
Laser Curve Tracing for Robotic Arms

Timothy K. Findling, Marius C. Silaghi

Florida Institute of Technology
Computer Science

150 W University Blvd
Melbourne, FL 32901

tfindling2014@my.fit.edu, msilaghi@fit.edu

ABSTRACT

Applications such like soldering require robotic arms to
follow the soldering line as present on a surface. We as-
sume here that the surface to be soldered is remote from
the robotic arm, that the soldering is performed via a
laser beam, and that the line to be followed can be an
irregular curve that may self-intersect (e.g. a crack in the
material).

We describe research conducted using a robotic arm
pointing a laser for tracing a remote line on a smooth
surface. The trace is converted to a one pixel width skele-
ton line generated from images using a hit-and miss al-
gorithm. The robotic arm guides the laser dot along a
series of target positions based on a set of processed line
segments. A camera is used to validate and correct the
movement of the robotic laser arm by measuring position
accuracy. Considered methods are compared based on
various proposed metrics quantifying the areas traversed
redundantly and the areas missed.
Keywords
Robotic Arm, laser, camera, skeletonize, templates, line
segments

1 INTRODUCTION

Automating a welding process and maintaining a good
welding quality requires the alignment of the torch along
a welding seam. A robotic arm that guides the welding
torch must be able to accurately follow a welding seam
and compensate for tolerances in the machinery and local
distortions in materials.

We address the problem of automating the control of a
robotic laser arm that is tasked with soldering a crack on

a material posted at a certain distance from the arm. The
robot is supposed to solder the crack using a laser beam
directed at the crack. The laser has to be moved along the
crack to produce a good welding. The robot detects the
crack using a camera. It processes the image and directs
its laser beam based on the visual parameters estimated
using its camera and the estimations of the point where
the beam intersects the surface.

Many complex challenges can occur in this setting, such
as surface irregularities and heat based fumes that can
blur vision. The surface may also suffer deformations due
to heat. In this research we assume a simpler case where
all these additional complications are already solved and
we just have to ensure that the torch is correctly directed
and following the crack. One has to minimize the number
of defects consisting of the laser abandoning the line and
welding already correct areas of the surface, or skipping
some segments of the crack. A couple of algorithms are
investigated and their efficiency is measured by compar-
ing the areas welded without need, and the total length
of skipped segments.

In the next section we describe the related work and
background concerning robotic soldering and visual line
processing and tracing algorithms. In Section 3 we de-
scribe the addressed problem formally. The techniques in-
vestigated in this research are introduced in Section 4. Af-
ter describing data collection and precision experiments
with a laser robotic arm, we conclude with an analysis of
the obtained quality and potential future work.

2 BACKGROUND

Robotics can be classified into two categories, servo and
non-servo robots. Servo robots operate in a closed loop

controlled environment and non-servo robots operate in
an open loop controlled environment. Robots that oper-
ate in an open loop controlled environment have discrete
check points and are rigid in their preprogrammed op-
erations. These robots cannot adapt to changes in their
environment. Robots that operate in a closed loop envi-
ronment are much more flexible to changes in their envi-
ronment and find their applications in computer numer-
ical control (CNC) of milling machines, painting, assem-
bling, bio-medical, remote controlled mobile, inspecting
and welding [2, 1]. Industrial applications further expand
into laser mapping, distance measuring and target track-
ing, as well as laser cutting.

A laser visual sensing system for welding with robotic
arms was described in [3]. Difficulties in laser tracking
welding seams arise from variations in the depth of the
seam and deviations in the surface reflectivity. The study
in [3] includes research of a Missing-Point algorithm that
interpolates a path where target points are missing. Laser
spot detection is further described in [4], and a compre-
hensive historical review of robotics applied to welding
with vision based seam identification is provided in [5].

3 DETAIL PROBLEM
DESCRIPTION

We address the problem of soldering a line on a remote
surface using a laser beam. Algorithms are proposed and
evaluated for achieving this task. This research evaluates
a low end robotic laser arm’s execution of algorithms for
soldering cracks on a surface. In evaluation experiments,
the laser dot traces benchmark cases comprised of var-
ious types and shapes of skeletonized lines. Images of
hand drawn lines are captured to a repository, and they
are further processed to produce these templates. Tem-
plates are comprised of skeleton lines, which are further
divided into line segments. Every n-th pixel on a line seg-
ment is declared a target position. The robotic arm must
traverse these target positions in sequence and meet their
coordinate positions within an accuracy D. Moving the
laser dot to each target position in sequence, effectively
reproduces the skeleton line.

A camera system provides position feedback to the con-
trolling software by capturing the current position of the
laser dot. The feedback is used to create new position
commands which are issued to the robot in order to min-
imize tracking errors. As the robot moves the laser dot
towards the target positions, pixel coordinates of the laser
dots are recorded and superimposed onto a trajectory
record.

The tracking error is calculated by overlaying the tra-
jectory of the laser dots onto the template. The area of
the surface between the two lines is computed. A greater
area expressed in pixels indicates a larger tracking error.
The percentage of pixels missed along a skeleton line is
also provided.

Formally we define the problem as follows:

Definition 1 Given a surface S, a band of maximum
width d drawn on the surface, and a laser positioned in
the arm of a robot located at point O, with dot of diameter
D, the problem is to define a plan and a control scheme
for the robot handling the laser such that the laser dot
traverses the band with a minimum number of interrup-
tions, such that the laser dot covers the whole band but
covers a minimum area outside of the band.

4 TECHNIQUES

The software developed for this research is comprised of
three major components:

• the Arduino micro-controller embedded software
(sketch),

• the image processing software, and

• the control software.

The sketch configures the Digital IO and the six Pulse
Width Modulated (PWM) output signals for the servo
motors. The sketch also enables communications via the
USB port between the control software and the micro-
controller. When the control software issues a position
command, the micro-controller processes the commands
and returns the current positions of the servo motors.

Skeleton-based Jumping The algorithm we report
here for this problem is called Skeleton-based jumping.
Figure 1 shows the top level diagram of the command
processing. Namely, each image is loaded and a set of fil-
ters is applied on it to skeletonize the crack line that has
to be soldered. The skeletonized line is then processed
into a path with a start and an end position. Further, in
a loop, a control algorithms focuses the laser dot within
a given distance from various positions selected along the
skeletonized line being followed.

Figure 3 shows in more detail the steps applying the
filters to the images. It can be observed that line thin-
ning is interleaved with smoothing. A tree is built with
the obtained skeleton at the end of this processing. The
root node of the tree includes the list of pixels from the
starting point to the first intersection. Each subsequent

node contains the list of pixels from the parent node’s in-
tersection to the next sequential intersection or end point.
A simplified example is shown in Figure 2.

4.1 Control Software

Algorithm 1 Control Software

Given Laser Position L and Target Position T
while Target Available do

if L.X < T.X and |L.X - T.X | > D then
X Motor += 2us

else if L.X > T.X and |L.X - T.X | > D then
X Motor -= 2us

end if
if L.Y < T.Y and |L.Y - T.Y | > D then

Z Motor += 2us
else if L.Y > T.Y and |L.Y - T.Y | > D then

Z Motor -= 2us
end if
if |L.X - T.X | <= D and |L.Y - T.Y | <= D then

Target Met
Increment Target

end if
end while

Any PID motion controller can be used to trace a
recorded line. In our case we settled for the Algorithm 1
as an example of controller to calibrate our metric, but
other controllers can be used in the future. The control
software issues position commands to the micro-controller
to traverse the line based on the predetermined target po-
sitions. The target positions are visited in the order as
determined by the target list algorithms. Camera feed-
back and position information obtained from the micro-
controller corrects the robotic arm to place the laser dot
onto each target position within D pixel accuracy. On
the tested robotic arm, the relative position commands
may be as small as half a degree, incrementally steering
the laser dot to its target.

4.2 Image Processing Software

An image is captured by the camera of a curved line form-
ing a loop. The image is first converted into a B&W im-
age. During this conversion image noise and variations
in the background are removed. A hit-and-miss algo-
rithm [6] is looped on the pixels of the line to minimize
the line thickness. The algorithm uses several 3x3 trans-
forms shown in Figure 4, which are applied to the B&W
line to reduce the line to one pixel width while maintain-
ing a continuity of the line. This process is completed

apply filtersload image

set target
to line start

get camera
image of
laser dot

if laser is
within toler-

ance of target
then select next
available target

increment
motor positions

by 2 us
towards target

is target
available?

halt laser

yes

no

Figure 1: Control Software

1

2

3 4

1 → 2

2 → 3 2 → 4

Figure 2: Example Line (Left) and Generated Tree
(Right)

convet image
to B&W

apply line
thinning

algorithm

apply line
thinning

correction
(smoothing)

reapply line
thinning

algorithm

apply line
segmentation

Figure 3: Filters

by looking for black pixels that match the operators and
corresponding 90 degree variants of Figure 4. Each black
pixel of the line is tested as the center point of the oper-
ator. The pixel is converted to white if a match is found.
End points and intersections are located during the last
iteration of the algorithm. An intersection is defined as a
point with three or more neighbors.

A smoothing operator is applied to the skeleton line
to reduce the number of neighboring intersections. This
process further matches pixels to specific operator cases,
where a pixel is either shifted or removed. The line thin-
ning algorithm is called a second time after the smother-
ing operator in order to relabel the intersections. Once a
template is created, a list of line segments are determined.

Each line segment is further divided into target posi-
tions. For this research every n-th pixel is used as a target
position, where n is a function of the distance between the
laser and the remote surface. Every n-th pixel of the line
is declared a target point that the laser dot must meet
before moving on to the next target point. Feedback from
the camera and the micro-controller ensures that the laser
dot meets the target within D pixel accuracy.

Algorithm 2 Line Thinning (Hit-and-miss Transform)

Given structuring pairs B1, ..., B8 from Figure 3
while Image X not converged do
X ⊕B1⊕B2⊕ ...⊕B8

end while
Mark pixels with 3 or more neighbors as intersections
Mark pixels with 1 neighbor as end points

1

0 1 1

0 0

0 0 0

1

1 1 1

Figure 4: Structured pairs B1 and B2 including their 90◦,
180◦, and 270◦ rotations B3-B8

5 TARGET LIST
ALGORITHMS

The following algorithms are used to develop the list of
targets for the robot to follow when tracing the curve.
The target list is developed after application of the filters
and the curve is skeletonized.

5.1 Long Path Algorithm

Algorithm 3 Long Path

1: Set starting point as current pixel P
2: Start new line segment
3: while Unvisited neighboring pixels > 1 do
4: Add P to line segment
5: if P equals intersection then
6: Start New Line Segment
7: Count pixels to next intersection or end point in

both available paths
8: Increment P in direction of larger count
9: else

10: Increment P to neighboring pixel.
11: end if
12: end while
13: Add end point to line segment

The long path algorithm builds a series of line segments
for the robot to use as a target list. The algorithm is ideal
for situations where the curve contains minimum inter-
sections and where it is not desired to allow the laser to
retrace a portion of the curve already visited. The algo-
rithm begins in Line 1 and 2 by setting the starting point

of the line to P and creating a new line segment. A while
loop is started in Line 3 where the loop continues while
an unvisited neighboring pixel is available. The first part
of the loop at Line 4 adds P to the newest created line
segment. The P value is checked in Lines 5 – 7 to de-
tect if P is an intersection. If P is an intersection then a
new line segment is created. The intersection would sig-
nify that there are two available paths to select the next
neighboring pixel from. The count of pixels in both paths
are counted from the intersection to the next intersection
or end point. The path with the largest count is selected
to be taken and P is incremented in the direction of the
larger count during Line 8. If P was not detected to be an
intersection during Line 5 then P is incremented to the
only unvisited neighboring pixel available. The loop will
exit when no more neighboring pixels are available. At
that time, P would be equal to the end point and would
be added to the final line segment in Line 13.

5.2 Tree Search Algorithm

Algorithm 4 DFS with Backtracking Algorithm

1: if isNull(Node.Left) and isNull(Node.Right) then
2: Add Node.lineSegment to target list
3: while Node.Parent.Left.Last not equals Node.Last

or isNull(Node.Parent) do
4: Add Node.lineSegment in reverse to target list
5: Node equals Node.Parent
6: if Node.Parent.Left.Last not equals Node.Last

then
7: Add Node.lineSegment in reverse to target list
8: end if
9: end while

10: if isNull(Node.Parent) or Node.Parent.Left.Last
equals Node.Last then

11: return;
12: end if
13: end if
14: if not isNull(Node.Left) then
15: Add Node.lineSegment to target list
16: DFS(Node.Left)
17: end if
18: if not isNull(Node.Right) then
19: Add Node.left.lineSegment to target list in reverse
20: DFS(Node.Right)
21: end if

The tree search algorithm is ideal for situations where
every portion of the line is desired to be traced regardless
of the laser retracing a portion of the line already visited.

The algorithm builds a tree of line segments and trans-
verses the line segments based on a modified depth first
search algorithm.

Line 1 of the algorithm checks if the current node does
not contain a left and right branch. The pixels of the line
segment are then added to the target list during Line 2.
Lines 3 through 10 are implemented to reverse the trace
when the trace has followed a right branch down to an
end point.

Line 14 of the algorithm checks if the left branch of the
current node exists. The pixels in the line segment are
then added to the target list in Line 15. The tree search
algorithm is then called recursively with the left branch
of the current node in Line 16.

Line 18 of the algorithm checks if the right branch of
the current node exists. The pixels in the line segment
are then added in reverse to the target list in Line 19.
This will reverse the trace when the trace follows a left
branch down to an end point. The tree search algorithm
is then called recursively with the right branch of the
current node in Line 20.

5.3 Adhoc Neighbor Algorithm

Algorithm 5 Ad-Hoc Neighbor

Set starting point as current pixel P
while Unvisited neighboring pixels >= 1 or intersec-
tion Stack > 0 do

if Unvisited neighboring pixel is available then
if P is an intersection then

Add P to the intersection stack
Increment P towards pixel with the shortest
path to next intersection or end point

else
Increment P to unvisited neighboring pixel.

end if
else if Neighboring pixel is on top of intersection
stack then

Increment P to intersection
Remove P from stack and longer treat P as an
intersection

else
Reverse P to previous visited pixel.

end if
end while

The Adhoc Neighbor algorithm is similar to the tree al-
gorithm. Every portion of the line is desired to be traced
regardless of the laser retracing a portion of the line al-
ready visited. In this implementation the algorithm does

not precompute the target list but instead computes the
list as the trace is occurring. The algorithm follows the
trace of the line by incrementing the target to the next
neighboring pixel. When an intersection is encountered
the algorithm stores the location in a stack. The algo-
rithm selects the first direction available at the intersec-
tion and continues forward until an end point is found.
While the intersection array contains values, the trace
will reverse towards the first value on the stack. Once
the intersection is reached again, the value is removed
from the stack. The trace will halt once no values are
remaining on the stack.

6 EXPERIMENTS

For this research the robotic laser arm was positioned
32 inches away from a whiteboard as seen in Figure 5.
The camera was mounted next to the robotic laser arm
separately. A small repository of images was created. The
images are comprised of a set of hand drawn lines which
vary in complexity and size. Figure 6 displays the original
line images used in the experiment. The robotic laser arm
is directed by the control software to trace the skeleton
line. For this research the accuracy of the trace was set
to D = 0.4 mm (which has to be calibrated based on the
camera resolution, lenses, and distance to the traced line).
Feedback from the camera is recorded to file and then the
position points are superimposed onto the skeleton line.

The range of position commands that can be issued to
the Arduino micro-controller is between 600 – 2400 usec,
which translates into 0.1 degree movement per 1 usec.

Although position commands can be giving as small as
0.1 degrees or in 1 usec increments, the servo motors can-
not easily respond to such a small command. The servo
motors must overcome friction and resistance of move-
ment by the wires in order to move. In this experiment
the position commands are given in 2 usec increments.

7 ANALYSIS

The following section is a summary of the results of the
laser trace. Data was collected after each movement of
the robotic arm. The data was analyzed by comparing
the error between the laser trace and the skeletonized
line. Additionally the percent of the line traced is also
presented.

7.1 Error between Trace and Line

The results of the three algorithms are shown in Table 1
The error is calculated by measuring the area in pixels be-

Figure 5: Experimental Setup

Figure 6: Original Lines

Figure 7: Laser trace of Line

Table 1: Error Between Lines - Results

Line Pixels
in
Line

Longest
Path

Tree
Search

Ad
Hoc

1 353 324 619 691
2 844 2124 2104 3141
3 807 803 1843 2634
4 394 592 1299 1643
5 491 533 1036 1487
6 427 330 1692 1405
7 533 364 2192 1809
8 601 313 2601 1973
9 419 72 1674 1674
10 439 661 959 959
11 815 1683 3134 2864
12 789 1913 2570 3178
13 548 1094 1695 2325
14 532 1138 1143 1800
15 926 801 3107 3048

tween the laser trace and the skeletonized line. A portion
of the line may have not been traced due to the selected
algorithm. The error in these cases are only calculated
on the traced portion. A portion of the line may require
the laser to retrace the section. The data points during
the line retrace are included in the error calculations.

A sample image of the laser trace in Figure 7 show
the traced line in red. The skeletonized line is show in
black. The area outside the two lines is shown in gray and
the area between the lines are shown in white. The area
between the lines is calculated by counting the number of
white pixels in the images.

7.1.1 Long Path Algorithm

The longest path algorithm selects the longest path avail-
able when detecting an intersection. The algorithm is the
only method tested that does not have any backup capa-
bilities. These properties allow the algorithm to complete
its trace quicker than the other methods. With the laser
in motion a smaller amount of time, the trace produces a
smaller amount of errors.

7.1.2 Tree Search Algorithm

The tree search algorithm makes an attempt to trace the
full line. The 0.5 mm diameter measurement is slightly
larger than the tolerance allowed for the laser trace. It
can be seen that no line contained a 100% trace under
the 0.5 mm diameter laser. This could be potentially due
to the laser tracing the line at the maximum tolerance
away from the target position. The percentage increases
to nearly 100% in all lines when the laser diameter is
increased to 1.0 mm.

The tree search algorithm increases the number of re-
traces proportionally to the number of intersections. It
could be seen in traces with a high number of intersec-
tions, such as line 15 (9 intersections), that the laser has
a high trace percentage for the 0.5 mm laser.

7.1.3 Adhoc Neighbor Algorithm

The Adhoc Neighbor algorithm traces the line without
predetermining the target list order. The trace is guided
with only the knowledge of the length of the line seg-
ments. The trace always selects the shortest path avail-
able when at an intersection. The purpose of selecting
the shortest path is to attempt to first cover line seg-
ments that form due to imperfections in the skeletoniza-
tion process. This method significantly reduces retracing
when the imperfection appears closer to the start of the
line. The trace should not require retracing significant
portions of the line to return to these imperfections.

7.2 Percentage of Line Traced

The laser in this experiment was allowed a tolerance of
4 mm from the target location. The target location is
set on the edge of the original line due to the way the
line thinning algorithm skeletonized the line. As a re-
sult the laser trace has not covered the entire width of
the original line. The target list also did not add every
pixel as a target. The target list has missed sections of
the line with sudden changes in slope. Varying diame-
ters of laser size were analyzed on each laser trace. For
these experiments a laser diameter of 0.5 mm and 1.0 mm

Table 2: Long Path - Percent of Line Traced

Line Pixels
in
Line

Untraced
Pixels
.5 mm

%
Traced
.5 mm

Untraced
Pixels
1.0 mm

%
Traced
1.0 mm

1 353 65 81.6 % 0 100.0 %
2 844 186 78.0 % 4 99.5 %
3 807 141 82.5 % 6 99.3 %
4 394 109 72.3 % 13 96.7 %
5 491 103 79.0 % 5 99.0 %
6 427 143 66.5 % 108 74.7 %
7 533 359 32.7 % 294 44.8 %
8 601 448 25.5 % 373 37.9 %
9 419 316 24.6 % 304 27.5 %
10 439 212 51.7 % 149 66.1 %
11 815 274 66.4 % 155 81.0 %
12 789 160 79.7 % 5 99.4 %
13 548 260 52.6 % 153 72.1 %
14 532 195 63.4 % 66 87.6 %
15 926 621 32.9 % 545 41.1 %

were compared. Data collected during backtracking was
counted when calculating the percent of the line covered.

7.2.1 Long Path Algorithm

The longest path algorithm allows the trace to neglect
portions of the line. The lines that contain side branches
with insignificant length are shown to have the highest
percentages. These traces can be seen in Lines 1 - 5. In
other cases where the line contained side branches with
significant length are shown to have the lowest percent-
ages. The algorithm does not allow for backtracking and
therefore the percentages do not benefit from the possi-
bility of the laser getting a second chance to trace the
line.

7.2.2 Tree Search Algorithm

The tree search algorithm makes an attempt to trace the
full line. The 0.5 mm diameter measurement is slightly
larger than the tolerance allowed for the laser trace. It
can be seen that no line contained a 100% trace under
the 0.5 mm diameter laser. This could be potentially due
to the laser tracing the line at the maximum tolerance
away from the target position. The percentage increases
to nearly 100% in all lines when the laser diameter is
increased to 1.0 mm.

The tree search algorithm increases the number of re-
traces proportionally to the number of intersections. It
could be seen in traces with a high number of intersec-

Table 3: Tree Search - Percent of Line Traced

Line Pixels
in
Line

Untraced
Pixels
.5 mm

Percent
Traced
.5 mm

Untraced
Pixels
1.0 mm

Percent
Traced
1.0 mm

1 353 63 82.2 % 4 98.9 %
2 844 185 78.1 % 1 99.9 %
3 807 148 81.7 % 1 99.9 %
4 394 40 89.9 % 1 99.8 %
5 491 63 87.2 % 1 99.8 %
6 427 72 83.1 % 1 99.8 %
7 533 101 81.1 % 3 99.4 %
8 601 52 91.4 % 0 100.0 %
9 419 50 88.1 % 5 98.8 %
10 439 55 87.5 % 1 99.8 %
11 815 70 91.4 % 0 100.0 %
12 789 126 84.0 % 0 100.0 %
13 548 54 90.2 % 3 99.5 %
14 532 146 72.6 % 6 98.9 %
15 926 77 91.7 % 0 100.0 %

tions, such as line 15 (9 intersections), that the laser has
a high trace percentage for the 0.5 mm laser.

7.2.3 Adhoc Neighbor Algorithm

The adhoc neighbor algorithm guides the laser trace
through all pixels in the line. The algorithm shows sim-
ilar percentages to the tree search algorithm. The error
in the trace is most likely also attributable to the time
the laser is tracing at the maximum tolerance allowed.
The percent similarly increases to 100% when the laser
diameter is increased to 1.0 mm.

Each retraced pixel gives the laser another opportunity
to cover a portion of the missed line in the first trace pass.
The adhoc neighbor algorithm selects the smaller of two
line segments when encountering an intersection. This
reduces the amount of pixels retraced in some lines in
comparison to the tree search method. This has the po-
tential to cause the percent traced to drop in comparison
to the tree search algorithm.

8 CONCLUSION

For this research we used a low cost robotic laser arm
comprised of six servo motors which are controlled by
an Arduino micro-controller. The micro-controller con-
verts the position commands into pulse width modulated
signals which provide for 0.1 degrees or 1 microsecond
position commands.

Table 4: Adhoc Search - Percent of Line Traced

Line Pixels
in
Line

Untraced
Pixels
.5 mm

%
Traced
.5 mm

Untraced
Pixels
1.0 mm

%
Traced
1.0 mm

1 353 60 83.0 % 0 100.0 %
2 844 107 87.3 % 0 100.0 %
3 807 144 82.2 % 4 99.5 %
4 394 100 74.6 % 1 99.8 %
5 491 97 80.2 % 0 100.0 %
6 427 100 76.6 % 1 99.8 %
7 533 74 86.1 % 0 100.0 %
8 601 69 88.5 % 3 99.5 %
9 419 52 87.6 % 1 99.8 %
10 439 94 78.6 % 5 98.9 %
11 815 105 87.1 % 5 99.4 %
12 789 157 80.1 % 3 99.6 %
13 548 96 82.5 % 2 99.6 %
14 532 103 80.6 % 4 99.3 %
15 926 163 82.4 % 4 99.6 %

The operational speed of the robotic arm is limited as
it has to process commands serially. The steps include
issuing position commands, obtaining position data from
the micro-controller, and obtaining and processing images
from the camera.

A repository of images was created to test the pro-
cedure. The skeletonizing algorithm followed by the line
segmentation algorithm successfully provided for position
commands. These benchmarks can be executed at any
time producing repeatable results, and will be made pub-
licly available. The system provides for a high degree of
flexibility.

Our research shows that the robotic arm successfully
traced the benchmark lines with limited error. Some
of the errors were caused by “stickiness” of the low-end
physical system, but may be reduced on higher-end arms.
The motor would randomly fail to move the appropriate
distance when a position command is issued. Subsequent
position commands caught the motor back up and caused
the laser to slip from the target positions. The average
change in angle between the laser trace and the original
trace remained similar between the different algorithms.
This implies the different algorithms did not impact the
change in angles but were dependent on the accuracy of
the motors. This error could be significantly reduced by
moving the laser and camera closer to the surface, or in-
troducing extra-delays for feedback and correction. This
would improve the accuracy of the servo motor position
commands.

Figure 8: Block Diagram

The effect of choosing the longest path between inter-
sections to be traced maintains the original shape of some
of the lines. The trace loses accuracy when the line con-
tains self intersections or significant branching. However,
the algorithm prevents the laser from retracing portions
of the line already visited.

The tree search and adhoc neighbor search both showed
similar results when tracing the lines. The tree search
precomputed the target list. This allows the operator to
estimate the percent of the line remaining to be traced
while the laser is in motion. In contrast, the adhoc neigh-
bor search does not contain knowledge of the remaining
amount of untraced pixels.

The width of the laser played a role in the percent of
the lines traced. The 0.5 mm wide laser did not succeed
in tracing 100% of any of the lines. The error could be
reduced for the 0.5 mm laser by moving the robotic arm
closer to the line or by improving the accuracy of the servo
motor positions. This would allow the tolerance between
the laser and target to be reduced. The 1.0 mm wide
laser was able to trace 100% or near 100% of the line in
the majority of the lines. The exception cases would be
where the longest path algorithm ignored a portion of the
line. The few pixels missed in the traces with near 100%
during the 1.0 mm wide laser traces could be improved
upon by increasing the number of target points. This
would allow the laser to better react to changes of slope
in the lines.

DESCRIPTION OF THE
ROBOTIC ARM

The robotic laser arm is controlled by positioning soft-
ware running on a PC using visual feedback provided by

a single camera. The robotic arm is comprised of six
servo motors controlling position and orientation of the
endpoint, where a 5 mW laser (650 nm) is mounted. An
Arduino micro-controller generates six pulse-width mod-
ulated (PWM) signals to position the servo motors. The
servo motors can rotate 0 to 180 degrees, which corre-
sponds to 600 - 2400 usec, respectively. The servo motors
are physical centered at 90 degrees (1500 usec) at power
of the robot.

The Arduino micro-controller receives position com-
mands from the PC, which are converted to PWM signals
to position the servo motors. Communication between
the PC and the micro-controller is established using a
universal serial bus (USB). Whenever a command is send
from the PC to the micro-controller, the micro-controller
executes the command, and returns the current servo mo-
tor positions. The laser state can be set to either on or
off; and can also be set to blink at some periodic rate.

The analog joysticks are used to manually position the
robotic arm. While manually positioning the robotic
arm, the USB port to the Arduino micro-controller must
be disconnected since PC positioning commands override
analog commands. This feature is highly instrumental
when manually bore sighting the system. The robotic
arm should be adjusted such that traveling along the X-
axis and the Z-axis does not generate significant cross-
talk. The Y-axis is aligned orthogonal (depth) to the tar-
get range and the servo motors should remain centered
or 90 degrees +/- a small offset.

Figure 8 shows the physical dimensions of the robotic
arm. Each position and orientation servo motor is set to
90 degrees (1500 usec). While maintaining orthogonality
to the range, the robotic arm can travel a maximum dis-
tance of 43.254 cm along the x-axis and 23.127 cm above
its horizontal plane (z-axis). Moving below the horizon-

tal plane is limited by the distance to the ground plane
which is approximately 15 cm.

REFERENCES

[1] Yinshui He, Yanling Xu, Yuxi Chen, Huabin Chen,
and Shanben Chen. Weld seam profile detection
and feature point extraction for multi-pass route
planning based on visual attention model. Robotics
and Computer-Integrated Manufacturing, 37:251–261,
2016.

[2] M.S Hussin, Daut Firdaus, and Jufriadi A. Shahril.
Robotics application in arc welding a review on cur-
rent progress. Int. J. of Mechanical Computational
and Manufacturing Research, 2(1):1–5, 2013.

[3] Hong Luo and Xiaoqi Chen. Laser visual sensing for
seam tracking in robotic arc welding of titanium al-
loys. The International Journal of Advanced Manu-
facturing Technology, 26(9-10):1012–1017, 2005.

[4] Štefan TOTH Matej MEŠKO. Laser spot detec-
tion. Journal of Information, Control and Manage-
ment Systems, 11(1), 2013.

[5] Hairol Shah, Marizan Sulaiman, Ahmad Shukor,
Muhammed Jamaluddin, and Mohd Rashid. A re-
view paper on vision based identification, detection
and tracking of weld seams path in welding robot en-
vironment. Modern Applied Science, 10(2):1913–1952,
2016.

[6] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image
Processing, Analysis, and Machine Vision. Thomson-

Engineering, 2007.

