
“Stacking the Deck”
Attack on Software Updates:

Solution by Distributed Recommendation of Testers

Khalid Alhamed, Marius C. Silaghi, Ihsan Hussien, Ryan Stansifer, Yi Yang
Florida Institute of Technology

Abstract— The discussed “Stacking the Deck” attack and
our solution are relevant only to software controlled by loosely
constituted communities. Developers can change their vision and
abandon features that are essential for certain users. Moreover,
well funded attackers can effectively take control of a project by
orchestrating the transfer of the leadership of the developers to
people that they control. We propose a mechanism to reduce the
level of trust that users are required to have in the maintainers of
free and open-source agent software. In fact, with the proposed
method, it is sufficient for the user to trust that his constellation
of independent testers are safe from attack, even as all testers
may be subject to different attacks.

Our solution inserts independent intermediaries (testers) be-
tween the developers and the end-users. To encourage inde-
pendence of the testers, essential for the desired security, a
distributed recommendation mechanism is employed, suggesting
testers for end-users based on preferences of immediate con-
nections, and on the frequency of usage of these testers in her
neighborhood. Metrics of success and experiments for identifying
promising parameters are reported.

I. MOTIVATION

A free GPL open-source agent system for supporting pe-

titions drives, like DirectDemocracyP2P [1] (DDP2P [http:

//directdemocracyp2p.net/]), is under heavy development even

after its release, and so it needs an automated update mecha-

nism.

Given the main application of such a system, namely

petition drives, eventually somebody will use the system

to get signatures for a petition that is not liked by, say,

BIG MONOPOLY INC. Currently, an easy way for BIG

MONOPOLY INC to fight against the petition drive process

is to disrupt the DDP2P software via its automatic updates.

Since DDP2P is maintained by volunteers, the attack would

proceed as follows.

First, BIG MONOPOLY INC officers can offer a good

job to the volunteer maintainers and have them replaced

with people that they control. Once BIG MONOPOLY INC

controls the DDP2P maintenance process, they can introduce

features that disable or somehow disrupt the petition drive

processes annoying them. These attacks can be so subtle that

it may take a long time for any user to even realize what is

happening. For example, an automatic update can slow down

the dissemination of the votes for one targeted petition. By the

time users detect the attack, the whole agent system may be

compromised and its data may be lost for ever, and volunteers

lack a mechanism warn users. Let’s refer this as the Stacking
the Deck Attack.

Our solution here is to insert independent intermediaries

between the developers and the end-users, intermediaries that

can eventually detect and then warn or hamper the automatic

damage of the whole process. Once a Stacking the Deck

Attack is detected, other volunteers can start new branches

(given that the code is free open source). This opportunity

provided by free open source is why we make the assumption

to handle such projects in the rest of the paper.

These intermediaries can detect certain attacks based on

independent testing of the software. As such, the assumption of

independence is essential for increasing the trust and resilience

of the whole process. A way to encourage independence of the

intermediaries (in a slow mixing social network expected for

DDP2P) is provided by a distributed recommendation mech-

anism, where testers used by closer but fewer neighbors are

given higher ranking. Here we report on this recommendation

system.

II. BACKGROUND

Decentralized protocols are used for recommending re-

sources such as links and files among agents [2], [3]. Sig-

nificant work exists on updates of software. General update

problems, like breaking dependencies between packages due

to a removal of some important feature, buggy updates or

incompatible updates, are addressed in [4]. A classification of

several known security issues is described in [5], [6]. Some-

times the software handles its own updates, while in other

cases the operating system performs the automatic updates

via package managers [7], [8]. The issues that have to be

addressed by systems for automatic updates to free software

can be substantially different from issues with updates to

commercial software, where licenses have to be verified [9],

[6] but responsibility for the updates quality is centralized by

the merchant. A schema for disseminating large updates based

on a chain of fragments authenticated efficiently by including

the hash of the next fragment in the previous authenticated

fragment is proposed in [5]. A technique for asynchronously

rekeying secure communication for updates is proposed in [6].

Recent research has already identified the fact that using

more then one key can help to improve security of updates

systems against attacks. The observation was that when up-

dates are signed with several keys, the work of the attacker

2013 IEEE/WIC/ACM International Conferences on Web Intelligence (WI) and Intelligent Agent Technology (IAT)

978-1-4799-2902-3/13 $31.00 © 2013 IEEE

DOI 10.1109/WI-IAT.2013.123

293

is more difficult than for breaking a single key. The solution

proposed in [10] generates the various keys starting from a

root key, and the whole process is executed under the control

of one entity. An attack against this entity or against its root

key is still able to compromise the whole system, and its

suggested mechanism to minimize risks consists of storing root

keys on offline computers [10]. The implementation suggested

in [10] for the aforementioned idea is to use separate keys for

various roles, such as: the content of updates (targets role and

delegated targets role), the availability of updates (timestamp

role).

III. CONCEPTS

Quality Definitions. Often programmers develop software

trying to achieve a set of predefined requirements specified

in a Requirements Document. In the proposed approach, for

each new release, programmers provide a standard definition

of the claimed qualities of the provided software: Quality

Definitions (QDs). The QDs specify the software requirements

that are considered to be successfully accomplished in this

release [11], [12]. Once defined, future releases cannot redefine

a previous definition (but rather can add new ones), thereby

helping testers to warn users of Stacking the Deck Attacks.

In the absence of this procedure, a Stacking the Deck attacker

could remove the definitions for the properties that she dis-

ables. Further, testers can add their own additional qualities

definitions.

Example 1: The DDP2P software has the following claimed

qualities:

• support of Windows 7.

• it is impossible to falsely attribute an item to another

agent.

• resilience from censorship.

• easy to learn and use (usability).

• each agent controls what data it stores and what data it

disseminates.

• each agent eventually gets the data of interest for her,

when the data is disseminated by a directly connected

agent.

Users can flag some of these qualities with a threshold to

block automatic updates when one of them is not sufficiently

supported.

Binary Builder. A binary builder is a deterministic function:

V : (�Σ, ε)→ β

which associates a unique binary β with a given source �Σ and

set of compilation parameters ε (compiler version, options and

target architecture).

It is essential for the binary builder to be deterministic in

order to guarantee that a digital signature generated by a tester

for the result β of her own compilation of sources �Σ that

she analyzed is applicable to the binaries built and distributed

by others. If the binary builder is not deterministic, then one

cannot aggregate recommendations from multiple independent

testers. This is detailed later in the Analysis section.

Testers. Our framework brings independent testers into the

mechanism for ensuring the quality of free and open-source

software (FOSS). The assumptions are that:

• testers can study each release independently.

• testers provide Quality of Test (QoT) and Results of Test

(RoT) information

• testers append their signature to the release, signing the

data identifying it (version, file names, hashes) and their

quality evaluation (QoT, RoT).

Example 2: Consider the first QD of Example 1, “support
of Windows 7”:

• quality of test: the possible values are (empty or 0: not

tested, 0.25: only half of the relevant test-cases were run,

0.5: only binaries were tested, 1: binaries were tested and

source was inspected). In Table I, tester A has tested only

the binaries, so she specified 0.5 as value for QoT on

support of Windows 7
• result of test: the possible values are (0: not compiling,

0.5: executing with flaws, 1: running well). In Table I,

tester A has tested the binaries and found some flaws,

so she specified 0.5 as value for RoT on support of
Windows 7

TABLE I
QD AND TESTERS CERTIFICATES ON QOT & ROT

Quality Review. The quality review (or certificate) provided

by a tester for a given binary release consists of a digitally

signed package describing the name of the release, the compi-

lation parameters and target architecture, the names, sizes and

digest values of each file in the binary release, as well as the

definition and quality of his own tests and a score quantifying

the result of these tests.

Quality reviews are attached with releases to warn users of

potential issues and attacks. A user can refuse updates that are

not accompanied by quality reviews from her trusted testers.

IV. RECOMMENDER SYSTEM FOR TESTERS

Testers play an essential role in our mechanism for auto-

updating FOSS build on agent architectures, and their in-

dependence is essential for the resistance to Stacking the

Deck Attacks (where the attacker can orchestrate to take

over the control of the test process). The question here is

how can agents know about the available testers, and how

294

Fig. 1. Overall Architecture of the Recommender System

can agents trust these testers, without a centralized recom-

mendation system that can be taken over by the attacker.

We provide a distributed recommendation mechanism, where

testers are advertised to other agents. Weights are used to rank

recommended testers.

A. Heuristics for Systems Recommending Testers

While there are various ways to build systems that rec-

ommend testers to end-users, we now highlight principles

that can help maximize security. The main one refers to the

independence of the testers,

Principle [Decentralization] The recommendation procedure
should not be under the control of a limited number of users.

Without this principle an attacker controlling the recommender

system can filter only testers that she controls. Even with a

decentralized recommender, the criteria of a recommender can

be exploited to focus on a few testers (which being few can

be easier attacked). A heuristic to help distribute the trust

away from a small kernel, is to take into account proximity

(assuming the end-users are themselves distributed reasonably

well).

Heuristic [Proximity] As a heuristic for independence of
testers one can give priority to testers that are close (or far)
to the user, in terms of some social network.

Another heuristic gives priority to testers that are used by

fewer neighbors, as a mechanism to improve diversification.

Heuristic [Diversity] As a heuristic for independence of
testers one can give priority to testers that are used by fewer
neighbors, in terms of some social network.

B. Recommender System for testers

For agent systems, such as DDP2P, there exists an intrinsic

social network as defined by the connections of each agent

(or constituent). In one such scheme, testers used by an agent

are recommended to neighboring agents. Each tester being

associated with a weight (trust coefficient), this weight can

decrease with each level of forwarding (using an amortization

coefficient). This amortization is a mechanism to implement

a version of the aforementioned heuristic, namely of giving

priority to testers that are close to the user in terms of the

social network.

By default, the recommendation made to an agent for a

tester has the weight given by the maximum value among

the weights coming on all its links. Users can overwrite this

default for themselves by increasing or decreasing the weight

manually. The recommendation is forwarded only if the user

manually accepts to use the recommended tester. If a user

decides to not use a tester that was recommended to her, we

assume that she does not trust that tester and therefore she

will not pass the recommendation to others. This mechanism

improves scalability since testers are not propagated infinitely.

Users can define and act themselves as testers, or introduce

manually testers they personally know and trust. Based on

this scheme, their neighbors receive high recommendations

for them.

For example, assuming the amortization coefficient is 90%

(i.e., the trust coefficient is reduced with 10% for each new

link in the chain of recommendation), the obtained recom-

mendation in an agent system is shown in Figure 1. As shown,

there are six agents (P1,...,P6) that use two testers: T1 and T2.

The user of P5 introduces and uses T1 as a trusted tester and

she has started giving T1 a 100% as weight. P3 introduces

and uses the tester T2, whom she also assigns a weight of

100%. Both P3 and P5 pass their selected testers information

to neighboring agents. In Figure 1, P3 announces T2 to her

neighbors agents P2, P4 and P5 which see T2 recommended

with the weight 90% (0.9*100%). Also, P5 recommended

T1 to her neighbors agents P1, P2 and P3 which see the

weight 90%. Based on these recommendations, P2 and P4

have decided to use T2 as trusted tester and forward T2’s

information to P1 which see the associated weight 81% (0.9

* 90%). In addition, P1 has decided to use T1 as a trusted

tester (P1 had the choice to use T2[81%] or T1[90%] or both).

However, P3 has decided to use T1 as trusted tester beside T2.

C. Messages Exchanged

To exchange the information about testers between agents,

we are now formalizing the concept of the tester item. We

assume that global identifiers (GIDs) are used to uniquely

specify agents and testers (as done by common agent plat-

forms).

A tester item is a tuple 〈τ,A,W, d,P,S〉, where τ is

the GID (public key) of the tester, A is the address where

the tester can be contacted for retrieving her mirrors, W is

the weight of the recommendation made to the sender by

the system (amortized aggregated value it received from her

neighbors, and which can have been manually overwritten by

the sender), d is the timestamp of the given weight, P is

the GID of the sending agent and S is the digital signature

with which the sender authenticates the provided weight:

S = SIGN(SK(P), 〈τ,A,W, d〉).

295

Only the newest tester item is stored for a given pair 〈τ,P〉,
as per the timestamp d. Each received tester item from each

agent is stored along with the arrival date. This arrival time is

used during synchronization with neighbors, to keep track of

already exchanged tester items.

Testers manually introduced by the user are given a

fixed weight (e.g. 100%). Given a set of n tester items

〈τi,Ai,Wi, di,Pi,Si〉 received from agents, the current

weight of the recommendation made to the user for tester τi
is computed as:

f · (1− #{i|τi = τj}
K · n) ·max{Wj |τi = τj}. (1)

where f is the amortization factor, K is a factor modeling the

trade-off between proximity and diversity (K ≥ 1, typically

K = 2), {a|b} denotes the set of elements a for which the

condition b holds, #A is the cardinality of the set A, and

max(A) is the maximum numerical element of the set A.

In case a user decides to revert to a previous software

version and invocates dissatisfaction with some properties in

the QoD of the system, a penalty p is added to the weight

of the testers that have recommended low scores on those

properties and is subtracted from the weight of the testers

that have recommended high scores for those properties. The

penalty is weighted proportional with the deviation of their

QoT*RoT from 0.5: Wfinal −Winitial ∼ 0.5−QoT ∗RoT .

initial For example, if all neighbors recommend only one and

same tester, Equation 1 recommends that tester with a weight

given by half of the maximum weight received from neighbors

(when K=2), amortized with the factor f .

In another example, if the user has many neighbors and

a given tester is recommended by only one of them, the

received recommendation is a large fraction, Kn−1
Kn , of the

weight received from that neighbor, amortized with f .

Note: with the described mechanism, once a user influences

many of her neighbors to switch to the same testers as she

selected, then she will be recommended different testers (for

diversification), and the recommendation of the original testers

is decreased. This does still not lead to an iterative decrease to

0 of all recommendation weights, as some weights are pinned

at certain values by users manually setting values for them.

While a user does not manually select testers from the

recommended list, and does not manually introduce any, the

system automatically uses the top recommended fraction of the

recommended testers (up an upper limit, in our experiments

we set this fraction to 10 testers). Once a user manually selects

testers based on the available recommendations, then her list

of tester is no longer automatically classified. Each time a new

tester is selected, the tester is automatically contacted at the

provided address for a list of mirrors using her reviews.

D. The Frequency of Testers Replacement

All the testers known by an agent are stored in a list KT ,

sorted by their weight. Each agent maintain a list of used

testers, UT . Advanced users populate this list manually while

remaining users get their UT list populated automatically by

the distributed recommender system. Based on the computa-

tion model in Equation 1, agents evaluate the weight of the

testers in KT based on the the recommendations received

from their links. With a certain frequency (e.g., daily) an

agent recomputes the weights of each of the testers it knows

and sends a message to its links, describing the testers in its

UT , as well as a number kt of other top testers in KT . The

more different tester configurations are adopted by an agent,

the higher is the risk that a configuration controllable by an

attacker is eventually selected. In order to reduce the amount

of experienced tester configurations an agent only switches a

single tester at a time, and only with a certain probability, p.

V. ANALYSIS

A. Requirements on Testers

Testers can release signed reviews for an analysis of the

software based on its sources. The tester can also issue reviews

for binaries compiled by others, but then she cannot be sure

about her analysis of the source code (as she cannot verify

that the binary she studies is indeed based on the source that

she can access).

If the tester want to release reviews for a given binary re-

lease (coupled with results of direct inspection of the sources),

the only requirement is that they use a binary builder (a

compilation process that leads to the same binaries). That is

typically achieved if they compile with the same compiler

options, and with the same version of the compiler. For

example, with Java, the same binary is achieved from any

machine and distribution of Linux if the same java compiler is

used. In general, testers contributing to a given binary release

do not need to have identical testing machines.

The advantage of a Java binary is that it runs on any

operating system, and therefore signed test results on any

platform (e.g., Linux) are automatically applicable to binaries

running an many platforms (Windows, Mac).

B. Security Evaluation

Our proposal satisfies all the guidelines for security defined

in the state of the art (listed in the background), including

the more recent principle of reliance on multiple secret keys.

Moreover we introduce an additional security feature: namely

that the owners of the various secret keys can be independent

(which can only make attacks harder).

VI. ARCHITECTURE

A binary release of open source software undergoes four

processes (see Figure 2):

A) Development process. Developers keep improving the

OSS by adding new features or solving current faults.

They use a centralized source repository and versioning

operations (e.g., export, checkout, checkin) to manipulate

files and produce the next release candidate [13]. To

help testers and users tune their expectations for the new

release, developers provide a set of quality definitions

(QDs). Information about the latest release candidate,

including version number, releasing date, source code and

296

Fig. 2. Overall Architecture of Integrated Development, Testing and Updates

Symbol Description
�Σ release sources
ν version identifier (i.e., 1.2.0)
�Φ quality definitions added by a developer
d release date
τ tester ID
β binary software
�η information for release files
ε release building parameters
ε Boolean flag, false for ε = ⊥
t the date of the test data
�Υ quality definitions added by a tester
�Θ vector of Qualities of Tests
�Ψ vector of the Result of Tests
A tester address
W tester weight
�Δ testers trusted by user
P message sender
S digital signature
δ secret key
⊥ empty value (i.e. null)

TABLE II
TABLE OF SYMBOLS

QDs is always available to users, testers, distributors (and

the general public) in the source repository.

Formally, the output of the development process is the

tuple 〈�Σ, ν, �Φ, d〉 where �Σ stands for the release sources,

ν is the version identifier, �Φ represents the quality defini-

tions and d is the release date. The development process

can also recommend a set of compilation parameters ε
for various targeted systems.

B) Testing process. Testers use the source repository to

export (download) the source code of the new update.

They are expected to perform the necessary testing based

on the QDs provided by the OSS developers. They can

also test additional properties (based on their judgment).

Such tests are made to inform the users (and implicitly

developers) about the qualities of the release. As a result

of this process, testers will provide both: an assessment

of the Quality of Tests (QoTs) and a report on the Result

of Tests (RoTs).

Each tester has the freedom to only test a subset of the

specified QDs. For example, a security specialist tester

may want to only test properties related to security (see

tester C in Table I). Similarly, a tester specialized on

Linux can test properties related to Linux (see tester B

in Table I). Each tester compiles and builds her own

binaries from the source by using the binary builder
function as mentioned early in the concept section. This

will guarantee that the binaries she signs are the ones

corresponding to the source that she inspects. The tester

certifies the binary update by providing a digitally signed

package with the necessary information such as version

number, releasing date, QDs, and her QoTs and RoTs.

Formally, the output of the testing process is a tuple

〈τ, β, �η, ν, ε, �Φ, �Υ, �Θ, �Ψ, d,S〉 where τ is the ID of this

tester, β is the binary software, �η is a set of files informa-

tion including (file names, size and hash values of files

content), ε is the release building parameters (target archi-

tecture and compiler version and options), �Υ is the set of

additional quality definitions added by this tester, �Θ is the

vector of Qualities of Tests, �Ψ is the vector of the Result

of Tests and S = SIGN(δ, 〈�η, ν, ε, �Φ, �Υ, �Θ, �Ψ, d〉) is the

associated digital signature created with the secret key δ
of the tester.

A tester can issue a review based on her study of the

source code of the OSS. Such a review is applicable to

any ε, it which case it is issued with a special value for

ε, ε = ⊥ (empty). The signature is this case is computed

for �η = ⊥. S = SIGN(δ, 〈⊥, ν,⊥, �Φ, �Υ, �Θ, �Ψ, d〉)
C) Integration process. A mirror maintainer integrates β as

obtained from a tester with the quality reviews, each

of them of type (τi, β, ν, ε, �Φ, �Υi, �Θi, �Ψi, d,Si), from

n different testers for the release candidate (ν, ε) or

(ν,⊥) into a single update/release package, where i is

used to enumerate over the available testers. If a tester

issue reviews both for (ν, ε) and for (ν,⊥), keep only

the one for (ν, ε). This integration improves both OSS

quality evaluation and end-user security. Each tester has

signed the new release information and evaluation and

this signature is part of the integrated update/release

package. Finally, mirror maintainers make the release

package available via their distribution channel (e.g.,

mirror servers, CDs).

Formally we describe the release package with the

tuple 〈β, ν, ε, �Φ, d,Γ〉 where Γ is a set of tuples

{〈τi, �Υi, �Θi, �Ψi, ε, t,Si〉}, τi is the ID of tester i, ε is

a Boolean specifying whether the review is issued for

ε = ⊥, t is the date of the test data, �Θi is the Quality of

Tests vector from tester i, and �Ψi is the Result of Tests

vector from tester i.
D) Update/Install process. A client keeps polling his trusted

mirrors for new updates. If a new update (ν, ε) is avail-

able at a mirror m, then its information and associated

quality reviews in 〈�η, ν, ε, �Φ, d,Γm〉 are downloaded from

all mirrors where it is available. All the available Γm

from all mirrors m are integrated into a single set of

quality reviews: Γ =
⋃

m Γm. The quality reviews in

297

〈�η, ν, ε, �Φ, d,Γ〉 are then evaluated. Trusted testers for

novice users are selected using the P2P recommender

system embedded into the application, while advanced

users specify their preferred testers. If automatic updates

are enabled and user-defined criteria concerning required

tester support and minimal quality levels are satisfied,

then the binary will be downloaded, authenticated and

installed. Any user u can specify complex criteria for

triggering automatic acceptance of a new update package,

such as the special constellation of testers and QoT/RoT

values, of which a (tu, nu) threshold scheme for trusting

any tu out of nu user-selected testers is just a special

case. If automatic updates are disabled, users can inspect

the quality reviews and make their decision.

VII. DECISION MAKING FOR ACCEPTING AUTOMATIC

UPDATES

In this section we detail the procedure followed by an

agent to decide whether to download and install new updates

automatically (see algorithm 1). The function evaluteUpdate()

verifies that the conditions set by user for automatically

accepting new updates are satisfied and returns true on

success. The two parameters used by it are:

• The quality reviews of an update binary release, aggre-

gated in the tuple: 〈�η, ν, ε, �Φ, d,Γ〉
• The user predefined conditions for each quality definition,

aggregated in the tuple: 〈w, c, μ, �Δ〉 where w is the mini-

mum total weight of trusted testers supporting the update,

c is the minimum number of trusted testers supporting the

update, μ is the method used to evaluate trusted testers

(with possible values: WEIGHT and COUNT), �Δ is the

list of all testers trusted by the user.

After ε is found relevant for the current system,

the algorithm compares the current software version

(currentV ersion) with the newly received update version (ν).

If currentV ersion is not older, then reject the update. The

total weight of the trusted testers supporting this update and

their count is computed and stored in the variables total wt
and cnt testers, respectively (Lines 4, 5, 18 and 22). The

combined quality of tests and results are maintained in the

vectors crt QoT and crt RoT (see Lines 6, 7, 19 and 21). A

sample combination function for QoT is max and for RoT
is min. crtWeight returns the weight of tester given user

configuration and her own evaluation of her quality of tests.

In order to calculate: total wt, cnt testers, crt QoT and

crt RoT , we need to iterate over all testers in Γ (Line 9).

If a tester’s identifier, τ (digest of its public key), is not

found in the list of trusted testers, �Δ, then its review is

excluded from Γ (Lines 12 and 13). The revocation status of

the public key from τ is checked using available methods, e.g.:

CRL, OCSP (Line 15). Reviews from revoked or unknown

testers are discarded by the continue operation. Reviews from

trusted testers are verified using stored public keys (Line 16).

This public key is returned by PK(τ). If the signature of

the review is not valid then that review is excluded from Γ

Algorithm 1: End-user algorithm for accepting automatic

updates

1 function evaluateUpdates(〈�η, ν, ε,�Φ, d,Γ〉, 〈w, c, μ, �Δ〉)
−→ Boolean

2 if (ν not newer than currentVersion) then
3 return false;

4 total wt← 0;

5 cnt testers← 0;

6 crt QoT ← [0, ...0];
7 crt RoT ← [0, ...0];
8 remove double occurrence of testers in Γ (prefer

occurrences with newer date t and more specific,

ε
= ⊥);

9 foreach (〈τ, �Υ, �Θ, �Ψ, ε, t,S〉 ∈ Γ) do
10 ε′ ← ε; �η′ ← �η;

11 if (¬ ε) then ε′ ← ⊥; �η′ ← ⊥;

12 if (τ
∈ �Δ) then
13 Γ ← Γ \ {〈τ, �Υ, �Θ, �Ψ,S〉};
14 continue;

15 if (revoked(PK(τ))) then continue;
16 r ← verify(PK(τ), 〈�η′, ν, ε′, �Φ, �Υ, �Θ, �Ψ, d,S〉);
17 if r = true then
18 total wt← total wt+ getWeight(τ, �Θ);

19 crt QoT ← combineQoT (crt QoT, �Θ, τ);
20 crt RoT ←
21 combineRoT (crt RoT, �Ψ, �Θ, τ);
22 cnt testers← cnt testers+ 1;

23 else
24 Γ ← Γ \ {〈τ, �Υ, �Θ, �Ψ,S〉};
25 if (getRequiredTesters()
⊆ Γ) then return false;

26 if (crt QoT
≥ getRequiredQoT ()) then
27 return false;

28 if (crt RoT
≥ getRequiredRoT ()) then
29 return false;

30 if (μ =WEIGHT) then
31 return (total weight ≥ w);

32 if (μ = COUNT) then
33 return (cnt testers ≥ c);

(Line 24). Function getRequiredTesters() return a list of the

testers without whose supporting reviews the user refuses any

automatic update (Line 25).

Function getRequiredQoT() (used in Line 26) returns the

vector containing the minimum amount of testing as required

by the user for accepting an automatic update. This condition

is evaluated in Line 26 where each entry of crt QoT must be

greater or equal to the corresponding required value. Function

getRequiredRoT() (used in Line 28) returns the vector con-

taining the minimum result for each test as required by the

user for accepting an automatic update. If any entry in the

298

crt RoT is smaller than the corresponding entry in the result

of getRequiredRoT , then the update is abandoned. Based on

the value of a given μ, trusted testers can be evaluated either

based on their total weight (Line 30) or based on their total

number (Line 32).

VIII. EXPERIMENTS

In order to evaluate the performance of the our distributed

recommender system for testers, we simulate instances with

the following characteristics:

• 10000 agents (P0..P9999) divided in 100 neighborhoods

(of 100 agents each). For example P0..P99 are in neigh-

borhood N1, P100..P199 in neighborhood N2, etc.

• Each agent is linked to 50 other agents. 48 of these links

are within the neighborhood of the agent (only 2 of the

links are out of the neighborhood).

• 100 testers (T0..T99), each introduced by an agent as

follows: P100i manually selects Ti for usage with weight

100%.

• Each agent not manually selecting its testers will auto-

matically use at most 10 testers, as per our mechanism.

• We evaluate the behavior for multiple values of the

parameters f, k, and p.

Our simulation works in rounds (intuitively the decisions

taken in one round corresponds to the decision taken at a

fixed interval by each agent: e.g., each day). In each round

of the simulation, all agents synchronously evaluate recom-

mendations from their links and decide new usage. We run

100 such rounds for each experiment and then analyze the

results.

The metrics used to evaluate the performance of each

version (e.g., set of parameters) are:

• Distribution. The distribution (usage) of testers among

agents should be correlated to their perceived quality

(as per an aggregated value of the weights provided

by the agents manually introducing them). However, the

differences should not be large, to avoid giving an over-

whelming power to attackers that succeed to manipulate

their weight.

• Local Stability. The set of testers used by a given

agent should be stable (not changing frequently). If this

set changes frequently then this increases the likelihood

that an attacker eventually get the opportunity (favorable

configuration of testers) to manipulate a given agent

into updating to a doctored version. The local stability

evaluates the frequency of switching testers for individual

agents.

• Global Stability. We want to avoid having high local

stability for some agents while other agent switch their

testers frequently. We measure the global stability as the

average of the local stability metrics for all agents.

• Casualties. We want to reduce the number of agents

taken over by the attacker. This number is computed by

counting how many agents eventually use a configuration

of testers that can be controlled as whole by the attacker

Fig. 3. Number of users trusting each tester after 100 rounds. The users are
supposed to follow the recommender system

(e.g., the majority of the testes are controlled by the

attacker).

Once an agent trusts a set of testers controlled by the attacker,

it will download a doctored version of the software (being a

casualty) and is itself taken over by the attacker. In theory, the

attacker can control the recommendations made by this agent.

However, based on the recommendation strategy we use here,

it is not trivial whether an attacker is better off recommending

controlled testers or un-controlled testers (recommending con-

trolled testers can induce the neighbors agents to avoid them,

since now those agents are too frequently used; on the other

side, recommending un-controlled testers wastes opportunities

to disseminate controlled ones). Given this dilemma of the

attacker, we currently let controlled agents to behave as the

other agents. Also, the recommender system can be designed

to be independent of the rest of the application being updated,

thereby making it immune to the stacking the deck attack.

A. Evaluation of Distribution

In the first reported experiment we show the distribution

(usage) of testers among agents after running the simulation

with 100 rounds. In this experiment, each agent switches to

the top 10 testers recommended to it in the round. The other

parameters are k = 2 and f = 0.9. As one can see in Figure 3

the standard deviation for tester usage is 331. For example (in

the worst scenario), assuming an attacker agent introduced the

malicious tester T21, one ends up with 2803 agents using T21

(maximum usage in this experiment).

We also run an experiment with p = 5%, k = 2 and

f = 0.9. One can see in Figure 3 that the standard deviation

for tester usage is reduced to 173. Now (in the worst scenario)

when an attacker agent introduce a tester T59, then T59 is

used by 1393 agents (maximum usage in this experiment)

which reduces its negative effects by more than 50%. Also,

the usage of each tester tends to be distributed over several

neighborhoods. For example T86 is used by 846 agents where

only 50 agents are from the same neighborhood N86.

B. Global Stability

In this experiment we compare two values for parameter f
based on global stability. Simulations with 50 rounds each are

299

Fig. 4. Global Stability: where k ∈ {1.1, 2} and the probability of
replacement is P = 5% [comparing parameter f = 0.9 and f = 0.7]

Fig. 5. Casualties after 50 rounds where f=0.7.

performed for the the parameters f = 0.7 and f = 0.9. Here

we use p = 5%. In Figure 4 we report results for k = 2 and

k = 1.1. The experiment suggests that the best parameters

values in these situations are f = 0.7 and k = 1.1%. More

experiments with additional values and more instances are

planned for the final version.

C. Casualties

An experiment based on simulations with 50 rounds each,

for the the parameters f = 0.7 and k = 1.1. is used to detect

the best value for the parameter p. The results in Figure 5 are

averaged over 10 instances for each of the values 5%, 15%,

and 25% for the parameter p. The experiment suggests that the

best parameter in this situation in p = 5%. More experiments

with additional values and more instances will be performed

in the future.

IX. CONCLUSIONS

We address the problem of free open source agent software

in applications of strategic importance (like petition drives).

We are concerned that such software can be the target of an

attack from well funded attackers, attack that we coin under

the name: “Stacking the Deck” attack. This attack consists of

orchestrating the transfer of the leadership of the development

team to people that the attacker controls, enabling a subsequent

degradation of the software via automatic updates.

The proposed framework introduces a decentralized author-
ity made up of a cloud of independent testers. Each of these

testers can have its own base of users that trust her based

on various reasons: reputation, personal contact, or based on

independent commercial contracts and services. We design

and propose a distributed recommender system for advertising

testers based on heuristics of proximity and diversification

meant to improve the chances of independence of the used

testers.

Each given user can trust multiple testers with various

degrees of trust and can flexibly specify required constellations

of Quality of Tests and Results of Tests from these testers in

order to automatically accept an update. A threshold trust, of

any tu out of user u’s nu selected testers, is just a special case

of the possibilities enabled by the proposed framework.

A set of metrics is defined for quantifying the promise of

investigated distributed recommendation system. These are:

Dispersion, Local Stability, Global Stability, and Casualties

Rate. We use simulations to evaluate the parameters of the pro-

posed mechanisms for distributed recommendation of updates

testers, looking for the most promising results with respect to

the aforementioned metrics.

REFERENCES

[1] M. C. Silaghi, K. Alhamed, O. Dhannoon, S. Qin, R. Vishen,
R. Knowles, I. Hussien, Y. Yang, T. Matsui, M. Yokoo, and K. Hirayama,
“DirectDemocracyP2P — decentralized deliberative petition drives —,”
in Proceedings of IEEE P2P, Trento, September 2013.

[2] M. Mordacchini, R. Baraglia, P. Dazzi, and L. Ricci, “A p2p recom-
mender system based on gossip overlays (prego),” in Computer and
Information Technology (CIT), 2010 IEEE 10th International Conference
on, 2010, pp. 83–90.

[3] Z. Yu and F. Liu, “Trust-based recommender system in p2p network,”
in Communication Systems and Network Technologies (CSNT), 2012
International Conference on, 2012, pp. 423–426.

[4] O. Crameri, R. Bianchini, W. Zwaenepoel, and D. Kosti?, “Staged
deployment in mirage, an integrated software upgrade testing and
distribution system,” in In Proceedings of the Symposium on Operating
Systems Principles, Bretton Woods, 2007.

[5] P. E. Lanigan, R. Gandhi, and P. Narasimhan, “Sluice: Secure dissemi-
nation of code updates in sensor networks,” in 26th IEEE International
Conference on Distributed Computing Systems, November 2006.

[6] D. K. Nilsson, T. Roosta, U. Lindqvist, and A. Valdes, “Key management
and secure software updates in wireless process control environments,”
in WiSec ’08: Proceedings of the first ACM conference on Wireless
network security. New York, NY, USA: ACM, 2008, pp. 100–108.

[7] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A look in the
mirror: attacks on package managers,” in Proceedings of the 15th ACM
conference on Computer and communications security, ser. CCS ’08.
New York, NY, USA: ACM, 2008, pp. 565–574. [Online]. Available:
http://doi.acm.org/10.1145/1455770.1455841

[8] Greg and Mark, “Update engine: Software updating framework for mac
os x,” http://code.google.com/p/update-engine/, 2013.

[9] W. Adi, A. Al-Qayedi, K. Negm, A. Mabrouk, and S. Musa, “Secured
mobile device software update over ip networks,” in SoutheastCon, 2004,
pp. 271 – 274.

[10] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
key compromise in software update systems,” in CCS’10, 2010, p. 61.

[11] R. Dromey, “Cornering the chimera [software quality],” IEEE Software,
vol. 13, no. 1, pp. 33 –43, jan. 1996.

[12] D. M. Nichols and M. B. Twidale, “The usability of open source
software,” in First Monday, volume 8, number 1, 2003.

[13] T. Dinh-Trong and J. Bieman, “Open source software development: a
case study of freebsd,” in IEEE Int. Symposium on Software Metrics,
2004, pp. 96–105.

300

