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Abstract

This article presents an asynchronous algorithm for solving Distributed
Constraint Optimization problems (DCOPs). The proposed technique
unifies asynchronous backtracking (ABT) and asynchronous distributed
optimization (ADOPT) where valued nogoods enable more flexible rea-
soning and more opportunities of communication, leading to an important
speed-up. The concept of valued nogood is an extension of the concept
of classic nogood that associates the list of conflicting assignments with a
threshold and, optionally, with a set of references to culprit constraints.

DCOPs have been shown to have very elegant distributed solutions,
such as ADOPT, distributed asynchronous overlay (DisAO), or DPOP.
These algorithms are typically tuned to minimize the longest causal chain
of messages as a measure of how the algorithms will scale for systems with
remote agents (with large latency in communication). ADOPT has the
property of maintaining the initial distribution of the problem. ADOPT
needs a preprocessing step consisting of computing a Depth-First Search
(DFS) tree on the constraint graph. Valued nogoods allow for automat-
ically detecting and exploiting the best DFS tree compatible with the
current ordering and it is sufficient to ensure that a short such DFS tree
exists. Also, the inference rules available for valued nogoods help to ex-
ploit schemes of communication where more feedback is sent to higher
priority agents. Together they result in an order of magnitude improve-
ment.

1 Introduction

Distributed Constraint Optimization (DCOP) is a formalism that can model
naturally distributed problems. These are problems where agents try to find
assignments to a set of variables that are subject to constraints. The natural
distribution comes from the assumption that only a subset of the agents has
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knowledge of each given constraint. Nevertheless, in DCOPs it is assumed that
agents try to maximize their cumulated satisfaction by the chosen solution.
This is different from other related formalisms where agents try to maximize
the satisfaction of the least satisfied among them [40].

Several synchronous and asynchronous distributed algorithms have been pro-
posed for solving DCOPs in a distributed manner. Since a DCOP can be viewed
as a distributed version of the common centralized Valued Constraint Satisfac-
tion Problems (VCSPs), it is normal that successful techniques for VCSPs were
ported to DCOPs. However, the effectiveness of such techniques has to be evalu-
ated from a different perspective (and different measures) as imposed by the new
requirements. Typically research has focused on techniques in which reluctance
is manifested toward modifications to the distribution of the problem (modifica-
tion accepted only when some reasoning infers it is unavoidable for guaranteeing
that a solution can be reached). This criteria is widely believed to be valuable
and adaptable for large, open, and/or dynamic distributed problems. It is also
perceived as an alternative approach to privacy requirements [31, 39, 44, 34].

A synchronous algorithm, synchronous branch and bound, was the first
known distributed algorithm for solving DCOPs [17]. Stochastic versions have
also been proposed [45]. From the point of view of efficiency, a distributed al-
gorithm for solving DCOPs is typically evaluated with regard to applications
to agents on the Internet, namely, where latency in communication is signifi-
cantly more time consuming than local computations. A measure representing
this assumption well is given by the number of cycles of a simulator that lets
each agent in turn process all the messages that it receives [41]. Within the
mentioned assumption, this measure is equivalent for real solvers to the longest
causal chain of sequential messages, as used in [36].

From the point of view of this measure, a very efficient currently existing
DCOP solver is DPOP [24, 23], which is linear in the number of variables.
However, that algorithm generally has message sizes and local computation costs
that are exponential in the induced width of a chosen depth-first search tree of
the constraint graph of the problem. This clearly invalidates the assumptions
that lead to the acceptance of the number of cycles as an efficiency measure.
Some of the agents are also very disadvantaged in DPOP with respect to their
privacy [15]. Effort is currently directed toward reducing these drawbacks [25].

Two other algorithms competing as efficient solvers of DCOPs are the asyn-
chronous distributed optimization (ADOPT) and the distributed asynchronous
overlay (DisAO). DisAO works by incrementally joining the sub-problems owned
by agents found in conflict [20]. ADOPT can be described as a parallel version
of (Iterative Deepening) A* [33]. While DisAO is typically criticized for its sig-
nificant abandon of the maintenance of the natural distribution of the problem
at the first conflict (and expensive local computations invalidating the above
assumptions as for DPOP [9, 19, 1]), ADOPT can be criticized for its strict
message pattern that only provides reduced reasoning opportunities. ADOPT
works with orderings on agents dictated by some Depth-First Search tree on
the constraint graph, and allows cost communication from an agent only to its
parent node.
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It is easy to construct huge problems whose constraint graphs are forests and
which can be easily solved by DPOP (in linear time), but are unsolvable with the
other known algorithms. It is also easy to construct relatively small problems
whose constraint graph is full and therefore require unacceptable (exponential)
space with DPOP, while being easily solvable with algorithms like ADOPT, e.g.
for the trivial case where all tuples are optimal with cost zero.

In this work we address the aforementioned critiques of ADOPT showing
that it is possible to define a message scheme based on a type of nogoods, called
valued nogoods [8], that besides automatically detecting and exploiting the DFS
tree of the constraint graph coherent with the current order, helps to exploit
additional communication leading to significant improvement in efficiency. The
examples given of additional communication are based on allowing each agent
to send feedback via valued nogoods to several higher priority agents in par-
allel. The usage of nogoods is a source of much flexibility in asynchronous
algorithms. A nogood specifies a set of assignments that conflict with existing
constraints [38]. A basic version of the valued nogoods consists of associating
each nogood to a threshold, namely a cost limit violated due to the assignments
of the nogood. It is significant to note that the described use of valued nogoods
leads to efficiency improvements even if exploited in conjunction with a previ-
ously known DFS tree, instead of the less semantically explicit cost messages of
ADOPT. Valued nogoods that are associated with a list of culprit constraints
produce additional important improvements. Each of these incremental con-
cepts and improvements is described in the following sections.

We start by defining the general DCOP problem, followed by introduction
of the immediately related background knowledge consisting of the ADOPT
algorithm and use of Depth-First Search trees in optimization. In Section 5
we also describe valued nogoods together with the simplified version of valued
global nogoods. In Section 6 we present our new algorithm that unifies ADOPT
with the older Asynchronous Backtracking (ABT). The algorithm is introduced
by first describing the goals in terms of new communication schemes to be en-
abled. Then the data structures needed for such communication are explored
together with the associated flow of data. Finally the pseudo-code and the proof
of optimality are provided before discussing other existing and possible exten-
sions. Several different versions mentioned during the description are compared
experimentally in the last section.

2 Distributed Valued CSPs

Constraint Satisfaction Problems (CSPs) are described by a set X of variables
and a set of constraints on the possible combinations of assignments to these
variables with values from their domains.

Definition 1 (DCOP) A distributed constraint optimization problem
(DCOP), aka distributed valued CSP, is defined by a set of agents A1, A2, ..., An,
a set X of variables, x1, x2, ..., xn, and a set of functions f1, f2, ...fi, ..., fn,

3



fi : Xi → IR+, Xi ⊆ X, where only Ai knows fi. We assume that xi can only
take values from a domain Di = {1, ..., d}.

Denoting with x an assignment of values to all the variables in X, the problem
is to find argmin

x

∑n

i=1 fi(x|Xi
).

For simplification and without loss of generality, one typically assumes that
Xi ⊆ {x1, ..., xi}.

By x|Xi
we denote the projection the set of assignments in x on the set of

variables in Xi. Our idea can be easily applied to general valued CSPs.

3 DFS-trees
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Figure 1: For a DCOP with primal graph depicted in (a), two possible DFS
trees (pseudo-trees) are (b) and (c). Interrupted lines show constraint graph
neighboring relations not in the DFS tree.

The primal graph of a DCOP is the graph having the variables in X as nodes
and having an arc for each pair of variables linked by a constraint [11]. A Depth-
First Search (DFS) tree associated with a DCOP is a spanning tree generated by
the arcs used for first visiting each node during some Depth-First Traversal of its
primal graph. DFS trees were first successfully used for distributed constraint
problems in [7]. The property exploited there is that separate branches of the
DFS-tree are completely independent once the assignments of common ancestors
are decided. Two examples of DFS trees for a DCOP primal graph are shown
in Figure 1.

Nodes directly connected to a node in a primal graph are said to be its
neighbors. In Figure 1.a, the neighbors of x3 are {x1, x4, x5}. The ancestors
of a node are the nodes on the path between it and the root of the DFS tree,
inclusively. In Figure 1.b, {x3, x5} are ancestors of x2. x3 has no ancestors. If
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a variable xi is an ancestor of a variable xj , then xj is a descendant of xi. For
example, in Figure 1.b, {x1, x2} are descendants of x5.

4 ADOPT and ABT

ADOPT. ADOPT [21] is an asynchronous complete DCOP solver, which is
guaranteed to find an optimal solution. Here, we only show a brief description of
ADOPT. Please consult [21] for more details. First, ADOPT organizes agents
into a Depth-First Search (DFS) tree, in which constraints are allowed between
a variable and any of its ancestors or descendants, but not between variables in
separate sub-trees.

ADOPT uses three kinds of messages: VALUE, COST, and THRESHOLD.
A VALUE message communicates the assignment of a variable from ancestors
to descendants who share constraints with the sender. When the algorithm
starts, each agent takes a random value for its variable and sends appropriate
VALUE messages. A COST message is sent from a child to its parent, which
indicates the estimated lower bound of the cost of the sub-tree rooted at the
child. Since communication is asynchronous, a cost message contains a context,
i.e., a list of the value assignments of the ancestors. The THRESHOLD message
is introduced to improve the search efficiency. An agent tries to assign its value
so that the estimated cost is lower than the given threshold communicated by
the THRESHOLD message from its parent. Initially, the threshold is 0. When
the estimated cost is higher than the given threshold, the agent opportunistically
switches its value assignment to another value that has the smallest estimated
cost. Initially, the estimated cost is 0. Therefore, an unexplored assignment
has an estimated cost of 0. A cost message also contains the information of the
upper bound of the cost of the sub-tree, i.e., the actual cost of the sub-tree.
When the upper bound and the lower bound meet at the root agent, then a
globally optimal solution has been found and the algorithm is terminated.

ABT. Distributed constraint satisfaction problems are special cases of DCOPs
where the constraints f can return only values in {0,∞}. The basic asyn-
chronous algorithm for solving distributed constraint satisfaction problems is
asynchronous backtracking (ABT) [42]. ABT uses a total priority order on
agents where agents announce new assignments to lower priority agents using
ok? messages, and announce conflicts to lower priority agents using nogood
messages. New dependencies created by dynamically learned conflicts are an-
nounced using add-link messages. An important difference between ABT and
ADOPT is that, in ABT, conflicts (the equivalents of cost) can be freely sent
to any higher priority agent.
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Figure 2: MIN resolution on valued global nogoods

5 Cost of nogoods

Previous flexible algorithms for solving distributed constraint satisfaction prob-
lems exploit the inference power of nogoods (e.g., ABT, AWC, ABTR [41, 42,
37])1. A nogood ¬N stands for a set N of assignments that was proven impossi-
ble, by inference, using constraints. If N = (〈x1, v1〉, ..., 〈xt, vt〉) where vi ∈ Di,
then we denote by N the set of variables assigned in N , N = {x1, ..., xt}.

5.1 Valued Global Nogoods

In order to apply nogood-based algorithms to DCOP, we redefine the notion of
nogoods as follows. First, we attach a value to each nogood obtaining a valued
global nogood.

Definition 2 (Valued Global Nogood) A valued global nogood has the form
[c, N ], and specifies that the (global) problem has cost at least c, given the set of
assignments N for distinct variables.

Example 5.1 For the graph coloring problem in Figure 2 (assume it has
a constraint x1 6=x2 with weight 10), a possible valued global nogood is
[10, {(x1, r), (x4, r)}]. It specifies that if x1=r and x2=r then there exists no
solution with a cost lower than 10.

Given a valued global nogood [c, (〈x1, v1〉, ..., 〈xt, vt〉)], one can infer a global
cost assessment (GCA) for the value vt from the domain of xt given the as-
signments S = 〈x1, v1〉, ..., 〈xt−1, vt−1〉. This GCA is denoted (vt, c, S), and is
semantically equivalent to an applied valued global nogood, (i.e., the inference):

(〈x1, v1〉, ..., 〈xt−1, vt−1〉) → (〈xt, vt〉 has cost c).

Remark 1 Given a valued global nogood [c, N ], one can infer the GCA (v, c, N)
for any value v from the domain of any variable x, where x is not assigned in
N , i.e., x 6∈ N .

1Other algorithms, like AAS, exploit generalized nogoods (i.e., extensions of nogoods to
sets of values for a variable), and the extension of the work here for that case is suggested
in [27]
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E.g., if A3 knows the valued global nogood [10, {(x1, r), (x2, y)}], then it can
infer for the value r of x3 the GCA (r, 10, {(x1, r), (x2, y)}).

Proposition 1 (min-resolution) Given a minimization VCSP, assume that
we have a set of GCAs of the form (v, cv, Nv) that has the property of containing
exactly one GCA for each value v in the domain of variable xi and that for all
k and j, the assignments for variables Nk ∩Nj are identical in both Nk and Nj.
Then one can resolve a new valued global nogood: [minv cv,∪vNv].

Example 5.2 For the graph coloring problem in Figure 2 (weighted constraints
are not shown), x1 is colored red (r), x2 yellow (y) and x3 green (g). Assume
that the following valued global nogoods are known for each of the values {r, y, g}
of x4:

(r): [10, {(x1, r), (x4, r)}], obtaining for x4 the GCA (r, 10, {(x1, r)})

(y): [8, {(x2, y), (x4, y)}], obtaining for x4 the GCA (y, 8, {(x2, y)})

(g): [7, {(x3, g), (x4, g)}], obtaining for x4 the GCA (g, 7, {(x3, g)})

By min-resolution on these GCAs, one obtains the valued global nogood
[7, {(x1, r), (x2, y), (x3, g)}], meaning that given the coloring of the first 3 nodes,
there is no solution with (global) cost lower than 7.

Min-resolution can be applied to valued global nogoods:

Corollary 1.1 Assume S is a set of nogoods associated with the variable xi,
such that for each [cv, Sv] in S, ∃〈xi, v〉 ∈ Sv. If S contains exactly one
global valued nogood [cv, Sv] for each value v in the domain of variable xi

of a minimization VCSP, then one can resolve a new valued global nogood:
[ minv cv,∪v(Sv \ 〈xi, v〉)].

5.2 Valued Nogoods

Remark 2 (DFS subtrees) Given two GCAs (v, c′v, S
′
v) and (v, c′′v , S′′

v ) for a
value v in the domain of variable xi of a minimization VCSP, if one knows that
the two GCAs are inferred from different constraints, then one can infer a new
GCA: 〈c′v + c′′v , S′

v ∪ S′′
v 〉. This is similar to what ADOPT does to combine cost

messages coming from disjoint problem sub-trees [22, 7].

This powerful reasoning can be applied when combining a nogood obtained
from the local constraints with a valued nogood received from other agents (and
obtained solely by inference from other agents’ constraints). When a DFS tree of
the constraint graph is used for constraining the message pattern as in ADOPT,
this powerful inference applies, too.

The question is how to determine that the two GCAs are inferred from
different constraints in a more general setting. This can be done by tagging
cost assessments with the identifiers of the constraints used to infer them.
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Definition 3 A set of references to constraints (SRC) is a set of identifiers,
each for a distinct constraint.

Note that several constraints of a given problem description can be composed
in one constraint (in a different description of the same problem). 2

SRCs help to define a generalization of the concept of valued global nogood
named valued nogood [8].

Definition 4 (Valued Nogood) A valued nogood has the form [SRC, c, N ]
where SRC is a set of references to constraints having cost at least c, given a
set of assignments, N , for distinct variables.

Valued nogoods are generalizations of valued global nogoods. Valued global
nogoods are valued nogoods whose SRCs contain the references of all the con-
straints.

Once we decide that a nogood [SRC, c, (〈x1, v1〉, ..., 〈xi, vi〉)] will be applied
to a certain variable xi, we obtain a cost assessment tagged with the set of
references to constraints SRC3, denoted (SRC, vi, c, (〈x1, v1〉, ..., 〈xi−1, vi−1〉)).

Definition 5 (Cost Assessment (CA)) A cost assessment of variable xi has
the form (SRC, v, c, N) where SRC is a set of references to constraints having
cost with lower bound c, given a set of assignments N for distinct variables
where the assignment of xi is set to the value v.

As for valued nogoods and valued global nogoods, cost assessments are gen-
eralizations of global cost assessments.

Remark 3 Given a valued nogood [SRC, c, N ], one can infer the CA
(SRC, v, c, N) for any value v from the domain of any variable x, where x
is not assigned in N , i.e., where x 6∈ N .

E.g., if A6 knows the valued nogood [{C4,7}, 10, {(x2, y), (x4, r)}], then it can
infer the CA ({C4,7}, b, 10, {(x2, y), (x4, r)}) for the value b of x6.

We can now detect and perform the desired powerful reasoning on valued
nogoods and/or CAs coming from disjoint sub-trees, mentioned in Remark 2.

Proposition 2 (sum-inference [8]) A set of cost assessments of type
(SRCi, v, ci, Ni) for a value v of some variable, where ∀i, j : i 6= j ⇒
SRCi ∩ SRCj = ∅, and the assignment of any variable xk is identical in all
Ni where xk is present, can be combined into a new cost assessment. The ob-
tained cost assessment is (SRC, v, c, N) such that SRC=∪iSRCi, c=

∑
i(ci),

and N=∪iNi.

Example 5.3 For the graph coloring problem in Figure 3, x1 is colored red,
x2 yellow, x3 green, and x4 red. Assume that the following valued nogoods are
known for (x4, r):

2For privacy, a constraint can be represented by several constraint references and several
constraints of an agent can be represented by a single constraint reference.

3This is called a valued conflict list in [27]
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Figure 3: SUM-inference resolution on CAs

• [{C4,5}, 5, {(x2, y), (x4, r)}] obtaining CA ({C4,5}, r, 5, {(x2, y)})

• [{C4,6}, 7, {(x1, r), (x4, r)}] obtaining CA ({C4,6}, r, 7, {(x1, r)})

• [{C4,7}, 9, {(x2, y), (x4, r)}] obtaining CA ({C4,7}, r, 9, {(x2, y)})

Also assume that based on x4’s constraint with x1, one has obtained for 〈x4, r〉
the following valued nogood:

• [{C1,4}, 10, {(x1, r), (x4, r)}] obtaining CA ({C1,4}, r, 10, {(x1, r)})

Then, by sum-inference on these CAs, one obtains for x4 the CA
[{C1,4, C4,5, C4,6, C4,7}, r, 31, {(x1, r), (x2, y)}], meaning that given the coloring
of the first 2 nodes, coloring x4 in red leads to a cost of at least 31 for the
constraints {C1,4, C4,5, C4,6, C4,7}.

Remark 4 (sum-inference for valued nogoods) Sum inference can be
similarly applied to any set of valued nogoods with disjoint SRCs and com-
patible assignments. The result of combining nogoods [SRCi, ci, Si] is [ ∪i

SRCi,
∑

i ci,∪iSi]. This can also be extended to the case where assignments
are generalized to sets [27].

The min-resolution proposed for GCAs translates straightforwardly for CAs
as follows.

Proposition 3 (min-resolution [8]) Assume that we have a set of cost as-
sessments for xi of the form (SRCv, v, cv, Nv) that has the property of containing
exactly one CA for each value v in the domain of variable xi and that for all
k and j, the assignments for variables Nk ∩ Nj are identical in both Nk and
Nj. Then the CAs in this set can be combined into a new valued nogood. The
obtained valued nogood is [SRC, c, N ] such that SRC=∪iSRCi, c=mini(ci) and
N=∪iNi.

Example 5.4 For the graph coloring problem in Figure 2, x1 is colored red, x2

yellow, and x3 green. Assume that the following valued nogoods are known for
the values of x4:
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(r): [{C1,4}, 10, {(x1, r), (x4, r)}] obtaining CA ({C1,4}, r, 10, {(x1, r)})

(y): [{C2,4}, 8, {(x2, y), (x4, y)}] obtaining CA ({C2,4}, y, 8, {(x2, y)})

(g): [{C3,4}, 7, {(x3, g), (x4, g)}] obtaining CA ({C3,4}, g, 7, {(x3, g)})

By min-resolution on these CAs, one obtains the valued global nogood
[{C1,4, C2,4, C3,4}, 7, {(x1, r), (x2, y), (x3, g)}], meaning that given the coloring
of the first 3 nodes there is no solution with cost lower than 7 for the constraints
{C1,4, C2,4, C3,4}.

As with valued global nogoods, the min-resolution could be applied directly
to valued nogoods:

Corollary 3.1 (min-resolution on nogoods) From a set of valued nogoods
[SRCv, cv, Sv)] (such that ∃v, 〈xi, v〉 ∈ Sv) containing exactly one valued nogood
for each value v in the domain of variable xi of a minimization VCSP, one can
resolve a new valued nogood: [ ∪v SRCv, minv cv,∪v(Sv \ 〈xi, v〉)].

6 ADOPT with nogoods

We now present a distributed optimization algorithm whose efficiency is im-
proved by exploiting the increased flexibility brought by the use of valued no-
goods. The algorithm can be seen as an extension of both ADOPT and ABT,
and will be denoted Asynchronous Distributed OPTimization with valued no-
goods (ADOPT-ng).

As in ABT, agents communicate with ok? messages proposing new assign-
ments of the variable of the sender, nogood messages announcing a nogood,
and add-link messages announcing interest in a variable. As in ADOPT, agents
can also use threshold messages, but their content can be included in ok? mes-
sages.

For simplicity we assume in this algorithm that the communication channels
are FIFO (as enforced by the Internet transport control protocol). Attachment
of counters to proposed assignments and nogoods also ensures this requirement
(i.e., older assignments and older nogoods for the currently proposed value are
discarded).

6.1 Exploiting DFS trees for Feedback

In ADOPT-ng, agents are totally ordered as in ABT, A1 having the highest
priority and An the lowest priority. The target of a valued nogood is the position
of the lowest priority agent among those that proposed an assignment referred
by that nogood. Note that the basic version of ADOPT-ng does not maintain
a DFS tree, but each agent can send messages with valued nogoods to any
predecessor. We also propose hybrid versions that can spare network bandwidth
by exploiting an existing DFS tree. We have identified two ways of exploiting
such an existing structure. The first is by having each agent send its valued
nogood only to its parent in the tree and it is roughly equivalent to the original
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Figure 4: Feedback modes in ADOPT-ng. a) a constraint graph on a totally
ordered set of agents; b) a DFS tree compatible with the given total order; c)
ADOPT-p : sending valued nogoods only to parent (graph-based backjump-
ing); d) ADOPT-d and ADOPT-D : sending valued nogoods to any ancestor
in the tree; e) ADOPT-a and ADOPT-A : sending valued nogoods to any
predecessor agent.

ADOPT. The other way is by sending valued nogoods only to ancestors. This
later hybrid approach can be seen as a fulfillment of a direction of research
suggested in [21], namely communication of costs to higher priority parents.

The versions of ADOPT-ng described in this article are differentiated using
the notation ADOPT-XYZ. X shows the destinations of the messages con-
taining valued nogoods. X has one of the values {p, a, A, d, D} where p stands
for parent, a and A stand for all predecessors, and d and D stand for all ances-
tors in a DFS trees. Y marks the optimization criteria used by sum-inference
in selecting a nogood when the inputs have the same threshold. For now we
use a single criterion, denoted o, which consists of choosing the nogood whose
target has the highest priority. Z specifies the type of nogoods employed and
has possible values {n, s}, where n specifies the use of valued global nogoods
(without SRCs) and s specifies the use of valued nogoods (with SRCs).

The different schemes are described in Figure 4. The total order on agents is
described in Figure 4.a where the constraint graph is also depicted with dotted
lines representing the arcs. Each agent (representing its variable) is depicted
with a circle. A DFS tree of the constraint graph which is compatible to this
total order is depicted in Figure 4.b. ADOPT gets such a tree as input, and
each agent sends COST messages (containing information roughly equivalent to
a valued global nogood) only to its parent. As mentioned above, the versions of
ADOPT-ng that replicate this behavior of ADOPT when a DFS tree is provided
are called ADOPT-p , where p stands for parent and the underscores stand

11



for any legal value defined above for Y and Z respectively. This method of
announcing conflicts based on the constraint graph is depicted in Figure 4.c and
is related to the classic Graph-based Backjumping algorithm [10, 16].

In Figure 4.d we depict the nogoods exchange schemes used in ADOPT-d
and ADOPT-D where, for each new piece of information, valued nogoods are
separately computed to be sent to each of the ancestors in the known DFS tree.
These schemes are enabled by valued nogoods and are shown by experiments to
bring large improvements. As for the initial version of ADOPT, the proof for
ADOPT-d and ADOPT-D shows that the only mandatory nogood messages
for guaranteeing optimality in this scheme are the ones to the parent agent.
However, agents can infer from their constraints valued nogoods that are based
solely on assignments made by shorter prefixes of the ordered list of ancestor
agents. The agents try to infer and send valued nogoods separately for all such
prefixes.

Figure 4.e depicts the basic versions of ADOPT-ng, when a DFS is not known
(ADOPT-a and ADOPT-A ), where nogoods can be sent to all predecessor
agents. The dotted lines show messages, which are sent between independent
branches of the DFS tree, and which are expected to be redundant. Experi-
ments show that valued nogoods help to remove the redundant dependencies
whose introduction would otherwise be expected from such messages. The pro-
vided proof for ADOPT-a and ADOPT-A shows that the only mandatory
nogood messages for guaranteeing optimality in this scheme are the ones to the
immediately previous agent. However, agents can infer from their constraints
valued nogoods that are based solely on assignments made by shorter prefixes
of the ordered list of all agents. As in the other case, the agents try to infer and
send valued nogoods separately for all such prefixes.

The valued nogood computed for the prefix A1, ..., Ak ending at a given
predecessor Ak may not be different from the one of the immediately shorter
prefix A1, ...., Ak−1. Sending that nogood to Ak may not affect the value choice
of Ak, since the cost of that nogood applies equally to all values of Ak according
to Remark 3. Exceptions appear in the case where such nogoods cannot be
composed by sum-inference with some valued nogoods of Ak. The versions
ADOPT-D and ADOPT-A correspond to the case where optional nogood
messages are only sent when the target of the payload valued nogood is identical
to the destination of the message. The versions ADOPT-d and ADOPT-a
correspond to the case where optional nogood messages are sent to all possible
destinations each time that the payload nogood has a non-zero threshold. I.e., in
those versions nogood messages are sent even then the target of the transported
nogood is not identical to the destination agent but has a higher priority.

6.2 Data Structures

Each agent Ai stores its agent-view (received assignments), and its outgoing
links (agents of lower priority than Ai and having constraints on xi). The
instantiation of each variable is tagged with the value of a separate counter in-
cremented each time the assignment changes. To manage nogoods and CAs, Ai
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Figure 5: Schematic flow of data through the different data structures used by
an agent Ai in ADOPT-ng.

uses matrices l[1..d], h[1..d], ca[1..d][i+1..n], th[1..i], lr[i+1..n] and lastSent[1..i-
1] where d is the domain size for xi. crt val is the current value Ai proposes for
xi. These matrices have the following usage.

• l[k] stores a CA for xi = k, which is inferred solely from the local con-
straints between xi and prior variables.

• ca[k][j] stores a CA for xi = k, which is obtained by sum-inference from
valued nogoods received from Aj .

• th[k] stores nogoods coming via threshold/ok? messages from Ak.

• h[v] stores a CA for xi=v, which is inferred from ca[v][j], l[v] and th[t] for
all t and j.

• lr[k] stores the last valued nogood received from Ak.

• lastSent[k] stores the last valued nogood sent to Ak.

The names of the structures were chosen by following the relation of ADOPT
with A* search [28, 33]. Thus, h stands for the “heuristic” estimation of the cost
due to constraints maintained by future agents (equivalent to the h() function in
A*) and l stands for the part of the standard g() function of A* that is “local”
to the current agent. Here, as in ADOPT, the value for h() is estimated by
aggregating the equivalent of costs received from lower priority agents. Since
the costs due to constraints of higher priority agents are identical for each value,
they are irrelevant for the decisions of the current agent. Thus, the function f()
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of this version of A* is computed combining solely l and h. We currently store
the result of combining h and l in h itself to avoid allocating a new structure
for f().

The structures lr and th store received valued nogoods and ca stores inter-
mediary valued nogoods used in computing h. The reason for storing lr, th and
ca is that change of context may invalidate some of the nogoods in h while not
invalidating each of the intermediary components from which h is computed.
Storing these components (which is optional) saves some work and offers better
initial heuristic estimations after a change of context. The cost assessments
stored in ca[v][j] of Ai also maintain the information needed for THRESHOLD
messages, namely the heuristic estimate for the value v of the variable xi at
successor Aj (to be transmitted to Aj if the value v is proposed again).

The array lastSent is used to store at each index k the last valued nogood
sent to the agent Ak. The array lr is used to store at each index k the last
valued nogood received from the agent Ak. Storing them separately guarantees
that in case of changes in context, they are discarded at the recipient only if
they are also discarded at the sender. This property guarantees that an agent
can safely avoid retransmitting to Ak messages duplicating the last sent nogood,
since if it has not yet been discarded from lastSent[k] then the recipients have
not discarded it from lr[k] either.

6.3 Data flow in ADOPT-ng

The flow of data through these data structures of an agent Ai is illustrated
in Figure 5. Arrows ⇐ are used to show a stream of valued nogoods being
copied from a source data structure into a destination data structure. These
valued nogoods are typically sorted according to some parameter such as the
source agent, the target of the valued nogood, or the value v assigned to the
variable xi in that nogood (see Section 6.2). The + sign at the meeting point
of streams of valued nogoods or cost assessments shows that the streams are

combined using sum-inference. The
+
⇐ sign is used to show that the stream

of valued nogoods is added to the destination using sum-inference, instead of
replacing the destination. When computing a nogood to be sent to Ak, the
arrows marked with <k restrict the passage to allow only those valued nogoods
containing solely assignments of the variables of agents A1, ..., Ak. Our current
implementation recomputes the elements of h and l separately for each target
agent Ak by discarding the previous values.

6.4 ADOPT-ng pseudo-code and proof

The pseudo-code for the procedures in ADOPT-ng is given in Algorithms 1
and 2. To extract the cost of a CA, we introduce the function cost(),
cost((SRC, v, c, N)) returns c. The min resolution(j) function applies the min-
resolution over the CAs associated to all the values of the variable of the current
agent, but uses only CAs having no assignment from agents with lower prior-
ity than Aj . More exactly it first re-computes the array h using only CAs in
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when receive ok?(〈xj , vj〉, tvn) do
integrate(〈xj , vj〉);
if (tvn no-null and has no old assignment) then

k:=target(tvn); // threshold tvn as common cost;
th[k]:=sum-inference(tvn,th[k]);

check-agent-view();

when receive add-link(〈xj , vj〉) from Aj do
add Aj to outgoing-links;
if (〈xj , vj〉) is old, send new assignment to Aj ;

when receive nogood(rvn, t) from At do
foreach new assignment a of a linked variable xj in rvn do

integrate(a); // counters show newer assignment;

if (an assignment in rvn is outdated) then
if (some new assignment was integrated now) then

check-agent-view();

return;

foreach assignment a of a non-linked variable xj in rvn do
send add-link(a) to Aj ;

lr[t]:=rvn; foreach value v of xi such that rvn|v is not ∅ do
vn2ca(rvn, i, v) → rca (a CA for the value v of xi);
ca[v][t]:=sum-inference(rca,ca[v][t]);
update h[v] and retract changes to ca[v][t] if h[v]’s cost decreases;

check-agent-view();

Algorithm 1: Receiving messages of Ai in ADOPT-ng

ca and l that contain only assignments from A1, ..., Aj , and then applies min-
resolution over the obtained elements of h. As mentioned above, in the current
implementation we recompute l and h at each call to min resolution(j).

The sum inference() function used in Algorithm 2 applies the sum-inference
to its parameters whenever this is possible (it detects disjoint SRCs); otherwise,
it selects the nogood with the highest threshold or whose lowest priority assign-
ment has the highest priority (this has been previously used in [4, 37]). The
function vn2ca(vn, i) transforms a valued nogood vn in a cost assessment for
xi. Its inverse is function ca2vn. If vn has no assignment for xi, then a cost as-
sessment can be obtained according to Remark 3. The function vn2ca(vn, i, v)
translates vn into a cost assessment for the value v of xi, using the technique
in Remark 3 if needed. The function target(N) gives the index of the lowest
priority variable present in the assignment of nogood N . As with file expan-
sion, when “*” is present in an index of a matrix, the notation is interpreted
as the set obtained for all possible values of that index (e.g., ca[v][*] stands
for {ca[v][t] | ∀t}). Given a valued nogood ng, the notation ng|v stands for
vn2ca(ng) when ng’s value for xi is v, and ∅ otherwise.
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Each agent Ai starts by calling the init() procedure in Algorithm 2, which ini-
tializes l with valued nogoods inferred from local (unary) constraints. It assigns
xi to a value with minimal local cost, crt val, announcing the assignment to
lower priority agents in outgoing-links. The agents answer to any received mes-
sage with the corresponding procedure in Algorithm 1: “when receive ok?,”
“when receive nogood,” and “when receive add-link.”

When a new assignment is learned from ok? or nogood messages, valued
nogoods based on older assignments for the same variables are discarded within
the call to the function integrate() in Algorithm 2. Any discarded element of ca
is recomputed from lr. Received nogoods are stored in matrices lr and th (Al-
gorithm 1). Ai always sets its crt val to the index with the lowest CA threshold
in vector h (preferring the previous assignment in case of ties). On each change
that propagates to h, and for each higher priority agent Aj (or for each ancestor
in versions using DFS trees), the elements of h are recomputed separately by
min-resolution(j) to generate new nogoods for Aj . The simultaneous generation
and use of multiple nogoods is already known to be useful for the constraint
satisfaction case [43].

The threshold valued nogood tvn delivered with ok? messages sets a com-
mon cost on all values of the receiver (see Remark 3), effectively setting a
threshold on costs below which the receiver does not change its value. This
achieves the effect of THRESHOLD messages in ADOPT.

The procedure described in the following remark is used in the proof of
termination and optimality.

Remark 5 The order of combining CAs matters. To compute h[v]:

1. a) When maintaining DFS trees, for each value v, CAs are combined
separately for each set s of agents defining a DFS sub-tree of the current
node:
tmp[v][s]=sum-inferencet∈s(ca[v][t]).
b) Otherwise, with ADOPT-a and ADOPT-A , we act as if we have a
single sub-tree:
tmp[v]=sum-inferencet∈[i+1,n](ca[v][t]).

2. CAs from step 1 (a or b) are combined:
In case (a) this means: ∀v, s; h[v]=sum-inference∀s(tmp[v][s]).
Note that the SRCs in each term of this sum-inference are disjoint and
therefore we obtain a valued nogood with threshold given by the sum of
the individual thresholds obtained for each DFS sub-tree (or larger).

For case (b) we obtain h[v]=tmp[v].
This makes sure that at quiescence the threshold of h[v] is at least equal
to the total cost obtained at the next agent.

3. Add l[v]: h[v]=sum-inference(h[v], l[v]).

4. Add threshold: h[v]=sum-inference(h[v], th[*]).
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Lemma 1 (Infinite Cycle) At a given agent, assume that the agent-view no
longer changes and that its array h (used for min-resolution and for deciding the
next assignment) is computed only using cost assessments that are updated solely
by sum-inference. In this case the thresholds of the elements of its h cannot be
modified in an infinite cycle due to incoming valued nogoods.

Proof. Valued nogoods that are updated solely by sum-inference have thresh-
olds that can only increase (which can happen only a finite number of times).
For a given threshold, modifications can only consist of modifying assignments
to obtain lower target agents, which again can happen only a finite number of
times. Therefore, after a finite number of events, the cost assessments used
to infer h will not be modified any longer and therefore h will no longer be
modified. �

Corollary 3.2 If ADOPT-ng uses the procedure in Remark 5, then for a given
agent-view, the elements of the array h for that agent cannot be modified in an
infinite cycle.

Remark 6 Since lr contains the last received valued nogoods via messages other
than ok? messages which change the agent-view, that array is updated by as-
signment with recently received nogoods without sum-inference. Therefore, it
cannot be used directly to infer h.

Note that with the described procedure, a newly arriving valued nogood can
decrease the threshold of certain elements of h. This is because, while increasing
the threshold of some element in ca, it can also modify its SRC and therefore
forbid its composition by sum-inference with other cost assessments.

Remark 7 (Obtaining Monotonic Increase) The implementation used for
the experiments reported here avoids the undesired aforementioned effect, where
incoming nogoods decrease thresholds of cost assessments in h. Namely, after
a newly received valued nogood is added by sum-inference to the corresponding
element of ca[v] for some value v, if the threshold of h[v] decreases then the old
content of ca[v] is restored. Each new valued nogood is used for updating lr. On
each change of the agent-view (set of known valid assignments), all values of ca
are updated using the valued nogoods found in lr and th.

Intuitively, the convergence of ADOPT-ng can be noticed from the fact that
valued nogoods can only monotonically increase valuation for each subset of the
search space, and this has to terminate since such valuations can be covered by
a finite number of values. If agents Aj , j<i no longer change their assignments,
valued nogoods can only monotonically increase at Ai for each value in Di:
thresholds of the nogoods only increase since they only change by sum-inference.

Lemma 2 ADOPT-ng terminates in finite time.

17



procedure init do
h[v] := l[v]:=initialize CAs from unary constraints;
crt val=argminv(cost(h[v]));
send ok?(〈xi, crt val〉,∅) to all agents in outgoing-links;

procedure check-agent-view() do
for every Aj with higher priority than Ai (respectively ancestor in the
DFS tree, when one is maintained) do

for every(v ∈ Di) update l[v] and recompute h[v];
// with valued nogoods using only instantiations of {x1, ..., xj};

if (h has non-null cost CA for all values of Di) then
vn:=min resolution(j);
if (vn 6= lastSent[j]) then

if (target(vn) == j) then
send nogood(vn,i) to Aj ;
lastSent[j] = vn;

crt val=argminv(cost(h[v]));
if (crt val changed) then

send ok?(〈xi, crt val〉, ca2vn(ca[crt val][k]),i)
to each Ak in outgoing links;

procedure integrate(〈xj , vj〉) do
discard elements in ca, th, lastSent and lr based on other values for xj ;
use lr[t]|v to replace each discarded ca[v][t];
store 〈xj , vj〉 in agent-view;

Algorithm 2: Procedures of Ai in ADOPT-ng

Proof.
Given the list of agents A1, ..., An, define the suffix of length m of this list

as the last m agents. Then the result follows immediately by induction for
an increasingly growing suffix (increasing m), assuming the other agents reach
quiescence.

The basic case of the induction (for the last agent) follows from the fact that
the last agent terminates in one step if the previous agents do not change their
assignments.

Let us now assume that the induction assertion is true for a suffix of k
agents. Based on this assumption we now prove the induction step, namely
that the property is also true for a suffix of k+1 agents: For each assignment
of the agent An−k, the remaining k agents will reach quiescence, according to
the assumption of the induction step; otherwise, the assignment’s CA threshold
increases. By construction, thresholds for CAs associated with the values of
An−k can only grow (see Remark 7). Even without the technique in Remark 7,
thresholds for CAs associated with the values of An−k will eventually stop being
modified as a consequence of Lemma 1. After values are proposed in turn and
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the smallest threshold reaches its highest estimate, agent An−k selects the best
value and reaches quiescence. The other agents reach quiescence according to
the induction step. �

Lemma 3 The last valued nogoods sent by each agent additively integrate the
non-zero costs of the constraints of all of the agent’s successors.

Proof. At quiescence, each agent Ak has received the valued nogoods describ-
ing the costs of each of its successors (or descendants in the DFS tree when a
DFS tree is maintained).

The lemma results by induction for an increasingly growing suffix of the list
of agents (in the order used by the algorithm): It is trivial for the last agent.

Assuming that it is true for agent Ak, it follows that it is also true for agent
Ak−1 since adding Ak−1’s local cost to the cost received from Ak will be higher
(or equal when removing zero costs) than the result of adding Ak−1’s local cost
to one from any successor of Ak. Respecting the order in Remark 5 guarantees
this value is obtained. Therefore, the sum between the local cost and the last
valued nogood coming from Ak defines the last valued nogood sent by Ak−1.
�

Theorem 4 ADOPT-ng returns an optimal solution.

Proof. We prove by induction on an ever increasing suffix of the list of agents
that this suffix converges to a solution that is optimal for the union of the
sub-problems of the agents in that suffix.

The induction step is immediate for the suffix composed of the agent An

alone. Assume now that it is true for the suffix starting with Ak. Following the
previous two lemmas, one can conclude that at quiescence, Ak−1 knows exactly
the cumulated cost of the problems of its successors for its chosen assignment,
and therefore knows that this cumulated cost cannot be better for any of its
other values.

Since Ak−1 has selected the value leading to the best sum of costs (between
its own local cost and the costs of all subsequent agents), it follows that the
suffix of agents starting with Ak−1 converged to an optimal solution for the
union of their sub-problems. �

The space complexity is basically the same as for ADOPT. The SRCs do
not change the space complexity of the valued nogood.

6.5 Optimizing valued nogoods

Both for the versions of ADOPT-ng using DFS trees, as well as for the version
that does not use such DFS tree preprocessing, if valued nogoods are used for
managing cost inferences, then a lot of effort can be saved at context switch-
ing by keeping nogoods that remain valid [14]. The amount of effort saved is
higher if the nogoods are carefully selected (to minimize their dependence on
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Figure 6: A DisCOP with three agents and two inequality constraints. The
fact that the cost associated with not satisfying the constraint x1 6= x2 is 2, is
denoted by the notation (#2). The cost for not satisfying the constraint x1 6= x3

is 1.

1. A1 ok?〈x1, 1〉 → A2, A3

2. A2 nogood[|F, T, F |, 2, 〈x1, 1〉]→ A1

3. A1 ok?〈x1, 2〉 → A2, A3

4. A3 nogood[|F, F, T |, 1, 〈x1, 2〉]→ A1, A2

5. A1 ok?〈x1, 3〉 → A2, A3

6. A2 nogood[|F, F, T |, 1, 〈x1, 2〉]→ A1

Figure 7: Trace of ADOPT-aos and ADOPT-Aos on the problem in Figure 6

assignments for low priority variables, which change more often). We compute
valued nogoods by minimizing the index of the least priority variable involved
in the context. At sum-inference with intersecting SRCs, we keep the valued
nogoods with lower priority target agents only if they have better thresholds.
Nogoods optimized in similar manner were used in several previous DisCSP
techniques [4, 37]. A similar effect is achieved by computing min resolution(j)
with incrementally increasing j and keeping new nogoods only if they have higher
thresholds than previous ones with lower targets.

6.6 Example

Now we give a detailed example of a run of ADOPT-ng basic versions ADOPT-
aos and ADOPT-Aos. Let us take the problem in Figure 6. Note that in this
simple case the two versions do not differ since any optional nogood message
can only leave from A3 to A1. Such a message is sent in ADOPT-aos only
if it has a non-zero threshold, which happens only when A1 is a target of the
message, which means that it will also be sent in ADOPT-Aos. A trace is shown
in Figure 7 where identical messages sent simultaneously to several agents are
grouped by displaying the list of recipients. The agents start selecting values
for their variables and announce them to interested lower priority agents. A3
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has no constraint between x3 and x2; therefore the first exchanged messages
are ok? messages sent by A1 to both successors A2 and A3 and proposing the
assignment x1=1.

After receiving the assignment from A1, the best (and only) assignment for
A2 is x2=1 at a cost of 2 due to the conflict with the constraint x1 6= x2.
Similarly A3 instantiates x3 with 2 and with a local cost of 0.

Since the best local cost of A2 is not null, A2 performs a min-resolution.
Since a single value exists for A2 and ca is empty, this min-resolution simply
obtains a valued nogood defined by the existing local nogood: h[1] = l[1] =
[C1,2, 2, 〈x1, 1〉]. In our implementation we decide to maintain a single reference
for each agent’s secret constraints. SRCs are represented as Boolean values
in an array of size n. A value at index i in the SRC array set to T signifies
that the constraints of Ai are used in the inference of that nogood. A2 also
stores the sent valued nogood in lastSent[1] such that it avoids resending it
without modification as a result of receiving other messages. A1 stores this
received valued nogood in lr[2], from where it is used to update ca[1][2], by
sum-inference. Since ca[1][2] is empty, it becomes equal to this valued nogood.

Agent A1 now updates its h[1] by setting it to ca[1][2] (since l[1] and ca[1][3]
are empty). Since the threshold of h[1] becomes 2 and is higher than the thresh-
old of the other two values, {2,3}, in the domain of x1, A1 changes the assign-
ment of x1 to one of them, here 2. This is announced through another ok?
message to A2 and A3.

On the receipt of the ok? messages, the agents update their agent-view
with the new assignment. Each agent tries to generate valued nogoods for each
prefix of its list of predecessor agents: {A1} and {A1, A2} respectively. This
time it is A2 whose only possible assignment leads to a non-zero local cost.
Based on its agent-view and constraints, A2 generates a corresponding valued
nogood [C1,3, 1, 〈x1, 2〉] with threshold 1 due to the weight 1 of its constraint.
This valued nogood is sent to the agent A1 whose assignment is involved in
this nogood. To guarantee optimality the nogood is also sent to its immediate
predecessor, namely the agent A2, making sure that at quiescence all the costs
of its children are summed.

After receiving this second nogood, A1 stores it in lr[3], used further by
sum-inference to set ca[2][3], and finally used to update h[2]. As a result, A1

now switches its assignment to its value that has the lowest threshold in h,
namely the value 3. The new assignment is again sent by ok? messages to its
successors. Meanwhile, the agent A2 also processes the valued nogood received
from A3 storing it in its own lr[3], ca[2][3] and h[2]. The nogood is not changed
by sum inference or min-resolution at this agent; it is sent on to A1 which stores
it in lr[2] and ca[2][2]. However, it does not lead to any modification in the h[2]
of A1 since the SRCs of ca[2][2] and ca[2][3] have a nonempty intersection.

After receiving the third assignment from A1, the other two agents reach
quiescence with cost 0; thus an optimal solution is found. Note that the exis-
tence of message 6 depends on whether the message 5 (with the last assignment
from A1) reaches A2 before or after the nogood from A3, that the message 5
invalidates. The solution is found in 5 half-round-trips of messages (a logic time
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of 5).

6.7 Possible Extensions

We addressed ADOPT-ng as an asynchronous version of A*, more exactly a
version of iterative deepening A*, where the heuristic is computed by recursively
using ADOPT-ng itself, and where the composition of the results of recursive
ADOPT-ng is based on backtracking.

A proposed extension to this work consists of composing the recursive asyn-
chronous heuristic estimator by using consistency maintenance. This can be
done with the introduction of valued consistency nogoods. Details and varia-
tions are described in [27, 29, 33, 13, 12]. Another possible extension is by
further generalizing the nogoods such that each variable can be assigned a set
of values. This type of aggregation was shown in [32] to improve search, and
the extension is detailed in [27].

In our implementation we concentrated on minimizing the logic time of the
computation, evaluated as the number of rounds on a simulator. The optimiza-
tion of local processing (which is polynomial in the number of variables) is not at
the center of attention at this stage. Local computations can be optimized, for
example, by reusing values of structures l and h computed at min-resolution for
a given target agent in obtaining values of these structures at the min-resolution
for messages sent to lower priority target agents. Further work can determine
whether improvements could be made by storing separately the nogoods of h
for each value of k.

Other extensions seem possible by integrating additive branch and bound
searches on DFS sub-trees, as proposed by [6]. This can be added to ADOPT-
ng by maintaining solution-based nogoods as suggested in [27]. It remains to be
seen if the quality of solutions with a certain value can be predicted with the
technique in [25]. Further improvements are possible by running ADOPT-ng in
parallel for several orderings of the agents [26, 3].

ADOPT-ng can be seen as an extension of ABT. The extension of ABT
called ABTR [35, 30] proposes a way to extend ABT-based algorithms to allow
for dynamic ordering of the agents [2]. Work in the area consistent with this
approach, but mainly favoring static ordering, appears in [18, 5]. Finding good
heuristics was shown to be a difficult problem [37, 46] and here one will need to
take into account the importance of the existence of a short DFS tree compatible
to the current ordering.

7 Experiments

We implemented several versions of ADOPT-ng. Some versions use valued no-
goods while other versions use valued global nogoods. Some versions maintain
an optional DFS tree precomputed on the constraint graph. Some versions send
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Agents ADOPT aos Aos dos Dos
8 922.2 429.48 427.92 429.2 427.76
10 779.84 354.12 365.76 351.16 357.48
12 1244.56 544.76 562.96 544.24 552.88
14 1591 674.56 704.96 656.24 669.44
16 2453.8 839.92 852.6 814.76 845.48
18 4666.4 1777.44 1815.6 1727.84 1765.16
20 *6264.71 1711.84 1701.6 1718.36 1703.88
25 *33919.5 7499.32 7498.12 7434.96 7276.4
30 *58459.1 16707.48 17618.48 16097.36 17154.4
40 * 96406.76 90747.6 93678.76 90951.56
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Figure 8: Longest causal chain of messages (cycles) used to solve versions of
ADOPT using CAs, averaged over problems with density .3. Table entries
containing * specify that the corresponding algorithm did not manage to solve
all instances of that size in 2 weeks, and the eventually present value is based
on the subset of problems solved in that time.

more optional nogood messages4 than others. In the version ADOPT-pon,
valued global nogoods are sent only to the parent of the current agent in a

4Messages to predecessors other than the previous agent (or parent agent for versions with
DFS trees).
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Agents ADOPT aos Aos dos Dos
8 45.2 31.4 31.4 31.32 31.32
10 60.2 30.92 29.56 30.24 30.44
12 69.12 39.32 39.6 39.48 39.52
14 75.64 42.32 42.8 42.44 42.72
16 97.84 44.24 46.2 44.04 45.16
18 162.16 75.08 75.36 73.08 74.8
20 71.8 36.48 35.16 36.48 34.84
25 221.44 83.12 83.96 80.64 84.2
30 433.92 112.68 122.64 112.52 114.84
40 720.04 117.28 108.4 107.64 112.24
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Figure 9: Longest causal chain of messages (cycles) used to solve versions of
ADOPT using CAs, averaged on 25 problems with density .2.

maintained DFS tree. In ADOPT-don, each agent Ai tries to compute a valued
global nogood after each change, for each of its ancestors Aj in the DFS tree,
and sends it to Aj if the nogood is new and with non-zero threshold. ADOPT-
aon can be seen as a version of ADOPT-don where the DFS tree is reduced to
the linear list of agents (each having the predecessor as parent). ADOPT-Aon
is a version of ADOPT-aos where an optional nogood message is sent only if
the destination of the message is the same with the target of the nogood in the
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Nodes aos Aos dos Dos
8 6137.8 5242.44 5381.04 4854.92
10 7330.6 5466.4 6191.92 5005.4
12 14201.8 9588.68 11566.92 8705.64
14 21981.96 14696.88 15760.4 12427.52
16 35710.8 22057.12 24552.24 19553.64
18 93368.6 50861.08 64610.96 44328.36
20 116468.8 56852.32 85127.44 49630.32
25 863145.12 350337.64 602437.08 291927.88
30 3640811.36 1137317.08 1853420 881049.76
40 49802812.56 9046121.88 22413986.4 7141719.28
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Figure 10: Total number of messages used by versions of ADOPT-ng using CAs
to solve problems with density .3.

payload. The same holds for the relation between ADOPT-Don and ADOPT-
don. ADOPT-pos, ADOPT-Dos, ADOPT-dos, ADOPT-Aos, and ADOPT-aos
are variations of ADOPT-pon, ADOPT-Don, ADOPT-don, ADOPT-Aon, and
ADOPT-aon where valued nogoods are used instead of valued global nogoods.
We also experimented with versions of ADOPT-aos and ADOPT-dos where
threshold valued nogoods are not used. This helps to isolate and evaluate the
importance of threshold valued nogoods in ADOPT-ng.

25



Nodes Aos aos dos Dos
8 2 3 2 2
10 2 4 2 2
12 6 9 6 5
14 10 17 10 8
16 18 33 19 15
18 56 111 70 45
20 74 161 115 61
25 674 1615 1198 539
30 2889 8474 4907 2101

Figure 11: Total number of seconds used on a simulator by versions of ADOPT-
ng, on the 25 problems with density .3.

Agents 16 18 20 25 30 40
ADOPT-aos 839.92 1777.44 1711.84 7499.32 16707.48 96406.76
no threshold 849.76 1783.6 1763.6 7641.84 16917.72 96406.64
ADOPT-dos 814.76 1727.84 1718.36 7434.96 16097.36 93678.76
no threshold 847.76 1779.6 1741.28 7500.04 16958.28 98932.72

Figure 12: Impact of threshold valued nogoods on the longest causal chain
of messages (cycles) for versions of ADOPT-ng, averaged on problems with
density .3.

Agents 16 18 20 25 30 40
DFS compatible 839.92 1777.44 1711.84 7499.32 16*103 96*103

random order 461*103 1.5*106 3.7*106 48*106 128*106 —

Figure 13: Impact of choice of order according to a DFS tree on the longest
causal chain of messages (cycles) for versions of ADOPT-ng, averaged on prob-
lems with density .3.

The algorithms are compared on the same problems that are used to report
ADOPT’s performance in [21]. To correctly compare our techniques with the
original ADOPT, we have used the same order (or DFS trees) on agents for each
problem. The impact of the existence of a good DFS tree compatible with the
used order is tested separately by comparison with a random ordering. The set
of problems distributed with ADOPT and used here contains 25 problems for
each problem size. It contains problems with 8, 10, 12, 14, 16, 18, 20, 25, 30,
and 40 agents, and for each of these numbers of agents it contains test sets with
density .2 and with density .3. The density of a (binary) constraint problem’s
graph with n variables is defined by the ratio between the number of binary

constraints and n(n−1)
2 . Results are averaged on the 25 problems with the same

parameters.
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The length of the longest causal (sequential) chain of messages of each solver,
computed as the number of cycles of our simulator and averaged on problems
with density .3, is given in Figure 8. Results for problems with density .2
are given in Figure 9. It took more than two weeks for the original ADOPT
implementation to solve one of the problems for 20 agents and density .3, and
one of the problems for 25 agents and density .3 (at which moment the solver was
interrupted). Therefore, it was evaluated using only the remaining 24 problems
at those problem sizes.

We can note that the use of valued nogoods brought an improvement of
approximately 7 times on problems of density 0.2, and an approximately 5
times improvement on the problems of density .3.

Another interesting remark is that sending nogoods only to the parent node
is significantly worse (in number of cycles), than sending nogoods to several
ancestors.

Figure 8 shows that, with respect to the number of cycles, the use of SRCs
practically replaces the need to maintain the DFS tree since ADOPT-aos and
ADOPT-Aos are comparable in efficiency with ADOPT-dos and ADOPT-Dos.
SRCs bring improvements over versions with valued global nogoods, since SRCs
allow detection of dynamically obtained independence.

Versions using DFS trees require fewer parallel/total messages, being more
network friendly, as seen in Figure 10. Figure 10 shows that refraining from
sending too many optional nogoods messages, as done in ADOPT-Aos and
ADOPT-Dos, is comparable or even better than ADOPT-pon in terms of total
number of messages, while maintaining the efficiency in cycles comparable to
ADOPT-aos and ADOPT-dos.

We do not perform any run-time comparison with the original ADOPT since
our versions of ADOPT are implemented in C++, while the original ADOPT
is in Java (which obviously leads to all our versions being an irrelevant order of
magnitude faster). A comparison between the total times required by versions of
ADOPT-ng on a simulator is shown in Figure 11. It reveals the computational
load of the agents, which, as expected, is proportional to the total number of
exchanged messages.

A separate set of experiments was run for isolating and evaluating the con-
tribution of threshold valued nogoods. Figure 12 shows that the contribution
of threshold nogoods is higher when a DFS tree is maintained, but still it is no
more than 5%.

Another experiment, whose results are shown in Figure 13, is meant to
evaluate the impact of the guarantees that the ordering on agents is compatible
with some short DFS tree. We evaluate this by comparing ADOPT-aos with
an ordering that is compatible with the DFS tree built by ADOPT, versus a
random ordering. The results show that random orderings are unlikely to be
compatible with short DFS trees and that verifying the existence of a short DFS
tree compatible to the ordering on agents to be used by ADOPT-ng is highly
recommended.

Figure 8 clearly show that the highest improvement in number of cycles is
brought by sending valued nogoods to other ancestors besides the parent. The
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next factor for improvement with difficult problems (density .3) is the use of
SRCs. The use of the structures of the DFS tree makes slight improvements in
number of cycles (when nogoods reach all ancestors) and slight improvements
in total message exchange. To obtain a low total message traffic and to reduce
computation at agent level, we found that it is best not to announce any pos-
sible valued nogoods to each interested ancestor. Instead, one can reduce the
communication without a significant penalty in number of cycles by only an-
nouncing valued nogoods to the highest priority agent to which they are relevant
(besides the communication with the parent, which is required for guaranteeing
optimality).

Experimental comparison with DPOP is redundant since its performance
can be easily predicted. DPOP is a good choice if the induced width γ of the
graph of the problem is smaller than logd T/n and smaller than logd S, where
T is the available time, n the number of variables, d the domain size, and S the
available computer memory.

8 Conclusions

The ADOPT distributed constraint optimization algorithm can be used effi-
ciently (in number of cycles) without explicitly maintaining a DFS tree of the
constraint graph. This can be done by using valued nogoods tagged with sets of
references to culprit constraints. The generalized algorithm is denoted ADOPT-
ng. Tagging costs with sets of references to culprit constraints (SRCs) allows
detection and exploitation of dynamically created independence between sub-
problems. Such independence can be caused by assignments. Experimentation
shows that it is important for an agent to infer and send in parallel several val-
ued nogoods to different higher priority agents. It also shows that exaggerating
this principle by sending each valued nogood to all ancestors able to handle it
produces little additional gain while increasing the network traffic and the com-
putational load. Instead, each inferred valued nogood should be sent only to
the highest priority agent that can handle it (its target). DFS trees can still be
used in conjunction with the valued nogood paradigm for optimization, thereby
improving the total number of messages. ADOPT-ng versions exploiting DFS
trees that we tested so far are also slightly better (in number of cycles) than the
ones without DFS trees.

We isolated and evaluated the contribution of using threshold valued nogoods
in ADOPT-ng, which was found to be at most 5%. In addition, we determined
the importance of precomputing and maintaining a short DFS tree of the con-
straint graph, or at least of guaranteeing that a DFS tree is compatible with
the order on agents, which is almost an order of magnitude in our problems.

The use of SRCs to dynamically detect and exploit independence and the
generalized communication of valued nogoods to several ancestors bring elegance
and flexibility to the description and implementation of ADOPT in ADOPT-ng.
They also produced experimental improvements of an order of magnitude.
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