
ADOPT-ing: Unifying Asynchronous Distributed Optimization with

Asynchronous Backtracking

Marius C. Silaghi
Florida Institute of Technology

MSILAGHI@FIT.EDU

Makoto Yokoo

Kyushu University

YOKOO@IS.KYUSHU-U.AC.JP

Abstract

This article presents an asynchronous algorithm for solving Distributed Constraint Optimization problems

(DCOPs). The proposed technique unifies asynchronous backtracking (ABT) and asynchronous distributed

optimization (ADOPT) where valued nogoods enable more flexible reasoning and more opportunities for

communication, leading to an important speed-up. While feedback can be sent in ADOPT by COST messages

only to one predefined predecessor, our extension allows for sending such information to any relevant agent.

The concept of valued nogood is an extension by Dago and Verfaille of the concept of classic nogood that

associates the list of conflicting assignments with a cost and, optionally, with a set of references to culprit

constraints.

DCOPs have been shown to have very elegant distributed solutions, such as ADOPT, distributed asyn-

chronous overlay (DisAO), or DPOP. These algorithms are typically tuned to minimize the longest causal

chain of messages as a measure of how the algorithms will scale for systems with remote agents (with large

latency in communication). ADOPT has the property of maintaining the initial distribution of the problem.

To be efficient, ADOPT needs a preprocessing step consisting of computing a Depth-First Search (DFS) tree

on the constraint graph. Valued nogoods allow for automatically detecting and exploiting the best DFS tree

compatible with the current ordering. To exploit such DFS trees it is now sufficient to ensure that they exist.

Also, the inference rules available for valued nogoods help to exploit schemes of communication where more

feedback is sent to higher priority agents. Together they result in an order of magnitude improvement.

1. Introduction

Distributed Constraint Optimization (DCOP) is a formalism that can model problems distributed due to their

nature. These are problems where agents try to find assignments to a set of variables that are subject to

constraints. The reason for the distribution of the solving process comes from the assumption that only

a subset of the agents has knowledge of each given constraint. Nevertheless, in DCOPs it is assumed that

agents try to maximize their cumulated satisfaction by the chosen solution. This is different from other related

formalisms where agents try to maximize the satisfaction of the least satisfied among them (Yokoo, 1993). It

is also different from formalisms involving self-interested agents (which wish to maximize their own utility

individually).

The application of the distributed constraint optimization framework to modeling and solving multi-agent

meeting scheduling problems is detailed in (Modi & Veloso, 2005; Franzin, Rossi, E.C., & Wallace, 2004;

Maheswaran, Tambe, Bowring, Pearce, & Varakantham, 2004; Sultanik, Modi, & Regli, 2006). The appli-

cation to Distributed Generator Maintenance is described in (Petcu & Faltings, 2006a). An application to oil

pipelines is described in (Marcellino, Omar, & Moura, 2007), while an application to traffic light scheduling

is described in (Walsh, 2007). These problems have in common the fact that some constraints are originally

distributed among involved agents and are difficult to centralize due to privacy or due to other structural is-

sues. Among the techniques for handling DCOPs we mention (Hirayama & Yokoo, 1997; Maheswaran et al.,

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

2004; Petcu & Faltings, 2005b; Ali, Koenig, & Tambe, 2005; Chechetka & Sycara, 2006; Greenstadt, Pearce,

Bowring, & Tambe, 2006). ADOPT (Modi, Shen, Tambe, & Yokoo, 2005) is a basic DCOP solver.

ADOPT can be criticized for its strict message pattern that only provides reduced reasoning opportunities.

ADOPT works with orderings on agents dictated by some Depth-First Search tree on the constraint graph, and

allows cost communication from an agent only to its parent node. In this work we address the aforementioned

critiques of ADOPT, showing that it is possible to define a message scheme based on a type of nogoods, called

valued nogoods (Dago & Verfaillie, 1996; Dago, 1997), which besides automatically detecting and exploiting

the DFS tree of the constraint graph coherent with the current order, helps to exploit additional communication

leading to significant improvement in efficiency. The examples given of additional communication are based

on allowing each agent to send feedback via valued nogoods to several higher priority agents in parallel.

The usage of nogoods is a source of much flexibility in asynchronous algorithms. A nogood specifies a

set of assignments that conflict with existing constraints (Stallman & Sussman, 1977). A basic version of

the valued nogoods consists of associating each nogood with a cost, namely a cost limit violated due to

the assignments of the nogood. Valued nogoods that are associated with a list of culprit constraints produce

important efficiency improvements. Each of these incremental concepts is described in the following sections.

We start by defining the general DCOP problem, followed by introduction of the immediately related

background knowledge consisting of the ADOPT algorithm and use of Depth-First Search trees in optimiza-

tion. In Section 4.1 we also describe valued nogoods together with the simplified version of valued global

nogoods. In Section 5 we present our new algorithm that unifies ADOPT with the older Asynchronous Back-

tracking (ABT). The algorithm is introduced by first describing the goals in terms of new communication

schemes to be enabled. Then the data structures needed for such communication are explored together with

the associated flow of data. Finally the pseudo-code and the proof of optimality are provided before dis-

cussing other existing and possible extensions. The different versions mentioned during the description are

compared experimentally in the last section.

2. Background

Now we introduce in more detail the distributed constraint optimization problems, the ABT and ADOPT

algorithms.

2.1 Distributed Constraint Optimization

A DCOP can be viewed as a distributed generalization of the common centralized Weighted Constraint Sat-

isfaction Problems (WCSPs / Σ-VCSP) (Bistarelli, Fargier, Montanari, Rossi, Schiex, & Verfaillie, 1996;

Bistarelli, Montanari, & Rossi, 1995; Schiex, Fargier, & Verfaillie, 1995; Bistarelli, Montanari, Rossi, Schiex,

Verfaillie, & Fargier, 1999). We now give the definition of WCSPs, since the valued nogood concept we in-

troduce next was initially defined for WCSPs.

Definition 1 (WCSP (Larrosa, 2002; Bistarelli et al., 1996)) A Weighted CSP is defined by a triplet of

sets (X,D,C) and a bound B. X specifies a set of variables x1, ..., xn and D specifies their domains:

D1, ...,Dn. C={c1, ..., cm} is a set of functions, ci : Di1×...×Dimi
→ IN∞ where mi is the arity of ci.

Its solution is ǫ∗ = argmin
ǫ∈D1×...×Dn

∑m

i=1 ci(ǫ|Xi
), if

∑m

i=1 ci(ǫ ∗ |Xi
) < B, where Xi = Di1×...×Dimi

.

Definition 2 (DCOP) A distributed constraint optimization problem (DCOP), is defined by a set of agents

A1, A2, ..., An, and a set X of variables, x1, x2, ..., xn. Each agent Ai has a set of ki functions Ci =
{c1

i , ..., c
ki

i }, cj
i : Xi,j → IR+, Xi,j ⊆ X , where only Ai knows Ci. We assume that xi can only take values

from a domain Di = {1, ..., d}.
Denoting with ǫ an assignment of values to all the variables in X, the problem is to find

argmin
ǫ

∑n

i=1

∑ki

j=1 cj
i (ǫ|Xi,j

).

For simplification and without loss of generality, one typically assumes that Xi,j ⊆ {x1, ..., xi}.

By ǫ|Xi,j
we denote the projection of the set of assignments in ǫ on the set of variables in Xi,j .

2.2 DFS-trees

The primal graph of a DCOP is the graph having the variables in X as nodes and having an arc for each pair

of variables linked by a constraint (Dechter, 2003). A Depth-First Search (DFS) tree associated with a DCOP

is a spanning tree generated by the arcs used for first visiting each node during some Depth-First Traversal

of its primal graph. DFS trees were first successfully used for distributed constraint satisfaction problems

in (Collin, Dechter, & Katz, 2000). The property exploited there is that separate branches of the DFS-tree are

completely independent once the assignments of common ancestors are decided. Nodes directly connected

to a node in a primal graph are said to be its neighbors. The ancestors of a node are the nodes on the path

between it and the root of the DFS tree, inclusively. If a variable xi is an ancestor of a variable xj , then xj is

a descendant of xi.

2.3 ADOPT and ABT

ADOPT. ADOPT (Modi et al., 2005) is an asynchronous complete DCOP solver, which is guaranteed to

find an optimal solution. Here, we only show a brief description of ADOPT. Please consult (Modi et al., 2005)

for more details. First, ADOPT organizes agents into a Depth-First Search (DFS) tree, in which constraints

are allowed between a variable and any of its ancestors or descendants, but not between variables in separate

sub-trees.

ADOPT uses three kinds of messages: VALUE, COST, and THRESHOLD. A VALUE message com-

municates the assignment of a variable from ancestors to descendants that share constraints with the sender.

When the algorithm starts, each agent takes a random value for its variable and sends appropriate VALUE

messages. A COST message is sent from a child to its parent, which indicates the estimated lower bound of

the cost of the sub-tree rooted at the child. Since communication is asynchronous, a cost message contains

a context, i.e., a list of the value assignments of the ancestors. The THRESHOLD message is introduced

to improve the search efficiency. An agent tries to assign its value so that the estimated cost is lower than

the given threshold communicated by the THRESHOLD message from its parent. Initially, the threshold is

0. When the estimated cost is higher than the given threshold, the agent opportunistically switches its value

assignment to another value that has the smallest estimated cost. Initially, the estimated cost is 0. Therefore,

an unexplored assignment has an estimated cost of 0. A cost message also contains the information of the

upper bound of the cost of the sub-tree, i.e., the actual cost of the sub-tree. When the upper bound and the

lower bound meet at the root agent, then a globally optimal solution has been found and the algorithm is

terminated.

ABT. Distributed constraint satisfaction problems are special cases of DCOPs where the constraints cj
i can

return only values in {0,∞}. The basic asynchronous algorithm for solving distributed constraint satisfaction

problems is asynchronous backtracking (ABT) (Yokoo, Durfee, Ishida, & Kuwabara, 1998). ABT uses a total

priority order on agents where agents announce new assignments to lower priority agents using ok? messages,

and announce conflicts to higher priority agents using nogood messages. New dependencies created by

dynamically learned conflicts are announced using add-link messages. An important difference between

ABT and ADOPT is that, in ABT, conflicts (the equivalents of cost) can be freely sent to any higher priority

agent.

3. Comparison between the proposed technique (ADOPT-ing) and ADOPT/ABT

ADOPT-ing vs ADOPT The difference starts with adding justifications (SRCs) to ADOPT’s messages.

This explicitly bundles cost-related data into valued nogoods such that the destination of the nogood (cost)

messages can include other agents besides the parent. Internal data management is also different:

1. The DFS tree can be dynamically detected (in the ADOPT-ing version called ADOPT-Y , shown

later). It is based only on already used constraints.

2. ADOPT did not have add-link messages.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

3. In ADOPT (as a result of not using SRCs and not having our rules on the order for combination of

nogoods) messages could be sent only to the parent rather than to any ancestor.

4. ADOPT could not use explicit max-inference (because it did not maintain SRCs).

5. ADOPT did not maintain data structures (like lr and lastSent, presented later) to avoid resending the

same message several times and easy the network load.

6. ADOPT did not provide guidelines for using any additional storage other than the minimal ones

(ADOPT did not specify/have an equivalent of Lemma 6 with rules for using cost information).

7. New assignments arriving first via nogoods can be detected as such in ADOPT-ing (as in (Silaghi &

Faltings, 2004)) while in ADOPT they had to be considered old.

8. The distributed termination detection via maintenance of upper bounds in ADOPT is presented as

an option in ADOPT-ing, since the potential usage of ADOPT-ing simulators as WCSP solvers can

detect termination by direct detection of quiescence. Also, the technique is presented in the version

of ADOPT-ing in (Faltings, 2006) which unifies the original ADOPT termination detection with the

solution detection based on spanning trees that we introduced in (Silaghi, Sam-Haroud, & Faltings,

2000, 2001b) for distributed CSPs.

9. The way to prepare the threshold in THRESHOLD messages is different in ADOPT-ing versus ADOPT.

ADOPT-ing stores received costs in its ca structure and sends them back as thresholds when their

context is reused.

The cost in nogoods are the same as the lower bounds transmitted with ADOPT. The upper bounds used

in ADOPT to detect termination can be implemented similarly in ADOPT-ing, but we detected termination

by detecting quiescence in the simulator (which theoretically, as confirmed by experiments, does not produce

different results between the original implementation and our implementation of ADOPT). Another way to

implement the upper bound in ADOPT-ing is described in (Faltings, 2006), namely based on a boolean value

that simply specifies whether the upper bound equals the lower bound on that particular nogood.

The performance difference for the ADOPT-ing variants (other than ADOPT) comes from:

1. The sending of nogoods to earlier agent.

2. Improved inference by SRCs when nogoods are sent to earlier agents.

3. The lazy creation of the DFS tree (ensuring short trees).

4. Smaller and more targeted traffic by sending nogoods only where they are most needed.

ADOPT-ing vs ABT Unlike ABT:

• An ADOPT-ing agent may send possibly irrelevant messages to a given predecessor (its parent in the

current DFS tree). It does this to guarantee optimality given the non-idempotent aggregation operation

of DCOPs.

• The nogood messages have an associated cost and justification (SRCs). These are used to find the

assignments with the least conflicts in case of an unsatisfiable problem.

• The solution detection based on spanning trees that we introduced for versions of ABT in (Silaghi et al.,

2000, 2001b) also publishes the assignments in the found solution, and can lead to termination before

quiescence. The optional version described for ADOPT-ing does not pass the local assignments and

therefore does not gather in the root agent the assignments of the found solution. Unlike in (Silaghi

et al., 2000), it also cannot reach early termination through solutions detected due to asynchronous

changes, before quiescence (when partial solutions from agents happen to intersect). This would be

possible in ADOPT-ing only if all non-infinite aggregated costs of each given agent would have the

same value.

4. Preliminaries

4.1 Cost of nogoods

Previous flexible algorithms for solving distributed constraint satisfaction problems exploit the inference

power of nogoods (e.g., ABT, AWC, ABTR (Yokoo, Durfee, Ishida, & Kuwabara, 1992; Yokoo et al., 1998;

Silaghi et al., 2001b))1. A nogood ¬N stands for a set N of assignments that was proven impossible, by

inference, using constraints. If N = (〈x1, v1〉, ..., 〈xt, vt〉) where vi ∈ Di, then we denote by N the set of

variables assigned in N , N = {x1, ..., xt}.

4.1.1 VALUED GLOBAL NOGOODS

In order to apply nogood-based algorithms to DCOP, one redefines the notion of nogoods as follows. First,

we attach a value to each nogood obtaining a valued global nogood. These are a simplified version of

Dago&Verfaille’s valued nogoods introduced next, and are basically equivalent to the content of COST mes-

sages in ADOPT.

Definition 3 (Valued Global Nogood) A valued global nogood has the form [c,N], and specifies that the

(global) problem has cost at least c, given the set of assignments N for distinct variables.

Given a valued global nogood [c, (〈x1, v1〉, ..., 〈xt, vt〉)], one can infer a global cost assessment (GCA)

for the value vt from the domain of xt given the assignments S = 〈x1, v1〉, ..., 〈xt−1, vt−1〉. This GCA is

denoted (vt, c, S) and is semantically equivalent to an applied valued global nogood (i.e., the inference):

(〈x1, v1〉, ..., 〈xt−1, vt−1〉)→ (〈xt, vt〉 has cost c).

The following remark is used in our algorithms whenever an agent receives a valued global nogood.

Remark 1 Given a valued global nogood [c,N] known to some agent, that agent can infer the GCA (v, c,N)
for any value v from the domain of any variable x, where x is not assigned in N , i.e., x 6∈ N .

Proposition 1 (min-resolution) Given a minimization WCSP, assume that we have a set of GCAs of the form

(v, cv, Nv) that has the property of containing exactly one GCA for each value v in the domain of variable xi

and that for all k and j, the assignments for variables Nk ∩Nj are identical in both Nk and Nj . Then one

can resolve a new valued global nogood: [minv cv,∪vNv].

4.1.2 DAGO AND VERFAILLE’S VALUED NOGOODS

We would like to allow free sharing of nogoods between agents. The operator for aggregating the weights of

constraints in DCOPs is +, which is not idempotent (i.e., in general a+a 6= a). Therefore a constraint cannot

be duplicated and implied constraints cannot be added straightforwardly without modifying the semantic of

the problem (which was possible with distributed CSPs (Schiex et al., 1995; Bistarelli et al., 1999))2. Two

solutions are known. One solution is based on DFS trees (used by ADOPT), while the second is based on

justifications. We will use both of them.

Remark 2 (DFS sub-trees) Given two GCAs (v, c′v, S′
v) and (v, c′′v , S′′

v) for a value v in the domain of vari-

able xi of a minimization WCSP, if one knows that the two GCAs are inferred from different constraints,

then one can infer a new GCA: (v, c′v + c′′v , S′
v ∪ S′′

v). This is similar to what ADOPT does to combine cost

messages coming from disjoint problem sub-trees (Modi, Tambe, Shen, & Yokoo, 2002; Collin et al., 2000).

1. Other algorithms, like AAS, exploit generalized nogoods (i.e., extensions of nogoods to sets of values for a variable), and the

extension of the work here for that case is suggested in (Silaghi, 2002).

2. The aggregation method for fuzzy CSPs (a kind of VCSPs) (Schiex et al., 1995) is MIN, being idempotent. Therefore inferred

global valued nogoods can be freely added in that framework.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

The question is how to determine that the two GCAs are inferred from different constraints in a more

general setting. This can be done by tagging cost assessments with the identifiers of the constraints used to

infer them (the justifications of the cost assessments).

Definition 4 A set of references to constraints (SRC) is a set of identifiers, each for a distinct constraint.

Note that several constraints of a given problem description can be composed in one constraint (in a

different description of the same problem).3

SRCs help to define a generalization of the concept of valued global nogood named valued nogood (Dago

& Verfaillie, 1996; Dago, 1997).

Definition 5 (Valued Nogood) A valued nogood has the form [R, c,N] where R is a set of references to

constraints having cost at least c, given a set of assignments, N , for distinct variables.

Valued nogoods are generalizations of valued global nogoods. Valued global nogoods are valued nogoods

whose SRCs contain the references of all the constraints.

Once we decide that a nogood [R, c, (〈x1, v1〉, ..., 〈xi, vi〉)] will be applied to a certain vari-

able xi, we obtain a cost assessment tagged with the set of references to constraints4 R, denoted

(R, vi, c, (〈x1, v1〉, ..., 〈xi−1, vi−1〉)).

Definition 6 (Cost Assessment (CA)) A cost assessment of variable xi has the form (R, v, c,N) where R is

a set of references to constraints having cost with lower bound c, given a set of assignments N for distinct

variables where the assignment of xi is set to the value v.

As for valued nogoods and valued global nogoods, cost assessments are generalizations of global cost

assessments.

Remark 3 Given a valued nogood [R, c,N] known to some agent, that agent can infer the CA (R, v, c,N)

for any value v from the domain of any variable x, where x is not assigned in N , i.e., where x 6∈ N .

We can now detect and perform the desired powerful reasoning on valued nogoods and/or CAs coming

from disjoint sub-trees, mentioned in Remark 2.

Proposition 2 (sum-inference (Dago & Verfaillie, 1996; Dago, 1997)) A set of cost assessments of type

(Ri, v, ci, Ni) for a value v of some variable, where ∀i, j : i 6= j ⇒ Ri ∩ Rj = ∅, and the assignment

of any variable xk is identical in all Ni where xk is present, can be combined into a new cost assessment.

The obtained cost assessment is (R, v, c,N) such that R=∪iRi, c=
∑

i(ci), and N=∪iNi.

The min-resolution proposed for GCAs translates straightforwardly for CAs as follows.

Proposition 3 (min-resolution (Dago & Verfaillie, 1996; Dago, 1997)) Assume that we have a set of cost

assessments for xi of the form (Rv, v, cv, Nv) that has the property of containing exactly one CA for each

value v in the domain of variable xi and that for all k and j, the assignments for variables Nk ∩ Nj are

identical in both Nk and Nj . Then the CAs in this set can be combined into a new valued nogood. The

obtained valued nogood is [R, c,N] such that R=∪iRi, c=mini(ci) and N=∪iNi.

3. For privacy, a constraint can be represented by several constraint references and several constraints of an agent can be represented

by a single constraint reference.

4. This is called a valued conflict list in (Silaghi, 2002).

4.1.3 VALUED NOGOODS WITH UPPER BOUNDS

The cost associated with a valued nogood corresponds to a low bound on the cost of the constraints indicated

by the attached SRC. Recent work suggests to also associate such nogoods with an additional information,

namely whether this cost is an exact evaluation of the optimum (i.e., also an upper bound at minimiza-

tion) (Modi et al., 2005). Note that the upper bounds in ADOPT either have the same value as the lower

bound, or is infinite, so it can be replaced by a boolean variable (Faltings, 2006). ADOPT can use this infor-

mation in its termination detection procedure: an agent terminates when it knows the exact optimum cost of

its whole subtree. A valued nogood with exact upper bounds (VNE) takes the form [R, exact, c,N], where

exact is a boolean value. A cost assessment for an assignment x = v takes the form (R, v, exact, c,N).

Remark 4 Sum-inference on “valued nogoods with upper bounds” are similar to the ones for valued no-

goods, with the addition that the value “exact” of the result is given by a logical AND of its value in the

operands (in ADOPT it is an unknown operand that sets it sometimes to false). Min-resolution is also similar

to the one on valued nogoods, and the value “exact” of the result is given by a logical OR on the its value in

the operands with minimal cost.

Valued nogoods with upper bounds can be used by ADOPT-ing algorithms for facilitating the immediate

termination detection in a distributed system. Since simulators can detect termination by direct inspection

of the communication channels, maintenance of “exact” values does not modify the measured logic-time

performance in a simulator.

5. ADOPT with nogoods

We now present a distributed optimization algorithm whose efficiency is improved by exploiting the increased

flexibility brought by the use of valued nogoods. The algorithm can be seen as an extension of both ADOPT

and ABT, and will be denoted Asynchronous Distributed OPTimization with inferences based on valued

nogoods (ADOPT-ing).

As in ABT, agents communicate with ok? messages proposing new assignments of the variable of the

sender, nogood messages announcing a nogood, and add-link messages announcing interest in a variable.

As in ADOPT, agents can also use threshold messages, but their content can be included in ok? messages.

For simplicity we assume in this algorithm that the communication channels are FIFO (as enforced by

the Internet transport control protocol). Attachment of counters to proposed assignments and nogoods can

also be used to ensure this requirement (i.e., older assignments and older nogoods for the currently proposed

value are discarded).

5.1 Exploiting DFS trees for Feedback

In ADOPT-ing, agents are totally ordered as in ABT, A1 having the highest priority and An the lowest

priority. The target of a valued nogood is the position of the lowest priority agent among those that proposed

an assignment referred by that nogood. Note that simple versions of ADOPT-ing do not need to maintain

a DFS tree, but each agent can send messages with valued nogoods to any predecessor and the DFS tree is

discovered dynamically. We also propose hybrid versions that can exploit an existing DFS tree. We have

identified two ways of exploiting such an existing structure. The first is by having each agent send its valued

nogood only to its parent in the tree. The obtained algorithm is equivalent to the original ADOPT. Another

way is by sending valued nogoods only to ancestors. This later hybrid approach can be seen as a fulfillment

of a direction of research suggested in (Modi et al., 2005), namely communication of costs to higher priority

parents.

The versions of ADOPT-ing introduced in this article are differentiated using the notation ADOPT-DON.

D shows the destinations of the messages containing valued nogoods. D has one of the values {A,D, Y }
where A stands for all predecessors, while D and Y stand for all ancestors in a DFS tree. Y is as D but

for a dynamically discovered DFS tree. O marks the optimization criteria used by the sum inference()

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

6

1

2

3

4

5

6

1

2

3

4

5

4

2

3

1

5

6 6

1

2

3

4

5

6

1

2

3

4

5

a) b) c) d) e)

Figure 1: Feedback modes in ADOPT-ing. a) a constraint graph on a totally ordered set of agents; b) a

DFS tree compatible with the given total order; c) ADOPT: sending valued nogoods only to parent

(graph-based backjumping); d) ADOPT-D , and ADOPT-Y : sending valued nogoods to any

ancestor in the tree; e) ADOPT-A : sending valued nogoods to any predecessor agent.

function of Section 5.5 in selecting a nogood when the alternatives have the same cost (if the nogoods cannot

be combined with the sum-inference of Proposition 2). For now we use a single criterion, denoted o, which

consists of choosing the nogood whose target has the highest priority. N specifies the type of nogoods

employed and has possible value {s}, where s specifies the use of valued nogoods.

The different schemes are described in Figure 1. The total order on agents is described in Figure 1.a

where the constraint graph is also depicted with dotted lines representing the arcs. Each agent (representing

its variable) is depicted with a circle. A DFS tree of the constraint graph which is compatible to this total order

is depicted in Figure 1.b. ADOPT gets such a tree as input, and each agent sends COST messages (containing

information roughly equivalent to a valued global nogood) only to its parent. The versions of ADOPT-ing

that replicate this behavior of ADOPT when a DFS tree is provided will continue to be called simply ADOPT

(SRCs do not produce any change of behavior in ADOPT since this scheme allows no opportunity to use

the sum-inference that they enable). This method of announcing conflicts based on the constraint graph

is depicted in Figure 1.c and is related to the classic Graph-based Backjumping algorithm (Dechter, 1990;

Hamadi & Bessière, 1998).

In Figure 1.d we depict the nogoods exchange schemes used in ADOPT-D and ADOPT-Y where, for

each new piece of information, valued nogoods are separately computed to be sent to each of the ancestors

in the currently known DFS tree. These schemes are strongly boosted by valued nogoods and are shown by

experiments to bring large improvements. Sometimes the underscores are dropped to improve readability. As

for the initial version of ADOPT, the proof shows that the only mandatory nogood messages for guaranteeing

optimality in this scheme are the ones to the parent agent. However, agents can infer from their constraints

valued nogoods that are based solely on assignments made by shorter prefixes of the ordered list of ancestor

agents. The agents try to infer and send valued nogoods separately for all such prefixes.

Figure 1.e depicts the simple version of ADOPT-ing, when a chain of agents is used instead of a DFS tree

(ADOPT-A), and where nogoods can be sent to all predecessor agents. The dotted lines show messages,

which are sent between independent branches of the DFS tree, and which are expected to be redundant. Ex-

periments show that valued nogoods help to remove the redundant dependencies whose introduction would

otherwise be expected from such messages. The only mandatory nogood messages for guaranteeing optimal-

ity in this scheme are the ones to the immediately previous agent (parent in the chain). However, agents can

infer from their constraints valued nogoods that are based solely on assignments made by shorter prefixes of

the ordered list of all agents. As in the other case, the agents try to infer and send valued nogoods separately

for all such prefixes. Note that the original ADOPT can also run on any chain of the agents, but our experi-

ments show that its efficiency decreases by 20% when it does not know the shortest DFS tree compatible with

the current order, and is an order of magnitude less efficient than any of these two variants of ADOPT-ing.

When no DFS tree is known in advance, ADOPT-Y slightly improves on ADOPT-A as it dynamically

detects a tree with reduced depth.

5.2 Dynamic Discovery of Compatible DFS Tree in ADOPT-Y

Let us now assume that at the beginning, the agents only know the address of the agents involved in their

constraints (their neighbors), as in ABT. Finding a DFS tree of a constraint graph is different from the minimal

cycle cutset problem, whose distributed solutions have been studied in the past (Jagota & Dechter, 1997). We

address the problem of computing a DFS tree compatible with a given total order on nodes, namely where

the parent of a node precedes that node in the given total order. However, not any given total order on the

variables is compatible with a DFS tree of the constraint graph. Given an agreed total order on agents that

unknowingly happens to be compatible with a DFS tree, it is relatively simple (less than n rounds) to find

the compatible DFS tree. When a compatible DFS tree does not exist, our technique adds a small set of arcs

(total constraints) that keep the problem equivalent to the original one and then returns a DFS tree compatible

with the new graph.

procedure initPreprocessing() do

1.1 ancestors← neighboring predecessors;

foreach Aj in ancestors do

1.2 send DFS(ancestors) to Aj ;

1.3 parent← last agent in ancestors;

when receive DFS(induced) from At do

1.4 if (predecessors in induced) 6⊆ ancestors then

1.5 ancestors← ancestors ∪ (predecessors in induced);

foreach Aj in ancestors do

1.6 send DFS(ancestors) to Aj ;

1.7 parent← last agent in ancestors;

Algorithm 1: Procedures of agent Ai during preprocessing for dynamic discovery of DFS tree.

Preprocessing for computing the DFS tree Algorithm 1 can be used for preprocessing the distributed

problem. Each agent maintains a list with its ancestors and starts executing the procedure initPreprocess-

ing. The first step consists of initializing its ancestors list with the neighboring predecessors (Line 1.1). The

obtained list is broadcast to the known ancestors using a dedicated message named DFS (Line 1.2). On receiv-

ing a DFS message from At, an agent discards it when the parameter is a subset of its already known ancestors

(Line 1.4). Otherwise the new ancestors induced because of At are inserted in the ancestors list (Line 1.5).

The new elements of the list are broadcast to all interested ancestors, namely ancestors that will have these

new elements as their ancestors (Line 1.6). The parent of an agent is the last ancestor (Lines 1.3,1.7).

Lemma 4 Algorithm 1 computes a DFS tree compatible with a problem equivalent to the initial DCOP.

Proof. Let us insert in the initial constraint graph of the DCOP a new total constraint (constraint allowing

everything) for each link between an agent and its parent computed by this algorithm, if no constraint existed

already. A constraint allowing everything does not change the problem therefore the obtained problem is

equivalent to the initial DCOP. Note that the arcs between each agent and its parent define a tree.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

Now we can observe that there exists a DFS traversal of the graph of the new DCOP that yields the

obtained DFS tree. Take three agents Ai, Aj , and Ak such that Ai is the obtained parent of both Aj and Ak.

Our lemma is equivalent to the statement that no constraint exists between sub-trees rooted by Aj and Ak

(given the arcs defining parent relations).

Let us assume (trying to refute) that an agent Aj′ in the sub-tree rooted by Aj has a constraint with an

agent Ak′ in the sub-tree rooted by Ak. Symmetry allows us to assume without loss of generality that Ak′

precedes Aj′ . Therefore Aj′ includes Ak′ in its ancestors list and sends it to its parent, which propagates it

further to its parent, and so on to all ancestors of Aj′ . Let Aj′′ be the highest priority ancestor of Aj′ having

lower priority than Ak′ . But then Aj′′ will set Ak′ as its parent (Lines 1.3,1.7), making Ak′ an ancestor of

Aj′ . This contradicts the assumption that Ak′ and Aj′′ are in different sub-trees of Ai. �

Note that for any given total order on agents, Algorithm 1 returns a single compatible DFS tree. This

tree is built by construction, adding only arcs needed to fit the definition of a DFS tree. The removal of any

of the added parent links leads to breaking the DFS-tree property, as described in the proof of the Lemma.

Therefore, we infer that Algorithm 1 obtains the smallest DFS tree compatible with the initial order.

Remark 5 The trivial approach to using the DFS construction algorithm as a preprocessing technique also

requires the detection of the termination, to launch ADOPT-D when the preprocessing terminates. Some of

our techniques efficiently avoid such detection.

The preprocessing algorithm terminates, and the maximal casual chain of messages it involves has a

length of at most n. That is due to the effort required to propagate ancestors from the last agent to the first

agent. All messages travel only from low priority agents to high priority agents, and therefore the algorithm

terminates after the messages caused by the agents in leaves reach the root of the tree5.

Lemma 5 If the total order on the agents is compatible with a known DFS tree of the initial DCOP, then

all agent-parent arcs defined by the result of the above algorithm correspond to arcs in the original graph

(rediscovering the DFS tree).

Proof. Assume (trying to refute) that an obtained agent-parent relation, Ai–Aj , corresponds to an arc that

does not exist in the original constraint graph (for the lowest priority agent Ai obtaining such a parent). The

parent Ak of Ai in the known DFS tree must have a higher or equal priority than Aj ; otherwise Ai (having Ak

in his ancestors) would chose it as the parent in Algorithm 1 (Lines 1.3, 1.7). If Ak and Aj are not identical,

it means that Ai has no constraint with Aj in the original graph (otherwise, the known DFS would not be

correct). Therefore, Aj was received by Ai as an induced link from a descendant At which had constraints

with Aj (all descendants being defined by original arcs due to the assumption). However, if such a link

exists between a descendant At and Aj , then the known DFS tree would have been incorrect (since in a DFS

pseudo-tree all predecessor neighbors of one’s descendants must be ancestors of oneself). This contradicts

the assumption and proves the Lemma. �

Remark 6 If one knows that there exists a DFS tree of the initial constraint graph that is compatible with

the order on agents, then the parent of each agent in that tree is its lowest priority predecessor neighbor. The

agent can therefore compute its parent from the beginning without any message. This is at the basis of our

implementation of the versions of ADOPT that exploit a previously known DFS tree, namely ADOPT-D and

ADOPT, where we know that the input order is compatible with a DFS tree (being the same order as the one

used by ADOPT) but we do not bother providing the tree to the solver. This assumption cannot be used, and

is not used in the versions that dynamically discover the DFS tree, such as ADOPT-Y .

5. Or roots of the forest.

name DFS tree nogoods are sent to

ADOPT received as input only the parent in DFS tree

ADOPT-D received as input the parent in the DFS tree & the nogood target

ADOPT-A not used the predecessor agent & the nogood target

ADOPT-Y dynamically detected the current parent in the DFS tree & the nogood target

Table 1: Comparison of ADOPT-ing members.

Dynamic detection of DFS trees Intuitively, detecting a DFS tree in a preprocessing phase has three po-

tential weaknesses which we can overcome. The first drawback is that it necessarily adds a preprocessing of

up to n sequential messages. Second, it uses all constraints up-front while some of them may be irrelevant,

at least for initial assignments of the agents (and shorter trees can be used to speed up search in the initial

stages). Third, trivial DFS tree detection may also require an additional termination detection algorithm.

Here we show how we address these issues in one of our next techniques.

Therefore, we propose to build a DFS tree only for the constraints used so far in the search. Therefore,

agents in ADOPT-Y do not start initializing their ancestors with all neighboring predecessors, but with the

empty set. Neighboring predecessors are added to the ancestors list only when the constraint defining that

neighborhood is actually used to increase the cost of a valued nogood6. On such an event, the new ancestor
is propagated further as on a receipt of new induced ancestors with a DFS message in Algorithm 1. The

handling of DFS messages is also treated as before. The dynamic detection is run concurrently with the

search and integrated with the search, thus circumventing the mentioned weaknesses of the previous version

based on preprocessing. The payload of the DFS messages is attached to nogood messages.

Another problem consists of dynamically detecting the children nodes and how descendants are currently

grouped in sub-trees by the dynamic DFS tree. In our solution, Ai groups agents Ak and At in the same sub-

tree if it detects that its own descendants in the received lists of induced links from Ak and At do intersect.

This is done as follows. A check is performed each time there is a new descendant agent Au in the lists of

induced links received from a descendant Ak. If Au was not a previously known descendant of Ai, then Au

is inserted in the sub-tree of Ak. Otherwise, the previous sub-tree containing Au is merged with the sub-tree

containing Ak. Also, a new sub-tree is created for each agent from which we receive a nogood and that was

not previously known as a descendant. The data structure employed by an agent Ai for this purpose consists

of a vector of n integers, called subtrees. subtrees[j] holds the ID of the sub-tree containing Aj , or 0 if Aj

is not currently considered to be a descendant of Ai. Each agent generates a different unique ID (positive

number) for each of its sub-trees (e.g., by incrementing a counter).

Remark 7 If agents start ADOPT-Y by inserting all their predecessor neighbors in their ancestors list,

the algorithm becomes equivalent to ADOPT-D after less than n rounds.

Experiments show that ADOPT-Y performs very well according to several metrics, such as total number

of messages and number of sequential messages. It is the best ADOPT-ing technique from the point of view of

the network traffic, and competes tightly with ADOPT-A and ADOPT-D in terms of number of sequential

messages.

ADOPT-ing is a framework defining a parametrized family of techniques based on inference with valued

nogoods. The differences between the main variants are shown in Table 1. As mentioned above, each such

major variant has subversions based on: the method used to combine nogoods, the methodology used to tag

nogoods with SRCs.

5.3 Data Structures

Besides the ancestors and subtrees structures of ADOPT-Y , each agent Ai stores its agent-view (received

assignments) and its outgoing links (agents of lower priority than Ai and having constraints on xi). The

6. More exactly, when a message is sent to that neighboring agent.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

l[v]

local

constraints

<k

OK

THRESHOLD: th[k]

NOGOOD

view

h[v]

lr[j] NOGOOD

la
st

S
e
n
t[

k
]

m
in

-r
e
so

lu
ti

o
n

ca[v][j]

th[k]

<k

<k

Figure 2: Schematic flow of data through the different data structures used by an agent Ai in ADOPT-ing.

instantiation of each variable is tagged with the value of a separate counter incremented each time the as-

signment changes. To manage nogoods and CAs, Ai uses matrices l[1..d], h[1..d], ca[1..d][i+1..n], th[1..i],

lr[i+1..n] and lastSent[1..i-1] where d is the domain size for xi. crt val is the current value Ai proposes for

xi. These matrices have the following usage:

• l[k] stores a CA for xi = k, which is inferred solely from the local constraints between xi and prior

variables.

• ca[k][j] stores a CA for xi = k, which is obtained by sum-inference from valued nogoods received

from Aj .

• th[k] stores nogoods coming via threshold/ok? messages from Ak.

• h[k] stores a CA for xi=k, which is inferred from ca[k][j], l[k] and th[t] for all t and j.

• lr[k] stores the last valued nogood received from Ak.

• lastSent[k] stores the last valued nogood sent to Ak.

The names of the structures were chosen by following the relation of ADOPT with A* search (Silaghi,

2003a; Silaghi, Landwehr, & Larrosa, 2004). Thus, h stands for the “heuristic” estimation of the cost due

to constraints maintained by future agents (equivalent to the h() function in A*) and l stands for the part of

the standard g() function of A* that is “local” to the current agent. Here, as in ADOPT, the value for h() is

estimated by aggregating the costs received from lower priority agents. Since the costs due to constraints of

higher priority agents are identical for each value, they are irrelevant for the decisions of the current agent.

Thus, the function f() of this version of A* is computed combining solely l and h. We currently store the

result of combining h and l in h itself to avoid allocating a new structure for f().
The structures lr and th store received valued nogoods, and ca stores intermediary valued nogoods used

in computing h. The reason for storing lr, th and ca is that change of context may invalidate some of the

nogoods in h while not invalidating each of the intermediary components from which h is computed. Storing

these components (which is optional) saves some work and offers better initial heuristic estimations after a

change of context. The cost assessments stored in ca[v][j] of Ai also maintain the information needed for

threshold messages, namely the heuristic estimate for the value v of the variable xi at successor Aj (to be

transmitted to Aj if the value v is proposed again).

The array lastSent is used to store at each index k the last valued nogood sent to the agent Ak. The

array lr is used to store at each index k the last valued nogood received from the agent Ak. Storing them

separately guarantees that in case of changes in context, they are discarded at the recipient only if they are

also discarded at the sender. This property guarantees that an agent can safely avoid retransmitting to Ak

messages duplicating the last sent nogood, since if it has not yet been discarded from lastSent[k], then the

recipients have not discarded it from lr[k] either.

5.4 Data flow in ADOPT-ing

The flow of data through these data structures of an agent Ai is illustrated in Figure 2. Arrows ⇐ are

used to show a stream of valued nogoods being copied from a source data structure into a destination data

structure. These valued nogoods are typically sorted according to some parameter such as the source agent,

the target of the valued nogood, or the value v assigned to the variable xi in that nogood (see Section 5.3).

The + sign at the meeting point of streams of valued nogoods or cost assessments shows that the streams are

combined using sum-inference. The
+
⇐ sign is used to show that the stream of valued nogoods is added to the

destination using sum-inference, instead of replacing the destination. When computing a nogood to be sent

to Ak, the arrows marked with <k restrict the passage to allow only those valued nogoods containing solely

assignments of the variables of agents A1, ..., Ak. Our current implementation recomputes the elements of h
and l separately for each target agent Ak by discarding the previous values.

5.5 ADOPT-ing pseudo-code and proof

The pseudo-code for the procedures in ADOPT-ing is given in Algorithms 2 and 3. To extract the cost of a

CA, we introduce the function cost(), where cost((R, v, c,N)) returns c. The min resolution(j) function

applies the min-resolution over the CAs associated with all the values of the variable of the current agent,

but uses only CAs having no assignment from agents with lower priority than Aj . More exactly, it first re-

computes the array h using only CAs in ca and l that contain only assignments from A1, ..., Aj , and then

applies min-resolution over the obtained elements of h. In the current implementation, we recompute l and

h at each call to min resolution(j). An optimization is possible here, reusing the result7 of computing

min resolution(k − 1) in the computation of min resolution(k) for k < parent by adding only nogoods

on xk to it. Experiments show that this brings minor 4% improvements in simulator time (local computations)

on hard problems.

The sum inference() function used in Algorithm 3 applies the sum-inference to its parameters when-

ever this is possible (it detects disjoint SRCs). Otherwise, it selects the nogood with the highest cost or the

one whose lowest priority assignment has the highest priority (this has been previously used in (Bessiere,

Brito, Maestre, & Meseguer, 2005; Silaghi et al., 2001b)). The function vn2ca(vn, i) transforms a valued

nogood vn in a cost assessment for xi. Its inverse is function ca2vn. If vn has no assignment for xi, then

a cost assessment can be obtained according to Remark 3. The function vn2ca(vn, i, v) translates vn into a

cost assessment for the value v of xi, using the technique in Remark 3 if needed. The function target(N)
gives the index of the lowest priority variable present in the assignment of nogood N . As with file expansion,

when “*” is present in an index of a matrix, the notation is interpreted as the set obtained for all possible

values of that index (e.g., ca[v][*] stands for {ca[v][t] | ∀t}). Given a valued nogood ng, the notation ng|v
stands for vn2ca(ng) when ng’s value for xi is v, and ∅ otherwise.

5.5.1 PSEUDO-CODE

This sub-section explains line by line the pseudocode in Algorithms 2 and 3. Each agent Ai starts by call-

ing the init() procedure in Algorithm 3, which at Line 3.1 initializes l with valued nogoods inferred from

7. From applying Step 2 of Remark 8.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

when receive ok?(〈xj , vj〉, tvn) do

2.1 integrate(〈xj , vj〉);
2.2 if (tvn no-null and has no old assignment) then

2.3 k:=target(tvn); // threshold tvn as common cost;

2.4 th[k]:=sum-inference(tvn,th[k]);

2.5 check-agent-view();

when receive add-link(〈xj , vj〉) from Aj do

2.6 add Aj to outgoing links;

2.7 if (〈xj , vj〉) is old, send new assignment to Aj ;

when receive nogood(rvn, t, inducedLinks) from At do

2.8 insert new predecessors from inducedLinks in ancestors, on change making sure interested predeces-

sors will be (re-)sent nogood messages; //needed only in ADOPT-Y ;

2.9 foreach new assignment a of a linked variable xj in rvn do

2.10 integrate(a); // counters show newer assignment;

2.11 lr[t]:=rvn;

2.12 if (an assignment in rvn is outdated) then

2.13 if (some new assignment was integrated now) then

2.14 check-agent-view();

2.15 return;

2.16 foreach assignment a of a non-linked variable xj in rvn do

2.17 send add-link(a) to Aj ;

2.18 foreach value v of xi such that rvn|v is not ∅ do

2.19 vn2ca(rvn, i, v)→ rca (a CA for the value v of xi);

2.20 ca[v][t]:=sum-inference(rca,ca[v][t]);

2.21 update h[v] and retract changes to ca[v][t] if h[v]’s cost decreases;

2.22 check-agent-view();

Algorithm 2: Receiving messages of Ai in ADOPT-ing

local (unary) constraints. The agent assigns xi to a value with minimal local cost, crt val (Line 3.2), an-

nouncing the assignment to lower priority agents in outgoing links (Line 3.3). The outgoing links of an agent

Ai initially holds the address of the agents enforcing constraints that involve the variable xi. The agents

answer to any received message with the corresponding procedure in Algorithm 2: “when receive ok?,”

“when receive nogood,” and “when receive add-link.”

When a new assignment of a variable xj is learned from ok? or nogood messages, valued nogoods

based on older assignments for the same variables are discarded (Lines 2.1,2.10) by calling the function

integrate() in Algorithm 3. Within this function, all valued nogoods (cost assignments) stored by the agent

are verified and those that contain an old assignment of xj , which is no longer valid, are deleted (Line 3.17).

Any discarded element of ca is recomputed from lr. Namely, if a cost assessment ca[v][t] is deleted in

this process while lr[t] remains valid, the agent attempts to apply the nogood in lr[t] to the value v and the

obtained cost assessment is copied in ca[v][t] (Line 3.18). This application of the nogood lr[t] to v is possible

either if it contains xi = v or if it contains no assignment for the variable xi of the current agent (Remark 3).

Eventually the new assignment is stored in the agent-view (Line 3.19).

Further, when an ok? message is received, it is checked for valid threshold nogoods (Line 2.2). The target

k of any such nogood, i.e., the position of the owner of the lowest priority variable, is extracted at Line 2.3 with

a procedure called target, to detect the place where the nogood should be stored. The newly received threshold

nogood is stored at th[k] by sum-inference with the current nogood found there (Lines 2.4,3.21). If no nogood

is found in th[k], the new nogood is simply copied there (Line 3.20). If a nogood is already stored in th[k],

but its SRC intersects the one in the new nogood, then the behavior depends on the version of ADOPT-ing.

Our pseudo-code illustrates the versions ADOPT- o , where the valued nogoods with the highest cost are

retained (Line 3.22). In case of a tie, the one with the smallest target is maintained (Line 3.23) (Bessiere

et al., 2005; Silaghi et al., 2001b).

After receiving a new value, like in ABT, the check-agent-view procedure is used to select a value or detect

nogoods (Line 2.5). In this procedure, the agent first tries to compute a nogood for each of its predecessors

(Line 3.4). For each such destination, a separate nogood is computed in l for each value v by considering

only local constraints with that target agent and with its predecessors. Then, by considering these nogoods

of l and all cost assessments in ca based only on assignments from the target agent and its predecessors, new

elements of h are computed by sum-inference (Line 3.5). The order of the steps used in this computation

is important for correctness and is described in detail later, in Remark 8. If all values of xi have non-zero

cost nogoods in h (Line 3.6), then all elements of h are combined via min-resolution and a nogood vn is

obtained for the currently targeted destination (Line 3.7). If some value of xi has a zero cost nogood in h, the

nogood obtained by min-inference has a zero cost. When termination detection is based on exact fields in

VNEs, zero cost nogoods must still be sent to the parent/immediate predecessor (Line 3.6), generating some

additional network traffic but without effect on the rest of the data structures and operations. However, the

nogood vn is sent only if it is different from the last nogood sent to that same agent (Line 3.8). Repeating its

sending would be redundant since the recipient holds it in its lr vector. In the versions described here, while

not generally required for correctness in ADOPT-ing, the nogood is sent only if the lowest priority variable

involved in it is the same as the one controlled by the destination (Line 3.9). The nogood is always sent to

the parent in the DFS tree (with ADOPT-D , and ADOPT-Y) which is the immediate predecessor with

ADOPT-A . With ADOPT-Y , when a nogood is sent for the first time to an agent Ak
8, Ak is added to

the list ancestors (Line 3.10). After the nogood is sent (Line 3.11), it is stored in lastSent to help avoid

immediate retransmission (Line 3.12). If some change was recently made to the ancestors list, the change

is propagated at Line 3.13 to all the ancestors that had not already been notified with nogood messages at

Line 3.11.

The second part of the check-agent-view procedure deals with selecting opportunistically a value with the

smallest estimated cost (Line 3.14), as common in ADOPT and ABT. We used the common mathematical

notation argminv(f(v)) to denote a computation that returns the value v minimizing the function f(v)
passed as the parameter (here cost(h[v])). In case of a tie with the old value of xi, our implementation

of argmin prefers to maintain the old value. If the value selected for xi is different from the old value

(Line 3.15), the new value is sent to all agents in outgoing links (Line 3.16).

When nogood messages are received, in the ADOPT-Y version we first insert new received induced

links into ancestors (Line 2.8). If the set of ancestors was changed by this operation, we set a flag to

make sure that check-agent-view is eventually called and will propagate the change to all current ancestors.

The agent checks if the transported nogood has newer assignments than the ones it already knows. A new

assignment can reach an agent as part of a nogood before the corresponding ok? message. This can be

handled in two ways:

i The original solution of ADOPT and ABT (Yokoo et al., 1998; Modi et al., 2005) is to consider any

assignment in a nogood that is different from the assignment known for that variable as being invalid.

Assignments are re-announced after each received valid message. Therefore, later retransmission9 of

the nogood triggered by this scheme is guaranteed to correctly deliver each nogood eventually.

ii The other scheme identifies new assignments in nogood messages as such, and validates the nogoods

on their first reception. The mechanism was used in several versions of ABT (Silaghi & Faltings,

2004). It works by letting each agent maintain a separate counter for each variable. The counter is

incremented when the assignment is changed and tags each sent assignment. Each agent stores the last

value of the counter it sees for each variable. An agent detects a new assignment by comparing its tag

8. Because the corresponding constraint increases for the first time the cost of the computed nogood.

9. Assuming no mechanism is used to block immediate retransmission of nogoods, such as our lastSent structure.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

with the previously seen value of that counter. Once detected (Line 2.9), new assignments in nogoods

are integrated as on the arrival of their ok? message (Line 2.10).10

The last nogood received from some agent Aj is stored in lr[j] (Line 2.11), such that it would not be lost

as long as it is stored by Aj in its lastSent (otherwise deadlocks could occur).11 If some assignment in a

nogood is considered old at Line 2.12 (with any mentioned scheme) the handling of the nogood is stopped

and the nogood is discarded (Line 2.15). However, if some new assignment was integrated at Line 2.10, then

the rest of the processing normally executed on ok? messages is performed by calling the check-agent-view

procedure at Lines 2.13,2.14.

If a received nogood contains a variable not previously involved in constraints with the variable of the

agent (Line 2.16), an add-link message is sent to the agent owning that variable (Line 2.17) to announce the

creation of a new link between the two agents (Line 2.6) and to request updates on the values of that variable

(Line 2.7). In ADOPT-ing, the assignment received in the nogood is attached to the add-link message. This

allows the owner of that variable to spare a message by not sending this assignment to Ai if the assignment

is still valid.

An agent can receive a nogood where its variable is not present and therefore where the nogood can be

applied to all its values. Valid nogoods are projected on all values of Ai (Lines 2.18,2.19), and the result

is added to the corresponding cost assessments in ca using the sum-inference procedure (Line 2.20). It is

possible that by the quirks of the impact of disjoint SRCs on sum-inference, the addition of a new nogood

leads to the decrease of the cost of the obtained cost assessment for the corresponding value. We prefer to

enforce a monotonic behavior by withdrawing changes to ca in such situations (Line 2.21). For this purpose,

the evaluation of the modification of the cost is done by computing h as when messages are prepared for the

parent in the DFS tree (or immediate predecessor). After integrating the new nogood, check-agent-view is

called at Line 2.22 to infer new nogoods and to select the best value of xi.

5.5.2 PROOF OF TERMINATION AND OPTIMALITY

We prove the termination by induction on increasing sets of agents, starting from the lowest priority ones

(suffixes of the list of agents). Then the solution optimality is proven based on a similar intermediary proof

of knowledge at quiescence by each agent about the optimal cost for its successors.

Received nogoods are stored in matrices lr and th (Algorithm 2). Ai always sets its crt val to the

index with the lowest CA cost in vector h (preferring the previous assignment in case of ties). On each

change that propagates to h, and for each ancestor Aj (or higher priority agent in versions not using DFS

trees), the elements of h are recomputed separately by min-resolution(j) to generate new nogoods for Aj .

The simultaneous generation and use of multiple nogoods is already known to be useful for the constraint

satisfaction case (Yokoo & Hirayama, 1998).

The threshold valued nogood tvn delivered with ok? messages sets a common cost on all values of the

receiver (see Remark 3), effectively setting a threshold on costs below which the receiver does not change its

value. This achieves the effect of THRESHOLD messages in ADOPT.

The procedure described in the following remark is used in the proof of termination and optimality.

Remark 8 The order of combining CAs to get h at Line 3.5 matters. To compute h[v]:

1. a) When maintaining DFS trees, for each value v, CAs are combined separately for each set s of agents

defining a DFS sub-tree of the current node:

tmp[v][s]=sum-inferencet∈s(ca[v][t]).

b) Otherwise, with ADOPT-A , we act as if we have a single sub-tree:

tmp[v]=sum-inferencet∈[i+1,n](ca[v][t]).

10. Assignments having the same value are considered identical, even if their tag differs (allowing for re-using old nogoods).

11. Note that with the first scheme (i), where assignments are not tagged with counters, ADOPT-ing should not delete old nogoods from

lr (which is done with the second scheme), but checks them when ok? messages are received.

2. CAs from step 1 (a or b) are combined:

In case (a) this means: ∀v, s;h[v]=sum-inference∀s(tmp[v][s]).

Note that the SRCs in each term of this sum-inference are disjoint and therefore we obtain a valued

nogood with cost given by the sum of the individual costs obtained for each DFS sub-tree.

For case (b) we obtain h[v]=tmp[v].

This makes sure that at quiescence the cost of h[v] is at least equal to the total cost obtained at the

next agent.

3. Add l[v]: h[v]=sum-inference(h[v], l[v]).

4. Add threshold: h[v]=sum-inference(h[v], th[*]).

Note that method (a) at Step 1 can be applied only to ADOPT-Y and ADOPT-D while method (b) can

be applied to all versions. Experiments show that, when applicable, method (a) works only slightly (i.e. 1%)

better than method (b).

Lemma 6 (Infinite Cycle) At a given agent, assume that the agent-view no longer changes and that its array

h (used for min-resolution and for deciding the next assignment) is computed only using cost assessments that

are updated solely by sum-inference. In this case the costs of the elements of its h cannot be modified in an

infinite cycle due to incoming valued nogoods.

Proof. Valued nogoods that are updated solely by sum-inference have costs that can only increase (which

can happen only a finite number of times). For a given cost, modifications can only consist of modifying

assignments to obtain lower target agents, which again can happen only a finite number of times. Therefore,

after a finite number of events, the cost assessments used to infer h will not be modified any longer and

therefore h will no longer be modified. �

Corollary 6.1 If ADOPT-ing uses the procedure in Remark 8, then for a given agent-view, the elements of

the array h for that agent cannot be modified in an infinite cycle.

Remark 9 Since lr contains the last received valued nogoods via messages other than ok? messages, which

change the agent-view, that array is updated by assignment with recently received nogoods without sum-

inference. Therefore, it cannot be used directly to infer h.

Note that with the described procedure, a newly arriving valued nogood can decrease the cost of certain

elements of h (even if it does not decrease the cost of any of the elements from which h is computed). This

is because, while increasing the cost of some element in ca, it can also modify its SRC and therefore forbid

its composition by sum-inference with other cost assessments.

Remark 10 (Obtaining Monotonic Increase) One can avoid the undesired aforementioned effect, where

incoming nogoods decrease costs of elements in h. Namely, after a newly received valued nogood is added

by sum-inference to the corresponding element of ca[v] for some value v, if the cost of h[v] decreases, then

the old content of ca[v] can be restored. Each new valued nogood is used for updating lr. On each change to

some element in ca, one has to add to ca the elements found in lr and coming from children in the DFS tree

(if they do not lead to a decrease in the cost of h). Experiments show that this technique can bring a small

improvement of up to 2% in the number of cycles.

Intuitively, the convergence of ADOPT-ing can be noticed from the fact that valued nogoods can only

monotonically increase valuation for each subset of the search space, and this has to terminate since such

valuations can be covered by a finite number of values. If agents Aj , j<i no longer change their assignments,

valued nogoods can only monotonically increase at Ai for each value in Di: costs of the nogoods only

increase since they only change by sum-inference.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

procedure init do

3.1 h[v] := l[v]:=initialize CAs from unary constraints;

3.2 crt val=argminv(cost(h[v]));
3.3 send ok?(〈xi, crt val〉,∅) to all agents in outgoing links;

procedure check-agent-view() do

3.4 for every Aj with higher priority than Ai (respectively ancestor in the DFS tree, when one is main-

tained) do

3.5 for every(v ∈ Di) update l[v] and recompute h[v];

// with valued nogoods using only instantiations of {x1, ..., xj};
3.6 if ((j is parent/immediate predecessor (VNE)) or (h has non-null cost CA for all values of Di)) then

3.7 vn:=min resolution(j);

3.8 if (vn 6= lastSent[j]) then

3.9 if ((target(vn) == j) or (j is parent/immediate predecessor)) then

3.10 add j to ancestors (updating parent);// for ADOPT-Y ;

3.11 send nogood(vn,i,ancestors) to Aj ;

3.12 lastSent[j] = vn;

3.13 on new ancestors, send nogood(∅,i,ancestors) to each ancestor Ah not yet announced;

3.14 crt val=argminv(cost(h[v]));
3.15 if (crt val changed) then

3.16 send ok?(〈xi, crt val〉, ca2vn(ca[crt val][k]),i)
to each Ak in outgoing links;

procedure integrate(〈xj , vj〉) do

3.17 discard elements in ca, th, lastSent and lr based on other values for xj ;

3.18 use lr[t]|v to replace each discarded ca[v][t];

3.19 store 〈xj , vj〉 in agent-view;

function sum-inference(vng1, vng2)

3.20 if either vng1 or vng2 has cost 0 then

return the other one;

3.21 if vng1 and vng2 have disjoint SRCs then

return the result of applying sum-inference on them;

3.22 if vng1 and vng2 have different costs then

return the one with lower cost;

3.23 if vng1 and vng2 have different targets then

return the one with smaller target;

return vng1;

Algorithm 3: Procedures of Ai in ADOPT-ing

Lemma 7 ADOPT-ing terminates in finite time.

Proof. Given the list of agents A1, ..., An, define the suffix of length m of this list as the last m agents. Then

the result follows immediately by induction for an increasingly growing suffix (increasing m), assuming the

other agents reach quiescence.

The basic case of the induction (for the last agent) follows from the fact that the last agent terminates in

one step if the previous agents do not change their assignments.

Let us now assume that the induction assertion is true for a suffix of k agents. Based on this assumption,

we now prove the induction step, namely that the property is also true for a suffix of k+1 agents: For each

assignment of the agent An−k, the remaining k agents will reach quiescence, according to the assumption of

the induction step; otherwise, the assignment’s CA cost increases. By construction, costs for CAs associated

with the values of An−k can only grow (see Remark 10). Even without the technique in Remark 10, costs for

CAs associated with the values of An−k will eventually stop being modified as a consequence of Lemma 6.

After values are proposed in turn and the smallest cost reaches its highest estimate, agent An−k selects the

best value and reaches quiescence. The other agents reach quiescence according to the assumption of the

induction step. �

Lemma 8 The last valued nogoods sent by each agent additively integrate the non-zero costs of the con-

straints of all of the agent’s successors (or descendants in the DFS tree when a DFS tree is maintained).

Proof. At quiescence, each agent Ak has received the valued nogoods describing the costs of each of its

successors (or descendants in the DFS tree when a DFS tree is maintained).

The lemma results by induction for an increasingly growing suffix of the list of agents (in the order used

by the algorithm): It is trivial for the last agent.

Assuming that it is true for agent Ak, it follows that it is also true for agent Ak−1 since adding Ak−1’s

local cost to the cost received from its children in the tree (Ak for ADOPT-A) will be higher (or equal when

removing zero costs) than the result of adding Ak−1’s local cost to that of any descendants of those children.

Respecting the order in Remark 8 guarantees that this value is obtained (according to the assumption of the

induction step, costs from children will be higher than the ones from their descendants and prevail at Step

1, and therefore the result of Step 2 is the sum of the costs of the children). Therefore, the sum between the

local cost and the last valued nogood coming from its children defines the last valued nogood sent by Ak−1.

�

Theorem 9 ADOPT-ing returns an optimal solution.

Proof. We prove by induction on an ever increasing suffix of the list of agents that this suffix converges to a

solution that is optimal for the union of the sub-problems of the agents in that suffix.

The induction step is immediate for the suffix composed of the agent An alone. Assume now that it is

true for the suffix starting with Ak. Following the previous two lemmas, one can conclude that at quiescence,

Ak−1 knows exactly the minimal cumulated cost of the problems of its successors for its chosen assignment,

and therefore knows that this cumulated cost cannot be better for any of its other values.

Since Ak−1 has selected the value leading to the best sum of costs (between its own local cost and the

costs of all subsequent agents), it follows that the suffix of agents starting with Ak−1 converged to an optimal

solution for the union of their sub-problems. �

The space complexity is basically the same as for ADOPT. The SRCs do not change the space complexity

of the nogoods. The largest space is required by the data structure used for storing potential payloads of future

(equivalents of) THRESHOLD messages.

Theorem 10 The space complexity of an agent in ADOPT-ing is O(dn2).

Proof. In an agent, Ai, the space for storing the outgoing links, and the agent view (assignments) is

linear in n, having at most one link and one assignment per agent. Six data structures in ADOPT-ing store

valued nogoods (l[1..d], ca[1..d][i+1..n], th[1..i], h[1..d], lr[i+1..n], lastSent[1..i-1]). Therefore the space

complexity is given by the complexity of the largest of them, ca, which stores O(dn) cost assessments that

can be sent as threshold nogoods.

Each valued nogood contains a list of up to n assignments and a list of up to n SRCs, its space being

linear in n. Therefore the total space requirement for an agent is O(dn2). �

The space complexity for using the simulator of ADOPT-ing as a centralized WCSP solver is given by the

sum of all the spaces of the n agents, which is O(dn3). The simulator also maintains the queues of traveling

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

X2

X1

X3

<>(#3)

<>(#3)

{0,1}

{0}

{0}

X0{0,1}

<>(#4)

<>(#2)

Figure 3: A DCOP with four agents and four inequality constraints. For example, the fact that the cost

associated with not satisfying the constraint x0 6= x1 is 4 is denoted by the notation (#4).

messages, which can be compacted such that only the last sent message is stored for each channel (Silaghi,

Sam-Haroud, & Faltings, 2000). There are O(n2) bidirectional channels, each of them requiring at most a

valued nogood (for an optimized simulator); therefore their total size is O(n3), being smaller than the sum of

the sizes of the agents.

We expect that one can further optimize the space of a centralized implementation by abandoning the

message-passing paradigm of the simulator and by sharing the ca data structures of the agents, directly

storing each inferred valued nogood at its final position in the structure ca. Additional improvements in space

complexity are possible by simply discarding the ca storage in favor of more compact aggregations of its

nogoods (where h and the structure for f() mentioned in Section 5.3 are used alone without ca, integrating

incoming nogoods directly in h), with a total space complexity of O(dn2). However, some nogoods would

be lost and may have to be recomputed, and threshold nogoods would no longer be available.

5.6 Optimizing valued nogoods

Both for the versions of ADOPT-ing using DFS trees, as well as for the version that does not use such DFS

trees, if valued nogoods are used for managing cost inferences, then a lot of effort can be saved at context

switching by keeping nogoods that remain valid (Ginsberg, 1993). The amount of effort saved is higher if

the nogoods are carefully selected (to minimize their dependence on assignments for low priority variables,

which change more often). We compute valued nogoods by minimizing the index of the least priority variable

involved in the context. At sum-inference with intersecting SRCs, we keep the valued nogoods with lower

priority target agents only if they have better costs. Nogoods optimized in a similar manner were used in

several previous distributed CSP techniques (Bessiere et al., 2005; Silaghi et al., 2001b). A similar effect

is achieved by computing min resolution(j) with incrementally increasing j and keeping new nogoods only

if they have higher cost than previous ones with lower targets. Between similar VNEs differing only in the

exact field, one has to keep the one where the value of exact is true, to achieve the termination detection

proposed in ADOPT.

5.7 Example

Next we detail and contrast the executions of ADOPT-Yos, and ADOPT-Aos illustrating the different types

of inferences involved in them. The main description follows the run of ADOPT-Aos while describing differ-

ences with ADOPT-Yos when they occur. Take the problem in Figure 3, a trace of which is shown in Figure 4.

1. A0 ok?〈x0, 0〉 → A1, A3

2. A1 ok?〈x1, 0〉 → A2, A3

3. A1 ok?〈x1, 1〉 → A2, A3

4. A2 nogood[|F, F, T, F |, 3, 〈x1, 0〉] → A1

5. A3 nogood[|F, F, F, T |, 2, 〈x0, 0〉] → A0, A2

6. A3 nogood[|F, F, F, T |, 5, 〈x0, 0〉〈x1, 0〉] → A1, A2

7. A0 ok?〈x0, 1〉 → A1, A3

8. A2 nogood[|F, F, F, T |, 2, 〈x0, 0〉] → A0

9. A2 nogood[|F, F, T, T |, 5, 〈x0, 0〉〈x1, 0〉] → A1

10. A2 add-link〈x0, 0〉 → A0

11. A2 nogood[|F, F, T, T |, 8, 〈x0, 0〉〈x1, 0〉] → A1

12. A3 nogood[|F, F, F, T |, 2, 〈x0, 0〉] → A2

13. A0 ok?〈x0, 1〉 → A2

14. A1 ok?〈x1, 0〉 → A2, A3

15. A2 nogood[|F, F, F, T |, 2, 〈x0, 0〉] → A0, A1

16. A2 nogood[|F, F, T, T |, 5, 〈x0, 0〉〈x1, 0〉] → A1

17. A2 nogood[|F, F, T, F |, 3, 〈x1, 0〉] → A1

18. A3 nogood[|F, F, F, T |, 3, 〈x1, 0〉] → A1, A2

19. A1 nogood[|F, T, F, T |, 3, 〈x0, 1〉] → A0

20. A1 nogood[|F, T, T, T |, 4, 〈x0, 1〉] → A0

21. A1 ok?〈x1, 1〉 → A2, A3

22. A2 nogood[|F, F, T, T |, 6, 〈x1, 0〉] → A1

23. A0 ok?〈x0, 0〉 → A1

24. A0 ok?〈x0, 0〉threshold [|F, F, F, T |, 2, 〈x0, 0〉]→ A2, A3

25. A3 nogood[|F, F, F, T |, 2, 〈x0, 0〉] → A0, A2

26. A2 nogood[|F, F, F, T |, 2, 〈x0, 0〉] → A0, A1

27. A1 nogood[|F, T, F, T |, 2, 〈x0, 0〉] → A0

Figure 4: Trace of ADOPT-Aos on the problem in Figure 3. Horizontal lines separate groups of messages

with the same logic clock (i.e., messages that are part of the same round in a simulator based on

rounds).

Identical messages sent simultaneously to several agents are grouped by displaying the list of recipients on

the right hand side of the arrow. In our implementation, we decide to maintain a single reference for each

agent’s secret constraints. In our next description, the notation which refers to the constraints of the agent Ai

in a SRC is Ji. In the messages of Figure 4, SRCs are represented as Boolean values in an array of size n. A

value at index i in the array of SRCs set to T signifies that the constraints of Ai are used in the inference of

that nogood (i.e., Ji is part of the justification of the valued nogood).

Initialization. The agents start selecting values for their variables and announce them to interested lower

priority agents. There are no constraints between x3 and x2. Similarly, there is no constraint between x0 and

x2; therefore, the first exchanged messages are ok? messages sent by A0 to both successors A1 and A3 and

which propose the assignment x0=0. Concurrently, A1 sends ok? messages to A2 and A3 proposing x1=0.

These are messages 1 and 2 in Figure 4. The messages in Figure 4 are grouped by their cycle in the simulator

based on rounds (i.e., assuming constant communication latency and no cost for local computations). The

simulator with variable message latencies can yield different traces function of the random latencies.

Handling data structures for ok? messages. On the receipt of the ok? messages, the agents update their

agent-view with the new assignment. Each agent tries to generate valued nogoods for each prefix of its list

of predecessor agents, such as: {A0}, {A0, A1}, {A0, A1, A2}. A1 receives the assignment of x0 and infers

a valued nogood based on its constraint (x0 6= x1). It is stored as cost assessment in its structure l, before

being integrated in h. h[1] = l[1] = [{J1}, 4, 〈x0, 0〉]. l[1] (and h[1]) have cost 0 while l[0] and h[0] have

cost 4. Therefore A1 switches the value of x1 to 1 and announces it to A2 and A3 via message 3. A1 cannot

compute any valued nogood to send to A0.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

After the agent A2 gets message 2, it computes in l[0] a valued nogood with cost 3 (conflict with x1 6= x2).

This valued nogood is copied in h[0] and lastSent[1] before being sent to A1 via message 4. No nogood can

be computed for A0.

Remark 11 (ADOPT-Aos vs ADOPT-Yos) In ADOPT-Yos this message would also include the current list

of known ancestors which here contains only A1.

When A3 gets message 1, it tries to separately infer nogoods for the prefixes of the set of agents: {A0},
{A0, A1}, and {A0, A1, A2}. For the set {A0} it detects a conflict with its constraint x3 6= x0 from which it

infers a valued nogood stored as cost assessment in l[0], copied to h[0] and lastSent[0] before being sent to

A0 via message 5. For the set {A0, A1}, the computed nogood is identical with the one for A0 and its target

does not coincide with A1, the last agent of the corresponding set. Therefore ADOPT-Aos sends no message

to A1. Message 5 is also sent to A2 according to the rule that an agent always attempts to send nogoods to its

predecessor, to ensure optimality. Its nogood is stored by A3 in lastSent[2].

Remark 12 (ADOPT-Aos vs ADOPT-Yos) With ADOPT-Yos, message 5 would not be sent to A2, since the

current parent of A3 would be A0.

After receiving the assignment in message 2, A3 detects a new conflict with its constraint x1 6= x3. From

its two constraints A3 infers a new valued nogood, stored in its l[0] and h[0], and sent to A1 and A2 via

message 6. Note that a nogood is not sent to A0 as the nogood to be sent is identical to the last nogood sent

to that destination (as recorded in lastSent[0]).

Remark 13 (ADOPT-Aos vs ADOPT-Yos) With ADOPT-Yos, A1 would become the parent of A3 at this

stage due to the non-zero cost of the constraint between x3 and x1. A3’s known ancestors would become

A0,A1, and this list would be sent with all nogood messages.

Handling data structures for nogoods. As a result of getting the nogood in message 5 from A3, the agent

A0 stores that nogood in lr[3], copies it to ca[0][3] (which was empty), and copies it further in h[0]. Since

now the cost of h[0] is 2, A0 decides to switch to its next value, 1. This assignment is announced via message

7.

After receiving message 5, A2 registers that nogood in its lr[3], ca[0][3] and h[0]. Computing a nogood

for A0, the nogood of message 5 is stored in lastSent[0] and sent to A0 via message 8. Agent A2 also

computes a nogood for destination A1, where it can also use the local constraint with x1 which yields for l[0]

a nogood with cost 3. Combining l[0] with ca[0][3] by sum-inference, A2 infers a nogood, which it stores

in h[0] and lastSent[0] before sending it to A1 via message 9. A2 detects a new variable in the nogood in

message 6, and sends an add-link message to A0 asking to be notified of changes to the assignment x0 = 0.

The nogood in message 6 replaces the one stored in lr[3]. Since the new nogood cannot be combined by

sum-inference with the old nogood in ca[0][3] but has a higher cost, it also replaces that cost assessment and

leads to the computation by sum-inference of message 11 to be sent to A1.

In the following we skip the details of changes to data structures that are similar to steps that have already

been presented. When the new assignment of x1 in message 3 is received at agent A3, the old nogoods

based on x1 are discarded from its l[0]. To send a nogood to A0, a new l[0] is computed based solely on the

constraint x0 6= x3. Nogoods computed for the other prefixes of agents do not differ from this one since the

constraint with x1 is satisfied. This nogood with cost 2 is sent via message 12 to the agent A2. Note that the

nogood does not need to be sent to A0 because it is not different from the one just sent earlier (via message

5) and recorded in lastSent[0]. After getting message 7, A1 deletes its nogoods in l[0] and ca[0][3], infers

a new valued nogood in l[1] with cost 4, and switches to the value 0 (announced via message 14).

Use of lr data structure. Let us assume that A2 receives message 12 before message 3, which is possible

and allows us to illustrate better the usage of the lr structure. On receiving message 12, agent A2 stores it in

lr[0]. However, A2 does not propagate it further to ca[0][3] since the current cost assessment had a higher

cost and cannot be combined by sum-inference with the new one (sharing the reference to the constraints of

A3). When A2 receives message 3, it deletes its ca[0][3] and l[0], which are based on the older value of

x1, and uses lr[3]. After copying lr[3] through its ca[0][3] and h[0] data structures where all other nogoods

were empty, it passes it further to A0 and to A1 via message 15 (storing it at lastSent[0] and lastSent[1]).

Since A0’s value for x0 is different from the one in the add-link message 10, A0 answers to A2 with the

message 13.

Now A2 receives message 14 and computes a new local nogood l[0] with cost 3 that is combined by sum-

inference with the nogood received in message 12 to generate the nogood in message 16. No change appears

in the nogood computed specially for the target A0. However, after A2 also receives message 13 it discards

the nogood received via message 12 (which was based on an outdated assignment) and infers its h[0] solely

based on l[0]. The result is sent to A1 with message 17. After receiving the two assignments in messages 13

and 14 (in this order) the agent A3 infers from its constraint x3 6= x1 a valued nogood sent to A1 and A2 via

message 18.

Min-resolution. Now our example encounters the first nontrivial min-resolution. When agent A1 receives

message 18, it stores that nogood in lr[3] and ca[0][3]. No other nogood is stored in ca at this point (the

nogood received with message 15 in ca[0][1] has already been invalidated by the new assignment in message

7). The only other nogood held by A1 at this moment is the one in l[1] = [{J1}, 4, 〈x0, 1〉], which is due

to its constraint with x0. l[1] is copied in h[1] while ca[0][3] is copied in h[0]. The two are combined via

min-resolution to generate the nogood in message 19 (also stored in lastSent[0]).

min resolution([{J3}, 3, 〈x1, 0〉], [{J1}, 4, 〈x0, 1〉])→ [{J1, J3}, 3, 〈x0, 1〉〈x1, 0〉]

Message 16 is discarded at its destination because its assignment for x0 is no longer valid. On the arrival of

message 17 (which is concurrent with messages 16 and 18) its nogood is stored in lr[2] and ca[0][2]. Now,

when computing the updated nogood to be sent to A0, h[0] is computed by sum-inference on ca[0][2] and

ca[0][3] obtaining [{J2, J3}, 6, 〈x1, 0〉].

sum inference([{J2}, 3, 〈x1, 0〉], [{J3}, 3, 〈x1, 0〉])→ [{J2, J3}, 6, 〈x1, 0〉]

The obtained valued nogood has a higher cost than the one for h[1], causing the agent to switch the assignment

of x1 to 1 (announced via message 21). When min-resolution is applied on the two nogoods in h[0] and h[1],

the obtained nogood is sent to A0 via message 20.

min resolution([{J2, J3}, 6, 〈x1, 0〉], [{J1}, 4, 〈x0, 1〉])

→ [{J1, J2, J3}, 3, 〈x0, 1〉〈x1, 0〉]

Convergence. Agent A2 also receives message 18, storing the nogood in lr[3] and in ca[0][3]. Its constraint

x2 6= x1 generates a nogood with cost 3 in l[0], which combined by sum-inference with the nogood in ca,

leads to a nogood with total cost 6, visible in message 22.

Agent A0 receives message 19 and registers the nogood in lr[1], ca[1][1], and h[1]. The cost assessment

obtained in h[1] has a cost higher than the one in h[0], determining the switch of the assignment of x0

to 0 (announced via messages 23 and 24). Message 24 also transports a threshold nogood obtained from

ca[0][2] and ca[0][3] (received via messages 15 and 5). The agent A3 evaluates its constraint x0 6= x3

inferring a valued nogood in l[0], which propagates through its h[0], lastSent[2], lastSent[0] to messages

25. Similarly A2 propagates this nogood to A1, which propagates it further through its data structures and

eventually delivers it to A0 via message 27. Messages 25, 26 and 27 basically confirm the already known

threshold nogoods. Further research may make it possible to avoid them12.

We have modeled solved this example with our implementation for ADOPT-Aos with rounds.

12. E.g, by a mechanism for storing threshold nogoods in the lastSent of the recipient and in the lr of the sender, resending the

lastSent when the threshold nogood does not apply.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

5.8 Possible Extensions

We addressed ADOPT-ing as an asynchronous version of A*, more exactly a version of iterative deepening

A*, where the heuristic is computed by recursively using ADOPT-ing itself, and where the composition of

the results of recursive ADOPT-ing is based on backtracking.

A proposed extension to this work consists of composing the recursive asynchronous heuristic estimator

by using consistency maintenance. This can be done with the introduction of valued consistency nogoods.

Details and variations are described in (Silaghi, 2002, 2003b; Silaghi et al., 2004; Gershman, Meisels, &

Zivan, 2006, 2007; Sultanik et al., 2006). The control of the space requirements for such extensions may

be based on the use of consistency nogoods to simulate the distributed weighted arc consistency in (Silaghi

et al., 2004), while the maintenance of this control of space in asynchronous search may be similar to the

one for distributed CSPs described in (Silaghi & Faltings, 2004). Another possible extension is by further

generalizing the nogoods such that each variable can be assigned a set of values. This type of aggregation

was shown in (Silaghi & Faltings, 2004) to improve search, and the extension is detailed in (Silaghi, 2002).

In our implementation we concentrated on minimizing the logic time of the computation, evaluated as the

number of rounds on a simulator. The optimization of local processing (which is polynomial in the number

of variables) is not at the center of attention at this stage. Local computations can be optimized, for example,

by reusing values of structures l and h computed at min-resolution for a given target agent in obtaining

values of these structures at the min-resolution for messages sent to lower priority target agents. Further

work can determine whether improvements could be made by storing separately the nogoods of h for each

target k. The size of messages in ADOPT-Yos could be slightly reduced by appending a given content of the

ancestors list only once to each target. ADOPT-Yos is better than ADOPT-Aos in terms of simulated time.

Agents in ADOPT-Yos could insert from the beginning all their neighboring predecessors in their ancestors

list, obtaining from the first n rounds the DFS tree of ADOPT-Dos, thereby replicating the efficiency of

ADOPT-Dos.

Other extensions seem possible by integrating additive branch and bound searches on DFS sub-trees, as

proposed by (Chechetka & Sycara, 2006; Yeoh, Koenig, & Felner, 2007). This can be added to ADOPT-ing

by maintaining solution-based nogoods as suggested in (Silaghi, 2002). It remains to be seen if the quality

of solutions with a certain value can be predicted with the technique in (Petcu & Faltings, 2006b). Further

improvements are possible by running ADOPT-ing in parallel for several orderings of the agents (Ringwelski

& Hamadi, 2005; Benisch & Sadeh, 2006).

ADOPT-ing can be seen as an extension of ABT. The extension of ABT called ABTR (Silaghi, Sam-

Haroud, & Faltings, 2001a; Silaghi, 2006) proposes a way to extend ABT-based algorithms to allow for

dynamic ordering of the agents (Armstrong & Durfee, 1997). Work in the area consistent with this approach,

but mainly favoring static ordering, appears in (Liu & Sycara, 1995; Chechetka & Sycara, 2005). Finding

good heuristics was shown to be a difficult problem (Silaghi et al., 2001b; Zivan & Meisels, 2005) and here

one will need to take into account the importance of the existence of a short DFS tree compatible to the

current ordering.

6. Experiments

For experiments with random message latencies and for outputs not provided by the original implementation

of ADOPT (e.g., ENCCCs), we had to provide the results of our implementation. While our implementa-

tion performs in general similarly to the original implementation of ADOPT, our technique solved in a few

hours the instances for which the original ADOPT implementation was interrupted after some weeks, con-

firming that some differences in details may exist. Functional differences between our implementation and

the original implementation of ADOPT may lie only in petty details not described in (Modi et al., 2005). In

our experiments we detect the termination by detecting the quiescence in the simulator. Theoretically this

detects the same termination moment as the detection based on upper-bounds described in ADOPT, and has

no impact on the execution of the algorithm itself.

We also implemented a version of ADOPT (using our implementation of ADOPT with threshold nogoods)

that uses a chain of agents rather than the DFS tree. This version is denoted ADOPT.chain.

We first verified experimentally the fact that ADOPT behaves identically if SRCs are added to contexts

while sending the messages only to the same destinations. Then we send messages to additional ancestors

(ADOPT-Dos), and we show an improvement. Then we detect the incremental improvement due to the

dynamic detection of the tree, by depicting the three techniques on the same graphs. We also verify the

incremental improvement of sending messages to all predecessors (ADOPT-Aos), and then the incremental

improvement brought on this by detecting the DFS tree dynamically.

The algorithms are compared on the same problems that are used to report the performance of ADOPT

in (Modi et al., 2005). To correctly compare our techniques with the original ADOPT, we have used the same

order (or DFS trees) on agents for each problem. The impact of the existence of a good DFS tree compatible

with the used order is tested separately by comparison with a random ordering. The set of problems dis-

tributed with ADOPT and used here contains 25 problems for each problem size. It contains problems with

8, 10, 12, 14, 16, 18, 20, 25, 30, and 40 agents, and for each of these numbers of agents, it contains test sets

with density 20% and with density 30%. A smaller set of problems with density 40% is also available. The

density of a (binary) constraint problem’s graph with n variables is defined by the ratio between the number

of binary constraints and
n(n−1)

2 . Results are averaged on the 25 problems with the same parameters.

We believe that the size of problems in this set is sufficiently large, given that the average simulated time

(expected time of a real solver) for the instances with 40 agents at density 30% is between 3 hours and 27

hours, (and up to 10 days at 25 agents and density 40%), longer than what users are expected to wait for a

solution.

Our simulator allows for defining the latency of each message. We performed experiments with random

message latencies, and the efficiency is measured in sequential messages and in the number of total messages.

The random latencies were generated in the range of common values for Internet communications via optical

fiber between Israel and the United States which is between 150ms and 250ms (Neystadt & Har’El, 1997).

To reproduce our results for the set of tests, one has to seed the standard C ’random()’ function with the value

10000 and generate each latency as carried out in (Neystadt & Har’El, 1997):

latency = 150 +
random() ∗ 100.0

LONG MAX
(msec).

FIFO channels are ensured in the second set of tests by setting the delivery time of each message to the

maximum between the value obtained using the latency yielded by the aforementioned computation and the

delivery time of the last message sent on that particular communication channel. Messages with the same

value for the delivery time are handed to the destination agent in a FIFO manner through a queue.

In graphs, an algorithm ADOPT-DON is typically shortened to DON.

The length of the longest causal (sequential) chain of messages of each solver (the number of sequential

messages), averaged on problems with density 30%, is given in Figure 5. Results for problems with density

20% are given in Figure 6. Results for density 40% are shown in Figure 7. We can note that version ADOPT-

Yos of ADOPT-ing brought an improvement of approximately 10 times on problems with 40 agents and

density 30%, and of approximately 12 times on problems with 25 agents and density 40%. The improvement

at density 20% is 2 times when compared to ADOPT.13 Therefore, sending nogoods only to the parent node is

significantly worse (in number of message latencies), than sending nogoods to several ancestors. With respect

to the number of message latencies, the use of SRCs with nogood contexts practically replaces the need to

maintain the DFS tree since ADOPT-Aos is comparable in efficiency to ADOPT-Dos. New versions of

ADOPT-ing are up to 14 times faster than ADOPT.chain, proving that ADOPT-ing is not a simple application

of ADOPT to a chain of agents, but that justified valued nogoods literally succeed in dynamically discovering

the DFS tree.

13. At density 20%, with synchronous rounds, the original implementation of ADOPT performs 3.5 times worse than ADOPT, i.e., 7

times worse than ADOPT-Yos. This may be explained by some inefficient detail in the original implementation of ADOPT, since

the deviation from ADOPT does not appear at other densities.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

Density 30%

Agents

Se
qu

en
tia

l M
es

sa
ge

s

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

1e+04

2e+04

3e+04

4e+04

5e+04

6e+04

7e+04

Aos
Yos
ADOPT
Dos
ADOPT.chain

Aos
Yos
ADOPT
Dos
ADOPT.chain

Figure 5: Sequential messages for problems with density 30%.

Density 20%

Agents

Se
qu

en
tia

l M
es

sa
ge

s

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

40.0

60.0

80.0

100.0

120.0

Aos
Yos
Dos
ADOPT
ADOPT.chain

Aos
Yos
Dos
ADOPT
ADOPT.chain

Figure 6: Sequential messages for problems with density 20%.

Remark 14 Versions using DFS trees require fewer parallel/total messages, being more network friendly,

as seen in Figure 8. Figure 8 shows that sending messages to other predecessors, as done in ADOPT-Aos,

ADOPT-Yos and ADOPT-Dos, is 4 times better at density 30% than ADOPT in terms of total number of

messages, while (as shown by previous graphs) also being more efficient in terms of message latencies. At

density 40% ADOPT-Yos is 6 times better than ADOPT in terms of total number of messages. ADOPT-Yos is

the most efficient algorithm in terms of total number of messages, being 30% better at density 30% than the

second best algorithm, ADOPT-Aos. At density 40% it is 12% better than ADOPT-Aos.

Density 40%

Agents

Se
qu

en
tia

l M
es

sa
ge

s

12 14 16 18 20 22 24

0

1e+05

2e+05

3e+05

4e+05

Dos
Yos
Aos
ADOPT
ADOPT.chain

Dos
Yos
Aos
ADOPT
ADOPT.chain

Figure 7: Sequential messages for problems with density 40%.

Density 30%

Agents

To
ta

l #
 o

f m
es

sa
ge

s

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

1e+05

1e+06

1e+07

Aos
Dos
ADOPT.chain
ADOPT
Yos

Aos
Dos
ADOPT.chain
ADOPT
Yos

Figure 8: Total number of messages at density 30% (log scale).

While the importance of privacy is clear, evaluating the privacy loss is a controversial issue outside a

concrete application. The versions of ADOPT-ing that send less total messages, are intuitively expected to

perform better (since privacy is expected to be related to the total number of messages

We do not show run-time comparisons with the original implementation of ADOPT since our versions

of ADOPT are implemented in C++, while the original ADOPT is in Java (which obviously leads to all our

versions being an irrelevant order of magnitude faster). However, we provide run-time comparisons with

our implementation of ADOPT. A comparison between the time required by versions of ADOPT-ing on a

simulator is shown in Figure 9 for sequential messages. It reveals the computational load of the agents which,

as expected, is related to the total number of exchanged messages.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

Time in Simulator
Density 30%

Agents

se
co

nd
s

26 28 30 32 34 36 38 40
0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

Aos
Dos
ADOPT.chain
ADOPT
Yos

Aos
Dos
ADOPT.chain
ADOPT
Yos

Figure 9: Actual time in seconds using our simulator as solver of centralized WCSPs.

Agents 16 18 20 25 30 40

ADOPT-Yos.b 701.72 1438 1345.56 5540.84 12394 59114.36

no threshold 872.76 1781.96 1708.72 7391.28 17531.36 92745.44

Table 2: Impact of threshold valued nogoods on the longest causal chain of messages (sequential messages)

for versions of ADOPT-ing, averaged on problems with density 30%.

Agents 16 18 20 25 30 40

DFS compatible 708.8 1429.48 1357.07 5579.56 12.4*103 60*103

random order 4807.44 15.6*103 33*103 219*103 708*103 —

Table 3: Impact of choice of order according to a DFS tree on the longest causal chain of messages (sequen-

tial messages) for ADOPT-Yos, averaged on problems with density 30%.

A separate set of experiments was run for isolating and evaluating the contribution of threshold valued

nogoods. Table 2 shows that the use of threshold nogoods almost halves the computation time. Another

experiment, whose results are shown in Table 3, is meant to evaluate the impact of the guarantees that the

ordering on agents is compatible with a short DFS tree. We evaluate this by comparing ADOPT-Yos with an

ordering that is compatible with the DFS tree built by ADOPT, versus a random ordering. At 30 agents it

was found to be 60 times more efficient to ensure that a DFS tree exists rather than to use a random ordering.

The results show that random orderings are unlikely to be compatible with short DFS trees and that verifying

the existence of a short DFS tree compatible to the ordering on agents to be used by ADOPT-ing is highly

recommended.

The simulated time of the computations, where the random latencies of the messages are accumulated

along the longest causal chain, is shown in Figure 10. The time taken for the local computation han-

dling/generating each message (Figure 9) is hundreds of times smaller than the latency of the associated

Density 30%

Agents

si
m

ul
at

ed
 s

ec
on

ds

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

1e+02

1e+03

1e+04

1e+05

ADOPT
Dos
Yos
Aos
ADOPT.chain

ADOPT
Dos
Yos
Aos
ADOPT.chain

Figure 10: Simulated time in seconds, each latency being drawn randomly between 150ms and 250ms (for

problems with density 30%).

Density 30%

Agents

si
m

ul
at

ed
�ti

m
e/

lo
ca

l�c
om

pu
ta

tio
n

16 18 20 22 24 26 28 30 32 34 36 38 40

0

400

800

1200

1600

2000

Dos
Yos
Aos
ADOPT
ADOPT.chain

Dos
Yos
Aos
ADOPT
ADOPT.chain

Figure 11: Ratio between total expected time where each latency is drawn randomly between 150ms and

250ms, and the local time of an agent (for problems with density 30%).

messages, falling close to the numerical precision of this accounting (Figure 11), confirming the relevance of

the metrics we use here.

Figure 5 shows the behavior of our implementation of ADOPT. It took more than two weeks for the

original ADOPT implementation to solve one of the problems for 20 agents and density 30%, and one of

the problems for 25 agents and density 30% (at which moment the solver was interrupted). Therefore, it

was evaluated using only the remaining 24 problems at those problem sizes. In (Silaghi & Yokoo, 2006) we

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

have also shown that SRCs bring improvements over versions with valued global nogoods, since SRCs allow

detection of dynamically obtained independence.

Density 30%

Agents

As
yn

c
Cy

cl
es

28 30 32 34 36 38 40

10000

20000

30000

40000

50000

60000

70000

80000

90000

Yos
Yos.b
Yos.a.opt
Dos
Aos

Yos
Yos.b
Yos.a.opt
Dos
Aos

Figure 12: Local computations have little effect, but ADOPT-Yos is clearly better than ADOPT-Aos, com-

peting with ADOPT-Dos. The optimized version of ADOPT-Yos is in average approximately 1%

better than ADOPT-Dos (up to 15% better on some problem instances).

We tried to figure out the importance of using method (a) rather than method (b) in Step 1 of Remark 8

(comparing obtained versions ADOPT-Yos and ADOPT-Yos.b), and we found the two alternatives to be

equally good (ADOPT-Yos being less than 1% better than ADOPT-Yos.b). We also evaluated the effects

of optimizations in local computations, by computing the nogoods for an agent Ak based on the nogoods

computed for higher priority agents rather than computing them from scratch (ADOPT-Yos.a.optim). The

same figure shows the effect on sequential messages to be minor (approximately 1% worse than ADOPT-

Yos). The effect on constraint checks is similarly minor (4%) and is not depicted here.

Figure 5 clearly shows that the highest improvement in number of sequential messages is brought by

sending valued nogoods to other ancestors besides the parent. The next factor for improvement with difficult

problems (density .3) is the use of SRCs. The use of the structures of the DFS tree makes slight improvements

in number of message latencies (when nogoods reach all ancestors).

Experimental comparison with DPOP (Petcu & Faltings, 2005a, 2005b) is redundant since its perfor-

mance can be easily predicted. DPOP is a good choice if the induced width γ of the graph of the problem

is smaller than logd T/n and smaller than logd S, where T is the available time, n the number of variables,

d the domain size, and S the available computer memory. The usage of the DFS trees in DPOP is discussed

in (Atlas & Decker, 2007).

7. Conclusions

With the ADOPT distributed constraint optimization algorithm, an agent can communicate feedback only to

a predefined predecessor, its parent in the DFS tree. The extension proposed here enables agents to send feed-

back to any relevant agent (fulfilling a research direction suggested in the original publication of ADOPT),

bringing significant speed-up, and embodying a version of ADOPT on which one can apply the results related

to the main algorithm for distributed constraint satisfaction, ABT.

ADOPT-ing can dynamically discover a DFS tree based only on the constraints that had been proved

relevant by the search up to that moment. It uses (Dago & Verfaillie, 1996)’s valued nogoods tagging contexts

with costs and with sets of references to culprit constraints. The generalized algorithm is denoted ADOPT-

ing. Tagging costs with sets of references to culprit constraints (SRCs) allows detection and exploitation of

dynamically created independence between sub-problems. Such independence can be caused by assignments.

Experimentation shows that it is important for an agent to infer and send in parallel several valued nogoods

to different higher priority agents. Each inferred valued nogood is sent only to the highest priority agent that

can handle it (its target). Precomputed DFS trees can still be used in conjunction with the valued nogood

paradigm for optimization, thereby providing some additional improvements. ADOPT-ing versions detecting

and/or exploiting DFS trees that we tested so far are also slightly better (in number of sequential messages

and total messages) than the ones without DFS trees.

We isolated and evaluated the contribution of using threshold valued nogoods in ADOPT-ing. In addition,

we determined the importance of precomputing and maintaining a short DFS tree of the constraint graph, or

at least of guaranteeing that a DFS tree is compatible with the order on agents, which is almost an order of

magnitude in our problems.

The use of SRCs to dynamically detect and exploit independence and the generalized communication of

valued nogoods to several ancestors bring elegance and flexibility to the description and implementation of

ADOPT in ADOPT-ing. They also produced experimental improvements of an order of magnitude.

Acknowledgments

We thank Judith Strother for her professional restyling of the paper. We also thank anonymous reviewers

for suggesting particularly relevant references, clarifications, and experiments. This research was partially

supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research

(B), 17300049, 2005–2007.

References

Ali, S., Koenig, S., & Tambe, M. (2005). Preprocessing techniques for accelerating the DCOP algorithm

ADOPT. In AAMAS.

Armstrong, A., & Durfee, E. F. (1997). Dynamic prioritization of complex agents in distributed constraint

satisfaction problems. In Proceedings of 15th IJCAI.

Atlas, J., & Decker, K. (2007). A complete distributed constraint optimization method for non-traditional

pseudotree arrangements. In AAMAS.

Benisch, M., & Sadeh, N. (2006). Examining dcsp coordination tradeoffs. In AAMAS.

Bessiere, C., Brito, I., Maestre, A., & Meseguer, P. (2005). Asynchronous backtracking without adding links:

A new member in the abt family. Artificial Intelligence, 161, 7–24.

Bistarelli, S., Montanari, U., & Rossi, F. (1995). Constraint solving over semirings. In Proceedings IJCAI,

pp. 624–630, Montreal.

Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., & Fargier, H. (1999). Semiring-based CSPs

and valued CSPs: Frameworks, properties, and comparison. Constraints, 4(3), 199–240.

Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., & Verfaillie, G. (1996). Semiring-based csps

and valued csps: Basic properties and comparison. In Over-Constrained Systems, pp. 111–150, London,

UK. Springer-Verlag.

Chechetka, A., & Sycara, K. (2005). A decentralized variable ordering method for distributed constraint

optimization. In AAMAS.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

Chechetka, A., & Sycara, K. (2006). No-commitment branch and bound search for distributed constraint

optimization. In AAMAS.

Collin, Z., Dechter, R., & Katz, S. (2000). Self-stabilizing distributed constraint satisfaction. Chicago Journal

of Theoretical Computer Science, 3(4).

Dago, P. (1997). Backtrack dynamique valué.. In JFPLC, pp. 133–148.

Dago, P., & Verfaillie, G. (1996). Nogood recording for valued constraint satisfaction problems.. In ICTAI.

Dechter, R. (1990). Enhancement schemes for constraint processing: Backjumping, learning, and cutset

decomposition. Artificial Intelligence, 41(3), 273 – 312.

Dechter, R. (2003). Constraint Processing. Morgan Kaufman.

Faltings, B. (2006). Handbook of Constraint Programming (Foundations of Artificial Intelligence), chap.

Distributed Constraint Programming. Elsevier, New York, NY, USA.

Franzin, M., Rossi, F., E.C., F., & Wallace, R. (2004). Multi-agent meeting scheduling with preferences:

efficiency, privacy loss, and solution quality. Computational Intelligence, 20(2).

Gershman, A., Meisels, A., & Zivan, R. (2006). Asynchronous forward-bounding for distributed constraints

optimization. In ECAI.

Gershman, A., Meisels, A., & Zivan, R. (2007). Asynchronous forward-bounding with backjumping. In

IJCAI DCR Workshop.

Ginsberg, M. L. (1993). Dynamic backtracking. Journal of AI Research, 1.

Greenstadt, R., Pearce, J., Bowring, E., & Tambe, M. (2006). Experimental analysis of privacy loss in dcop

algorithms. In AAMAS, pp. 1024–1027.

Hamadi, Y., & Bessière, C. (1998). Backtracking in distributed constraint networks. In ECAI’98, pp. 219–

223.

Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. In Proceedings of the

Conference on Constraint Processing (CP-97),LNCS 1330, pp. 222–236.

Jagota, A., & Dechter, R. (1997). Simple distributed algorithms for the cycle cutset problem. In SAC ’97:

Proceedings of the 1997 ACM symposium on Applied computing, pp. 366–373, New York, NY, USA.

ACM Press.

Larrosa, J. (2002). Node and arc consistency in weighted csp. In AAAI-2002, Edmonton.

Liu, J., & Sycara, K. P. (1995). Exploiting problem structure for distributed constraint optimization. In

ICMAS.

Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., & Varakantham, P. (2004). Taking DCOP to the real

world: Efficient complete solutions for distributed event scheduling. In AAMAS.

Marcellino, F. M., Omar, N., & Moura, A. V. (2007). The planning of the oil derivatives transportation by

pipelines as a distributed constraint optimization problem. In IJCAI-DCR Workshop, India.

Modi, P., & Veloso, M. (2005). Bumping strategies for the multiagent agreement problem. In AAMAS.

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous distributed constraint

optimization with quality guarantees. AIJ, 161.

Modi, P. J., Tambe, M., Shen, W.-M., & Yokoo, M. (2002). A general-purpose asynchronous algorithm

for distributed constraint optimization. In Distributed Constraint Reasoning, Proc. of the AAMAS’02

Workshop, Bologna. AAMAS.

Neystadt, J., & Har’El, N. (1997). Israeli internet guide (iguide). http://www.iguide.co.il/isp-sum.htm.

Petcu, A., & Faltings, B. (2005a). Approximations in distributed optimization. In Principles and Practice of

Constraint Programming CP 2005.

Petcu, A., & Faltings, B. (2005b). A scalable method for multiagent constraint optimization. In IJCAI.

Petcu, A., & Faltings, B. (2006a). Distributed generator maintenance scheduling. In Proceedings of the First

International ICSC Symposium on Artificial Intelligence in Energy Systems and Power: AIESP’06,

Madeira, Portugal.

Petcu, A., & Faltings, B. (2006b). ODPOP: an algorithm for open/distributed constraint optimization. In

AAAI.

Ringwelski, G., & Hamadi, Y. (2005). Multi-directional distributed search with aggregation. In IJCAI-DCR.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: hard and easy prob-

lems.. In Procs. IJCAI’95, pp. 631–637.

Silaghi, M.-C. (2002). Asynchronously Solving Distributed Problems with Privacy Requirements. PhD Thesis

2601, (EPFL). http://www.cs.fit.edu/˜msilaghi/teza.

Silaghi, M.-C. (2003a). Asynchronous PFC-MRDAC±Adopt —consistency-maintenance in ADOPT—. In

Distributed Constraint Reasoning Workshop at the International Joint Conference on Artificial Intelli-

gence (IJCAI-DCR).

Silaghi, M.-C. (2003b). Howto: Asynchronous PFC-MRDAC –optimization in distributed constraint prob-

lems +/-ADOPT–. In International Conference on Intelligent Agent Technology (IAT), Halifax.

Silaghi, M.-C. (2006). Framework for modeling reordering heuristics for asynchronous backtracking. In

International Conference on Intelligent Agent Technology (IAT).

Silaghi, M.-C., & Faltings, B. (2004). Asynchronous aggregation and consistency in distributed constraint

satisfaction. Artificial Intelligence, 161(1-2), 25–53.

Silaghi, M.-C., Landwehr, J., & Larrosa, J. B. (2004). Selected Paper from the 2003 Distributed Con-

straint Reasoning Workshop, Vol. 112 of Frontiers in Artificial Intelligence and Applications, chap.

Asynchronous Branch & Bound and A* for DisWCSPs with heuristic function based on Consistency-

Maintenance. IOS Press.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Asynchronous search with aggregations. In Proc. of

National Conference of the American Association of Artificial Intelligence (AAAI2000), pp. 917–922,

Austin.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2001a). ABT with asynchronous reordering. In International

Conference on Intelligent Agent Technology (IAT).

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2001b). Hybridizing ABT and AWC into a polynomial

space, complete protocol with reordering. Tech. rep. #01/364, EPFL.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Maintaining hierarchical distributed consistency. In

Workshop on Distributed CSPs, Singapore. 6th International Conference on CP 2000.

Silaghi, M.-C., & Yokoo, M. (2006). Nogood-based asynchronous distributed optimization. In International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Stallman, R. M., & Sussman, G. J. (1977). Forward reasoning and dependency-directed backtracking in a

system for computer-aided circuit analysis. Artificial Intelligence, 9, 135–193.

Sultanik, E., Modi, P. J., & Regli, W. (2006). Constraint propagation for domain bounding in distributed task

scheduling. In CP.

Walsh, T. (2007). Traffic light scheduling: a challenging distributed constraint optimization problem. In DCR,

India.

Yeoh, W., Koenig, S., & Felner, A. (2007). Idb-adopt : A depth first search dcop algorithm. In IJCAI DCR

Workshop.

Yokoo, M. (1993). Constraint relaxation in distributed constraint satisfaction problem. In ICDCS’93, pp.

56–63.

Submitted to JAAMAS on May 9, 2007. First notification received on Jan 28, 2008.

Resubmitted on Feb 20, 2008.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1992). Distributed constraint satisfaction for formal-

izing distributed problem solving. In ICDCS, pp. 614–621.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint satisfaction problem:

Formalization and algorithms. IEEE TKDE, 10(5), 673–685.

Yokoo, M., & Hirayama, K. (1998). Distributed constraint satisfaction algorithm for complex local problems.

In Proceedings of 3rd ICMAS’98, pp. 372–379.

Zivan, R., & Meisels, A. (2005). Dynamic ordering for asynchronous backtracking on discsps. In CP, pp.

161–172.

