target is detected in the
image, then the update rule is given as follows:
B'ln] = ax* Bln|x
(((1 — false_positive_prob)
x kernel(d(loc[n], detect_loc)))
+ false_positive_prob) (10)

Where detect_loc is the location of the detection mapped
to the table, and kernel is the kernel function representing
the uncertainty in the camera. (In this implementation, the
kernel was a Gaussian distribution with o proportional to
the distance of the camera from the target and the distance
in the image of the target from the center of the image, to
model increasing uncertainty at further distances and in-
creasing uncertainty around the edges of the image.)

Evaluating Actions

The expected utility of an action (an image taken in a certain
configuration) can be naturally defined in terms of the utility
of the potential belief states it could result in:

|B|
U(a,B) = Z B(loc)U (resultant_belief(B, a,loc)) (11)

loc=1

Where a is the action taken, loc is the true location of the tar-
get, B is the prior belief state, and resultant_belief is defined
according to the update rules in the Updating Beliefs section.

However, this direct calculation is prohibitively expensive.
Instead, we estimate the utility of an action by sampling sev-
eral locations from the prior belief distribution and averaging
the resultant utilities for each sample.

Exploring the Action Space

We can treat our configuration space as an n-dimensional box,
and explore the space by repeatedly dividing the space into
sub-boxes. We define the utility of a box in the configura-
tion space to be the maximum utility of any point inside that
box. Making the observation that the utility function is lo-
cally smooth in the configuration space, we can approximate
the utility of a box by evaluating the utility of the center of
that box. As we are subdiving, we can take the most promis-
ing boxes at any depth (those with the highest approximated
utility) and expand them further. We can repeat this process
until we have subdivided the boxes into several suitably small
volumes, thus selectively exploring the search space. This is
outlined more formally in Algorithm 6.

Finding a Point

We can find a single point by repeatedly determining the best
next action to take, taking it, and updating our belief with
the evidence we get. In order to determine when to stop and
declare the point found, a threshold value on the utility of our
belief state is used. For the entropy measure, this threshold
is 5 bits. For the weighted standard deviation measure, this
threshold is 2.5cm. In general, taking pictures with successful
detection at lcm distance from the object important features
can also be considered an acceptable termination condition.

Finding the Object

Given the above algorithm for finding a single point, we can
apply this algorithm to find the object’s position and orien-
tation. For the first point, we initialize the belief state uni-
formly randomly, except for certain invalid regions, such as
not on the table or inside the base of the robot, as shown in
Figure 4. For the second point, since we know the radius of
the object and the position of the first point, we initialize the
belief state to be a ring of that radius around the first found
point, as shown in Figure 5.a. For the third point, since we
know the radius of the object and the position of the first two
points, we initialize the belief state to be two Gaussian distri-
butions, as shown in Figure 5.c. After initializing the belief
states for the second and third points, we can update our be-
lief by factoring in the evidence already gathered. The effect
of using this technique is shown in Figures 5.b and 5.d.

EXPERIMENTAL RESULTS

The three detailed algorithm instances (baseline, optimized
with standard deviation heuristic, and optimized with entropy
heuristic) were run with the target object in three locations.
The results are in Figures 7, 8, and 9. The two optimized
heuristics do significantly improve over the baseline version.

! Although some of the points may be in these invalid regions, it is
guaranteed that not all of the points will be in these regions.

CONCLUSIONS

In this work we have proposed a new framework and algo-
rithms for planning robotic Eye-in-Arm search of known ob-
jects. Our framework is inspired from the artificial intelli-
gence theory of learning based on decision trees. As such,
each snapshot-taking operation in the search process corre-
sponds to a question being asked in the decision tree, while
the possible positions of the searched object correspond to
the possible samples classified by the decision tree. As a fur-
ther parallel to decision trees, we test search heuristics based
on entropy, as inspired from the information theoretical ID3
learning algorithm.

The main difference between our search framework and de-
cision tree learning is that we build the relevant tree branches
dynamically for each classification, rather than pre-building it
once for all (except for the version keeping one likely branch
in the baseline technique). This is due to the size of the tree
which would be difficult to store. Another difference is in the
fact that we do not use training data but rather compute ex-
pected outcomes based on current robot beliefs, represented
by a probability distribution of the object location. Consid-
ered questions (i.e., snapshot positions) are sampled out of
the total set of possible questions using stochastic search or
dichotomous beam search. Actions can be selected based on
comparing candidate plans composed of sequences of multi-
ple look-ahead steps and evaluating the expected beliefs. This
is a process also reminiscent of POMDP policy evaluations.

Experimental evaluations are performed using an ST-12
robotic arm with a camera mounted in its end-effector, and
three algorithm versions. A baseline version with a simple
search whose intelligence mainly lies in the computer vision
part is compared against two heuristics for the robotic arm
next-question selection: namely based on entropy, and based
on standard deviation. For the described experiments, the two
intelligent search processes performed comparatively well,
and much better than the technique focusing on computer vi-
sion. The intelligent search heuristics are expected to excel in
different problem sub-domains, and the identification of these
domains is planed for future work, as well as the exploration
of several mentioned optimizations.

REFERENCES
1. Pratik Chaudhari, Sertac Karaman, David Hsu, and
Emilio Frazzoli. 2013. Sampling-based algorithms for
continuous-time POMDPs. In 2013 American Control
Conference. IEEE, 4604-4610.

2. H. Kurniawati, David Hsu, and Wee Sun Lee. 2008.
SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces.
Robotics: Science and Systems 2008 (2008).

3. Joelle Pineau, Geoff Gordon, and Sebastian Thrun.
2003. Point-Based Value Iteration: An Anytime
Algorithm for POMDPs. Technical Report. Proc. of
1JCAI, Mexico.

4. Pascal Poupart, Kee-Eung Kim, and Dongho Kim. 2011.
Closing the gap: Improved bounds on optimal POMDP
solutions. In ICAPS.

StdDev Entropy

Test | Fnd Tst [Find 2nd | Find 3rd | Find Tst [Find 2nd | Find 3rd | Doseline
1 2 1 1 4 1 1
2 4 0 1 3 1 2
3 2 1 1 3 | I
4 2 1 1 3 1 1
5 2 1 1 3 1 1
6 5 1 1 3 I I 28
7 2 1 1 3 1 1
8 4 0 1 4 1 1
9 2 1 1 2 I I
10 4 1 0 4 1 1
Average 29 [08 [09 32] 1 | 11)3
Cumulative 4.6 53
Figure 7. Position 1
StdDev Entropy .
Test | Find Tst [Find 2nd | Find 3rd | Find Tst | Find 2nd | Find 3rd | Doseline
1 9 1 1 2 1 2
2 3 3 1 4 2 I
3 10 1 1 6 1 1
4 7 2 8 4 2 1
5 5 2 1 7 0 1
6 7 2 6 4 1 1 49
7 7 3 2 5 1 1
8 6 2 2 7 2 2
9 4 2 2 3 2 1
10 8 1 2 6 1 1
Average 66 | 19 | 26 48 | 13 [12 49
Cumulative 11.1 7.3
Figure 8. Position 2
StdDev Entropy .
Test | Find Tst [Find 2nd | Find 3rd || Find Tst [Find 2nd | Find 3rd | Doseline
1 5 1 1 2 1 4
2 4 1 1 4 1 1
3 4 1 1 3 1 1
4 4 1 1 3 1 2
5 4 1 1 3 1 1 9
6 5 1 4 3 8 3
7 4 1 1 4 1 1
8 5 1 0 2 1 1
9 4 1 | 4 1 1
10 4 1 0 2 1 1
Average 43] 1 [11 3] 17] 16 9
Cumulative 6.4 6.3
Figure 9. Position 3
5. Jan Rosell, Raudl Suarez, Carlos Rosales, and Alexander 8. Srinivasa Venkatesh and Marius C. Silaghi. 2015.
Pérez. 2011. Autonomous motion planning of a Planning One Eye-in-Arm Robot for Object
hand-arm robotic system based on captured human-like Localization. In Proceedings of FCRAR 2015.

hand postures. Autonomous Robots 31, 1 (2011), 87. 9. Srinivasa Venkatesh and Marius C. Silaghi. 2016.

6. Stuart Russell and Peter Norvig. 2013. Artificial Optimizing Eye-in-Arm Robot for Localization of
Intelligence — A Modern Approach. Known Objects. In Proceedings of FCRAR 2016.

7. Marius C. Silaghi and Jixing Zheng. 2017. POMDPs for
Robotic Arm Search and Reach to Known Objects. In
ArXiv: 1704.07942.

