
Multiplexing Content Exchange for
Petition Drives in VANETs:

Receiver Interest and Sender Utility

by
Osamah Abdulwahid Dhannoon

Bachelor of Education
Computers Sciences

Mosul University
2009

A thesis submitted to
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Master of Science
in

Computer Science

Melbourne, Florida
May, 2013

© Copyright 2013 Osamah Abdulwahid Dhannoon
All Rights Reserved

The author grants permission to make single copies

We the undersigned committee hereby recommends that the attached
document be accepted as fulfilling in part the requirements for the degree of

Master of Science in Computer Science.

”Multiplexing Content Exchange for Petition Drives in VANETs:
Receiver Interest and Sender Utility”

a thesis by Osamah Abdulwahid Dhannoon

Marius C. Silaghi, Ph.D.
Assistant Professor, Computer Science
Major Advisor

Jewgeni H. Dshalalow, Ph.D.
Professor, Mathematical Sciences
Committee Member

William H. Allen, Ph.D.
Associate Professor, Computer Sciences
Committee Member

William D. Shoaff, Ph.D.
Associate Professor and Program Chair
Computer Science

ABSTRACT

Multiplexing Content Exchange for Petition Drives in VANETs:

Receiver Interest and Sender Utility

by

Osamah Abdulwahid Dhannoon

Thesis Advisor: Marius C. Silaghi, Ph.D.

While drivers are not expected to vote while driving, VANETs can be an

excellent media for dissemination of pre-recorded votes/opinions on regional is-

sues in a decentralized opinion poll. We propose and evaluate heuristics for

scheduling messages in a VANET broadcasting-based dissemination of decen-

tralized opinion polling data among self-interested participants. The goal of

the heuristics is to increase dissemination of the polling data under the given

assumptions. The self-interest of participants is assumed to be manifested by

selectivity in the storage and forwarding of topics and opinions for those topics.

The report starts by describing the concepts enabling the fully decentralized

organization of the polls. The underlying protocol that we implemented for fully

decentralized polling of opinions over VANETs is also introduced and evaluated.

iii

Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Dedication xi

1 Introduction 1

2 Background 4

2.1 Protocols . 5

2.2 Applications . 10

3 Concepts 14

3.1 Communication Items . 20

3.2 Data Model . 21

3.3 Resilient . 22

iv

4 Protocol 25

4.1 Communication Control . 25

4.2 Messages . 27

4.3 Handling . 28

4.4 Messages Structure . 32

5 Heuristics 34

5.1 Uninformed Heuristics . 35

5.2 Informed Heuristics . 37

6 Agent Architecture Details 39

6.1 Portable Detection of Wireless Cards 40

6.2 Global Wireless Cell . 41

6.2.1 Windows . 42

6.2.2 Linux . 45

6.3 Broadcasting Server and Client 46

7 Experiments 49

8 Conclusion 59

Bibliography 61

Appendix, ASN1 Definitions 67

v

List of Figures

2.1 X-NETAD System. 11

6.1 Wireless Widget . 41

6.2 DirectDemocracy.XML Ad Hoc Network Profile 43

6.3 Script to connect to a new Ad Hoc network in Linux 45

6.4 Architecture of the Peer . 47

7.1 Experiments measuring the speed of messages transmitted (vM).

Averages for duplex communication is: 3ms pauses at 10.2 msg
sec

,

5ms pauses at 10.78 msg
sec

, and 10ms pauses at 9.97 msg
sec

. 50

7.2 Trajectories in the chain topology. Areas of communication for

each meeting point start at the corresponding S point and end

at the corresponding E point, for each car. 53

7.3 Received items (votes and witness stances) for cars A and B in

the chain and triangle topologies. The ratio votes to witness

stances is approx 2:1. 54

vi

7.4 Trajectories in the triangle topology. Areas of communication for

each meeting point start at the corresponding S point and end

at the corresponding E point, for each car. 55

7.5 Comparison of efficiency with and without advertisement of in-

terests. 56

7.6 Impact of interest advertisement. 57

vii

List of Tables

7.1 Average time of encounter (seconds) and number of exchanged

messages in this time for various vehicle speeds (mph) and envi-

ronments, with communication in one direction (5 ms pauses) . 51

viii

Acknowledgements

Above all, I would like to thank my Professor PH.D. Marius C. Silaghi, for his

support, his encouragement, and his valuable remarks that helped me through-

out my courses and the process of writing my thesis. I am also obliged to my

committee members, Dr.J.Dshalahow, and Dr.W.Allen. I am grateful to my

colleague Rahul Vishen for his help with research experiments.

ix

Dedication

I would like to thank my family - my father, my mother, my wife, my brothers,

and my sister, - for their love and support during my study time in Florida. They

have always encouraged me towards success and excellence, and have not for a

moment forgot to support me with their prayers and lovely wishes. Finally, to

all of my beloved Iraqi friends here and in Iraq, particularly those who helped

me with and participated in my research studies, I say thank you from the

bottom of my heart.

x

Chapter 1

Introduction

A protocol is proposed for dissemination of decentralized opinion polling over

wireless, Vehicular Ad Hoc Networks (VANETs). When regional opinion polls

are organized in a decentralized fashion, vehicle to vehicle (V2V) communication

can be exploited for exchanging pre-recorded votes in neighborhoods (without

the drivers being assumed to interact while driving).

VANETS are composed of wireless devices found in moving cars. Each

of these devices can communicate with other devices found in its proximity.

Common devices with powerful receivers can record messages sent from emitting

devices found hundreds of meters away. A fully decentralized polling can be

based on a decentralized authentication and census mechanism. Each device is

owned by a self-interested user and we assume that the system is open, which

implies that a user has full control over her device and its software.

1

Since they have full control, self-interested participants can refuse to store

and forward information related to polls in which they are not interested. They

can also refuse to store and disseminate opinions that they do not share. The

communication model assumes that each device broadcasts data it wants to

disseminate and simultaneously listens and processes data broadcast by passing-

by devices. A challenge is to design heuristics for selecting what to emit, such

as to maximize dissemination of polling data under working assumptions.

We evaluate heuristics that broadcast data either with uniform randomness,

or favoring certain types of items such as: new votes, personal votes, votes

similar to the personal votes or the intersection between the interests of the

sender and the ones of potential receivers. Some input for these heuristics

may come from information about interests of peers, and potentially their GPS

location and velocity (bearing and speed). For efficiency, once packed, data can

be broadcast several times. A set of queues are maintained to implement these

heuristics.

To enable comparison between the described heuristics, a utility model is

introduced where the dissemination of each item is associated with a numeri-

cal value. For example, the utility value for disseminating personal votes and

opinions can be considered to be the highest, followed by the utility value for

disseminating votes with choices similar to the personal ones. The average util-

ity value for disseminating opposing opinions is assumed smaller, but for various

2

users it can be either positive or negative (based on whether they want their

choice to succeed by any mean, or they are principled and ready to submit to

the opinion of others, or they are open and even ready to learn from others jus-

tifications and to eventually change their minds). The utility for disseminating

votes on which the current user abstains can be assumed in certain experiments

to have an average value between the utility for similar opinions and opposing

opinions. The impact of the actual numerical ranges of these utilities on results

can also be evaluated.

After presenting the background and related work, we continue by introduc-

ing the concepts involved in decentralized polling and a sample data model for

the storage of each node. Subsequently we present the protocol for broadcasting

in terms of message components and their semantic. In chapter Heuristics we

discuss the tested techniques and the involved data structures. After describing

the experimental settings and results, we end with conclusions.

3

Chapter 2

Background

Common VANET applications are designed for traffic safety information shar-

ing or file sharing. In both types of applications, each node needs to propagate

data to the other nodes in the system. Communication between vehicles com-

monly demands a good routing protocol which is a common research interest in

VANETs. In general, each pair of vehicles communicate using wireless broad-

cast. Using broadcast in high traffic areas may lead to transmission collisions

between data packets. This problem is known as the broadcast storm prob-

lem [22]. In the following we describe some of the common protocols proposed

to disseminate data in VANET scenarios. After that we discuss some of the

most relevant applications in the literature.

4

2.1 Protocols

Mobile nodes connectivity in wireless Ad Hoc network is not constant. A pro-

posed system for data dissemination based on delay-tolerant broadcast is pre-

sented in [10]. The system is designed as follows: nodes request their desire

contents from encountered nodes on the network environment. The user can

select a specific broadcast channel when operating. At the same time each user

can be asked for contents on a different broadcasting channels. The contents

are delivered in chunks in a random manner. Different data types can be used

in the system such as still images, video clips, and voice tracks. The system

can be implemented between users in high density places such as city sidewalks,

public transportation areas, etc.

The system in [10] is evaluated based on an analytical model (street scenario)

and simulation. In the street model a set of various measurements are used

to compute the system performance using space-time queuing models. These

measurements address the following: for an operating node in the system, what

is the predicted number of contacts that a node establishes and what is the

expected period of time for all the connections of that node while operating.

In order to capture the total duration of the connections, two elements need to

be computed: the ratio of nodes arriving into the studied environment (street),

and the distribution of the velocities of the nodes. This analysis claims that the

assumption of a Poisson arrival process is the most rational solution to predict

5

the probability of nodes arrival in a street. To measure the duration of the

connections, the work considers two possibilities: nodes moving on the same

and on the opposite paths. For a similar direction, the connection time for a

node in an infinite street can be calculated by :

T∞ =
±x̄∆ + ∆

v1 − v2

(2.1)

Where ∆ is the transmission range in meters. X is a random variable that

denote distance between two nodes. ±x̄∆ is the average distance when contact

occurs. It can be either positive, when the first node is faster than the second, or

negative otherwise. The velocity is denoted by v. For nodes moving in opposite

direction the duration of contact for a node operating in the two way pattern

with fix velocity (v) is:

T̄ =
1

v
(r(λs)(L− x̄∆) + (1− r(λs))× (1− ŕ(λ́s))λ́s(x̄∆ + ∆)L). (2.2)

Where λs is spatial rate, r(λs) is the node probability to be connected with

other nodes in the system. L is the street length. ŕ(λ́s)λ́s is the contact rate for

nodes traveling in opposite direction. In this study, they do not measure the

impact of aggregated data size in memory that each node prepare to broadcast.

Three parameters are considered to be given in this model : length of the

street, communication range, and data rate of the connection. Bluetella is a

6

prototype system that implements delay-tolerant broadcasting using cell phones.

It uses Bluetooth technology as a communication method. Experiments with the

Bluetella system showed that nodes spend a significantly long time for the setup

of the connection. However, in comparison to this system, our implemented

system exploits any devices with wireless LANs and nodes are pre-connected to

the private network when operating (see Chapter 6). It is related to our problem,

where we implement broadcasting data of interest, just that the interests in our

case have a different nature and a more specific model. Nodes mobility in

Bluetella address people walking, while our study is restricted to vehicles. In

our system, we use queues of messages for broadcasting to increase the flexibility

and choice of strategies, which in turn can be tuned for maximizing the efficiency

of peers synchronization. Our analytical measures are used to calculate message

utilities to test broadcasting approaches using data queues (see Chapter 5).

The VANET research is a sub-area of Mobile Ad Hoc Networks (MANETs),

where communication is between wireless devices not necessarily found in ve-

hicles. Many routing protocols have been proposed for MANETS, and are

trying to address the issue of broadcast collisions, such as: the Dynamic Source

Routing (DSR) algorithm [9], Ad Hoc on-Demand Distance Vector Routing

(AODV) [20], Optimized Link State Routing protocol (OLSR) [8], etc.

In traffic safety applications, one disseminates vehicle speed and position

information, besides other types of data that could be beneficial to road safety.

7

The dissemination is desired over a large number of nodes, using intermediate

nodes to deliver information between devices that are not connected directly.

This type of applications demand from the network nodes to be capable of shar-

ing and processing the information in a highly efficient manner. The VANETs

topology is changing depending on the nodes density in the environment. This

creates frequent network disconnections which result in poor system perfor-

mance. A statistical study for this problem is presented in [26]. This problem is

considered irrelevant to our work. Our application is designed for synchronizing

petition items in VANET. We do not need to disseminate real time emergency

data.

The DV-CAST protocol is designed to perform efficiently in various traffic

density scenarios [21]. Simulation results in [11] shows that DSR is more ef-

ficient when there is a small number of nodes. AODV performs similarly to

DSR as the number of nodes increases. Some studies [23] have shown that us-

ing the AODV protocol in VANETs results in poor performance. Factors such

as VANETs node mobility patterns (i.e., roads) and rapid network disconnec-

tions may be the cause of the slow response of AODV. Later studies [27] pro-

pose enhancements to AODV (AODV-VANET) that increase its performance.

AODV-VANET introduces a Total Weight of the Route (TWR) to help decide

the intermediary routing nodes between a sender and receiver. Many circum-

stances are reflected into the TWR value, such as vehicle speed, direction, and

8

the condition of its link to the recipient node. An example of VANET routing

on city roads is proposed in [19]. It introduces a set of so called Road-Based

Vehicular Traffic (RBVT) routing protocols. They use current traffic data to

initiate the end-to-end communication paths.

Another big concern in VANETs traffic safety applications is security. Gen-

erally, traffic alert applications are disseminating data related to vehicle in-

formation. This data can be used by attackers for different purposes such as

misleading the vehicle with false traffic information which in turn can endanger

the life of the drivers. Authenticating broadcasted data is an important aspect

in the security of traffic safety applications. A practical solution for this prob-

lem would be that all vehicles should be able to certify the received broadcasted

messages. A known method for authenticating messages is based on using dig-

ital signatures. Flooding the system with signature verification is a common

problem for this type of applications. Significant research have been proposed

to handle this issue [7]. However, in our proposed system the goal is to receive

votes from every node connected in the network. Verification in our system is

to make sure that the received vote belongs to the claimed peer. Otherwise the

received message is discarded.

9

2.2 Applications

In [2], a scalable algorithm for data dissemination is proposed to provide vehi-

cles in VANETs with parking spots availability. A live video streaming service

between vehicles is proposed in [6]. The Traffic View [16] project uses VANET

communication to share information among cars moving on roads. Each vehicle

collects traffic information from other vehicles and broadcast it to cars it en-

counter afterward. It can disseminate road assessments (such as foggy weather)

to help find the best route to a destination. The system aggregates data in

packets, to increase sending efficiency. The system is evaluated with simulation

using the Network Simulator II (NS2) [12].

The Cross-Network Ad Hoc Dissemination project (X-NETAD) [5] proposes

to use a VANET to share traffic alert data originally received via cellular phones,

or more generally from Universal Mobile Telecommunications System (UMTS)

networks. The intent is to have wireless devices inside vehicles that broadcast

this data using Wi-Fi connections. Broadcasting data is based on the IF (Irre-

sponsible Forwarding) protocol [1] which assigns transmission probabilities for

each vehicle. Their prototype is built on a simulator. Figure 2.1 shows an

illustration of how the X-NETAD system communicates with UTMSs.

The support of peer-to-peer applications in VANET provide new require-

ments on VANET protocols. The idea of deploying P2P applications in VANETS

is introduced in [4]. VANET applications can benefit from the unique charac-

10

Figure 2.1: X-NETAD System.

teristics of P2P architectures such as: decentralization of information sharing,

enhancement in content delivery, and VANET nodes can be more scalable and

self-organizing. An example of applying this architecture is found in the Local

Peer Group (LPG) [3], which clusters the neighboring nodes to restrict the dis-

semination range. This helps to avoid the broadcast storm. The clustering in

LPG can be done either in a stationary or in a dynamic manner.

In [17], a swarming protocol (SPAWN) is introduced. It is used to implement

a new method for downloading and sharing files over VANETs using the peer-

to-peer architecture. The mechanisms used to implement data dissemination

is called gossiping. This technique makes use of the position of the vehicles to

select a peer for communication. The evaluation for this technique is done using

simulation. Implementing CarTorrent in a real world scenario is reported in [13],

reporting field tests for the SPAWN protocol. The communicating protocol per-

11

forms periodic gossiping to announce the availability of contents in each peer. If

any node is interested in an available file, it will send a request for a particular

piece of the file through a protocol called Ad Hoc On Demand Distance Vector

(AODV). Then, upon receiving, the initiator sends back the specific file piece

through AODV. Another example of content sharing is CodeTorrent [14], a pro-

tocol for P2P file sharing over VANETs that uses encoding. It aims to decrease

the file downloading time. Ad Torrent [18] is a content sharing application for

VANETs based on the idea of advertising boards.

P2P sharing contents over VANETs based on data popularity is introduced

in the Roadcast project [28]. It delivers the most proper and relevant data (such

as MP3 audio files) based on the peers queries by applying efficient Information

Retrieval (IR) mechanisms. It also uses algorithms to make sure that popular

data in the system is not replicated many times. Roadcast is evaluated through

simulation.

Another method for data dissemination over VANETs is the Segment-Oriented

Data Abstraction and Dissemination (SODAD) [24]. It aims to increase the

communication range between connected vehicles, taking it beyond the wireless

card range. It can be used for various types of applications such as: traffic safety

data, utilities information (e.g. locating gas stations). A sample usage of SO-

DAD is found in the Self-Organizing Traffic Information System (SOTIS) [25].

The SOITS system is based on Vehicle-to-Vehicle (V2V) communication. Each

12

car broadcasts traffic information which is collected externally or being received

from others. A digital map and navigator is also included in the system.

Basically, each node broadcasts packets that contain traffic information

based on the current position of the car. Each road is identified by a Road

ID. The node will discard messages with expired time stamps.

13

Chapter 3

Concepts

In this section we introduce formally the concepts that can make possible a

fully decentralized debate/petition/poll process. They define the data items

exchanged by the proposed protocols.

Polling is a process whereby one gathers the opinion of a sample from a

certain population on a given question. For the statistical relevance of the result

it is important that only opinions of the members of the targeted population are

recorded and that each of them is recorded only once. Minor errors can leave

the results relevant in case the support of competing opinions differs by large

margins. It should be difficult to systematically manipulate the outcomes.

Definition 1 (Peer) The set of software agents that coordinate publicly to rep-

resent a given user is referred here as peer. A peer may have agents running on

various devices (laptops, desktops, phone of a user) and which share the same

14

public and secret key pair. The peer is globally identified by its public key.

Each semantically independent type of item (vote, justification, etc.) is

uniquely identified by a Global Identifier (GID). To guarantee that there is no

voluntary or involuntary conflict between GIDs, these are built either as public

keys for a secret, or as digests of the information that they represent.

A working definition of the population eligible for a set of polls, is captured

in the concept of organization.

Definition 2 (Organization) An organization is an entity defining the mech-

anism whereby an authority is defined for specifying and controlling eligibility

for voting on a set of issues. An organization is defined by the unchangeable

set of parameters describing its governance and function. This unchangeable

characteristic is captured in its global identifier.

The fact that an item is generated for this organization is specified by tagging

the item using the global identifier (which is included in the digitally signed

data for the item). The parameters of the organization can specify the criteria

for eligibility to vote on items, and the ontology for the related communication.

Decentralized governance is currently rare. Some organizations are appro-

priate for a decentralized governance, such as: a diaspora, a union, or a club.

Definition 3 (Grassroot Organization) A grassroot organization is a tuple

〈O, p〉. The global identifier O is the digest of a set of parameters p, which can

15

never change and are referred to as its constitution.

Other organizations are more appropriate for centralized governance, such

as: a class of students specified by their instructor, a faculty coordinated by the

department head, or a committee coordinated by its chair.

Definition 4 (Authoritarian Organization) An authoritarian organization

is a tuple 〈O, p, r, d, s〉. The global identifier O is the public key of the authority,

which can change any of its parameters, and is referred to as the dictator of

the organization. The parameters of the organization are specified by p, the

revocation status by r, and the date of this declaration by d. A signature s is

used by the authority to certify this data: s = SIGN(SK(O), 〈p, r, d〉).

The participants defined by an organization as eligible to vote on its issues,

and whose votes matter with a predefined weight in decisions, are referred to as

its constituents.

Definition 5 (Constituent) A constituent of an organization is a person that

is eligible to cast a vote with a predefined weight on the issues relevant to that

organization. A constituent can be either active (i.e., generating data items)

or inactive (i.e., its existence is discussed but it is not active). A constituent

is defined by a tuple 〈C, C ′,O, i, r, d, s〉 where C is the constituent GID, C ′ is

the GID of the active constituent submitting this data, O is the GID of the

organization, i contains the identity details (as defined by O), r is the revocation

16

status of the constituent, d is the date and time of the data creation, and s the

signature generated by C ′.

The definition of identity details is specified by the parameter p of the organiza-

tion refered by O. An active constituent is identified by its public key, which is

used as its global identifier. An inactive constituent is identified by its available

description, and its global identifier is a digest of this data. The revocation sta-

tus is a boolean flag that blocks any further update or usage of the constituent

item, other than its dissemination. Items depending on it can be discarded. C ′

is redundant for an active constituent, being the same as its own GID C, but

for the conciseness of the description we prefer to use it, to unify the notation

with the one of inactive constituents.

As data structure, a constituent is described by the set of parameters that

enable his classification as to weather it is eligible to vote in the given organi-

zation.

Certain organizations can define voting eligibility based on a centralized

mechanism, such as an authority that issues eligibility certificates according to

its criteria. Decentralized organizations addressed here employ a mechanism

that defines eligibility based on witnessing.

Definition 6 (Witnessing) An act of witnessing is a process whereby a first

participant states whether the conditions for eligibility in an organization are

satisfied by a second participant. A witnessing act is described by a tuple

17

〈W,O, S, T,m, e, d, σ〉 where W is the witnessing stance GID, O is on orga-

nization identifier, S is the constituent identifier of the witnessing participant,

T is the constituent identifier of the witnessed participant, e is an explanation,

d is the time and date of the witnessing and σ is a signature of the data. The

mode m of the witnessing consists of a set of semantic statements, each of them

being either positive witnessing or negative witnessing about some quality of the

target.

For large decentralized organizations it is impractical to detect whether an

isolated group of people witnessing for each other are really eligible or just

elements of an attack. This problem is partly addressed by the concept of

neighborhood.

The constituency of an organization is classified in a hierarchical tree struc-

ture where each constituent belongs to a single leaf node and each node of the

tree is called a neighborhood.

Definition 7 (Leaf Neighborhood) A leaf neighborhood is a sufficiently small

subgroup of the constituents of an organization such that each constituent of

a leaf neighborhood can verify the eligibility of the other members of the sub-

group with reasonable effort, and where the existence of the subgroup as a whole

can be verified by other members with reasonable effort. A leaf neighborhood is

identified by its parameters and its global identifier is given by their digest. A

neighborhood is a tuple 〈IN, n, t,P , c, C, σ〉 where IN is the GID, n is the name

18

of the neighborhood, t is its level (e.g. city,street), P is the GID of the parent

neighborhood (empty for the root), c is the list of expected neighborhood levels

under this neighborhood, C is the GID of a constituent supporting its existence

and σ is her signature for the data.

We need to formalize the concept of reasonable effort and that can be done

in terms of the cost it brings to a volunteer participant.

Definition 8 (Reasonable Effort) In this paper we say that an effort is rea-

sonable in the context of an organization if the majority of constituents of the

given organization can perform it in a predefined unit of time (e.g., one day),

fixed for that organization, without consuming extra resources besides their taxed

revenue (given applicable laws) for that period of time.

The neighborhood immediately above the current neighborhood in this tree

is referred to as its parent neighborhood. The set of ancestor neighborhoods for

a constituent contains the leaf neighborhood where the constituent is currently

declared to belong, together with all the hierarchically higher neighborhoods

containing this leaf neighborhood.

By convergence of polling data we understand that, once the generation of

new data stops, eventually everybody that is connected and interested in a given

topic sees the same items for that topic.

19

3.1 Communication Items

Besides the above mentioned items used for managing the organizations (organi-

zations, constituents, neighborhoods and witnesses), agents communicate items

related to polling. The question raised by a poll is captured by the concept of

motion.

Definition 9 (Motion) A motion is a formal question with a predefined set

of possible responses on which each willing constituents is called to select an

answer. A motion is defined by a tuple 〈M, t, o, C, σ〉 where C is the GID of a

constituent supporting the motion, t is its text, o is a list of possible answers

of the motion, and σ is the signature generated by C. The motion is globally

identified by the hash of its data, M.

Definition 10 (Justification) A justification is an explanation that a con-

stituent provides for his selection of an answer for a motion. It is defined by

the tuple 〈J ,M, t, C, σ〉 where J is the justification GID, C is the GID of the

constituent supporting the text of the justification, M is the motion GID, t is

the text of the justification, and σ is its signature. J = HASH(M, t, C).

Definition 11 (Vote) A vote is the selected answer to a motion, as submitted

by a constituent. Each vote consists of a tuple 〈V ,M, c, C,J , d, σ〉 where V is its

GID, C is the GID of the constituent authoring the answer to the motion, M is

20

the motion GID and c the selected answer. J is the GID of a cited justification,

and can be empty, d is a date and time, and σ is the signature of C.

3.2 Data Model

Each self-interested software agent stores the data of interest to it into a local

database. The agent stores the received data if it refers to organizations, neigh-

borhoods, constituents and motions of interest. By default, received definitions

of peers and definitions of organizations received from non-blocked peers are

stored to give users an opportunity to inspect and define their interest about

them.

The database schema allows for storing the following types of items that

have a stand-alone semantic and that are separately digitally signed by the

entity generating them: peer, organization, neighborhood, witnessing, motion,

justification, vote.

Each item, is tagged with three user controlled flags: blocked, broadcastable,

interest. These flags control the communication as described in the next chap-

ter. Each received data item is also associated with the arrival time, which is

the date when a last change to the digitally signed parameters of the item was

registered. The signed parameters of each item contain the creation time, which

is the data when the signature was issued. The creation time is used to compare

and select the newest item among items whose parameters change over time,

21

such as active constituent, vote, and authoritarian organization.

For the case where an attacker or mistake leads to two distinct versions of

the same item claiming the same creation time, the comparison is made on the

hash of the data. This is used to prove that at convergence all participants have

coherent databases.

3.3 Resilient

Note that, for security reasons discussed below, we currently do not allow for

the public key of the authority in an authoritarian organization to be automat-

ically replaced in case it is revoked. Similarly, the constitution of a grassroot

organization cannot change, without migrating to a completely new organiza-

tion.

Attack on Global Identifiers The above mentioned security considerations

refer to the attacks based on generating new organizations with the same global

identifier as the attacked organization but with different parameters. Since the

organization parameters define the ontology of the activity and the employed

criteria for eligibility of constituents, such an attack can mislead the constituents

of the attacked organization to generate data that is inconsistent with the con-

stitution and rules of the organization. For example, a constituent A of an

attacked grassroot organization O1 could be misled by the constitution of the

22

organization O2 of an attacker to support the eligibility of another participant

B (eligible with O2 but not with O1), support that would be transferable as

valid into the attacked organization, O1.

Other Attacks on Authoritarian Organizations The Freeze Attack is an

attack possible only on authoritarian organizations where the secret key of the

authority is destroyed. The State Coup Attack is also an attack possible only

on an authoritarian organizations, where an attacker steals the secret key of the

authority while destroying all the copies available to the original authority. The

Confuse Attack on an authoritarian organization is where the attacker gets a

copy of the secret key of the authority and issues contradictory parameters for

the organization.

In the case of the Confuse Attack, the original authority can issue a revoke

message (a new definition of the organization with the r parameter set) and the

organization is blocked, hinting the constituents that they have to move their

activity to a new organization. For Freeze Attacks and State Coup Attacks, the

constituents cannot be warned automatically.

Attack on Grassroot Organizations An Identification Attack is where an

attacker creates an organization with similar but not identical parameters, to

the attacked organization. Since not all parameters are easily visible in graphical

widgets, attacker organizations where the most visible part (in some GUI) is

23

similar to the view of the attacked organizations can create confusion among

users. This attack also works against authoritarian organization. The Creator

Attack on a grassroot organization is an attack whereby the secret key of the

creating peer of the organization is compromised. Such an attack can facilitate

an Identification Attack by setting the name of the creator to values that are

not recognizable to users.

To detect storage attacks, any received item is tagged with the GID of the

peer from which it is received.

24

Chapter 4

Protocol

Let us now describe the structure of the exchanged messages. Software agents

found on wireless enabled devices with Ad Hoc capabilities are assumed to

broadcast messages continuously (potentially with short pauses).

4.1 Communication Control

The default settings of our current implementations assume that a self-interested

receiver normally refuses to store items about unknown organizations, as well as

items relating to organizations, constituents, neighborhoods or motions that are

specifically blocked by the user. To refuse items about unknown organizations,

newly received organizations are blocked by default. Organizations where the

user registers are automatically unblocked.

By default, all the stored data about items that are not blocked is made

25

available for broadcasting, but that behavior can be manually controlled for

each item using a flag called broadcastable.

For example, if an organization is blocked, then we store only its parameters

but any extra data associated with it (e.g., constituents, neighborhoods, mo-

tions) are discarded. Similarly we handle blocked constituents, neighborhoods,

or motions.

Messages received can refer to the GID of an unknown item (constituent,

neighborhood, motion, justification). If users decide to store the item referring

to unknown GIDs, then temporary items are created for each of the unknown

GIDs, to enable their control (blocking, broadcastability). The enabling of

certain temporary items, such as temporary constituents, open the door for

Storage Attacks, namely where attackers attempt to fill users databases with

data that is more difficult to verify. If temporary data is enabled, then remaining

data for temporary items can be advertised as requested in subsequent broadcast

messages. Various mechanisms (such as references to source peers) can be used

to mitigate these attacks.

Items of particular interest to the user, such as motions, constituents or

organizations that the user is particularly involved with, can be announced

as interests in broadcast messages. This feature can inform cooperating peers,

which can thereby give priority in sending such data back to the user. To enable

this feature, each stored item is associated with the interest flag that the user

26

can manually set and that the system can use to generate the corresponding

interest information in messages.

4.2 Messages

Each broadcast message contains a self-contained information. The two most

complex types of messages are the ones carrying votes and the ones carrying

witness acts (since they include data about many other types of items but are

not included in other types of data).

A message containing a witness act consists of a tuple 〈p, o, cs, Ns, cd, Nd, w〉

describing the definition of the relevant organization o, the definition p of the

peer that created the organization, the definition cs of the constituent making

the witness stance, the definition cd of the constituent for which the witness

stance is made, the definition w of the witness stance. It also contains the set

of definitions of ancestor neighborhoods Ns of the neighborhood of cs and the

set of definitions of ancestor neighborhoods of the neighborhood of cd.

A message containing a vote consists of a tuple 〈p, o, c, N,m, j, v〉 describing

the definition of the relevant organization o, the definition p of the peer that

created the organization, the definition c of the constituent making the witness

stance, the definition m of the motion, the definition j of the justification and

the definition v of the vote. It also contains the set of definitions of ancestor

neighborhoods N of the neighborhood of the c.

27

Each broadcast message is also attaching a set of interest hints. This set

contains some of the GIDs of the organizations, neighborhoods, constituents

and motions that the user has marked with the interest flag.

Probabilistically, the data concerning the details of the organization, the peer

or the constituent can be dropped from a vote message or a witness message to

reduce some of the replication, with the risk of rendering some messages useless

(as those messages may be dropped by receivers missing one of the items required

for storing it: its organization, neighborhood, etc.).

4.3 Handling

Here we describe reference procedures for handling received messages. In Al-

gorithm 1 we introduce the method used by a software agent to manage the

knowledge it has about interests of peers found in passing-by cars. An interest

consists of the GID of an organization, neighborhood, constituent, or motion.

Whenever indication of a particular interest is received from a peer, it is stored

locally, tagged with the GID of the sending peer and an expiration time. The

expiration time is computed based on the arrival time of the message containing

this interest, the available information about the relative speed between that

peer and the vehicle of the users, and an estimation of the maximal distance

within which the two devices can communicate.

When the devices are not equipped with GPS (as in the experiments reported

28

here), then the computation simply returns the estimated expiration time as

the sum between the current time and a constant life span (Line 1.3). In

our experiments this constant is set to 6 seconds. Note that each time that a

message is received from the same peer, the expiration time of its interests is

updated, thereby accounting for devices that are reachable for a longer period

of time than the selected life span constant.

A variable min interest stores the current time, updated on the clock

(Line 1.5) and any interests with higher expiration time is removed at that

moment (Line 1.6).

Algorithm 1: Management of interest without GPS

1.1 procedure handle interests (Peer, interests) do
1.2 for i in interests do
1.3 set interest-value(i, min interest+life span);

1.4 procedure on clock() do
1.5 min interest++;
1.6 drop expired interests;

Next we describe the algorithms used to handle received witness and vote

messages (Algorithms 2 and 3). Similar and simpler algorithms are used to

handle messages carrying other types of items.

The algorithms for handling messages employ the procedure handle interests()

defined in Algorithm 1, and a procedure verifySignature(item) that is checks

the signature of the item passed in parameter, quitting on failure. The proce-

dure store-or-update(item) verifies whether a previous version of the item is

29

Algorithm 2: Receiving and Handling a Witness

2.1 on witness(Peer, interests, (p, o, cs, Ns, cd, Nd, w)) do
2.2 handle interests(Peer, interests);
2.3 if !verifySignature(p) then return;
2.4 store-or-update(p);
2.5 if (blocked(p)) then return;
2.6 if !verifySignature(o) then return;
2.7 store-or-update(o);
2.8 if (blocked(o)) then return;
2.9 for n in Ns do

2.10 if verifySignature(n) then
2.11 store-or-update(n);
2.12 if (blocked(n)) then return;

2.13 for n in Nd do
2.14 if verifySignature(n) then store-or-update(n);

2.15 if !verifySignature(cs) then return;
2.16 store-or-update(cs);
2.17 if (blocked(cs)) then return;
2.18 if !verifySignature(cd) then return;
2.19 store-or-update(cd);
2.20 if verifySignature(w) then store-or-update(w);

already available and whether its creation date is newer than the received item.

On failure it store the item (if no other version was found), or updates it (if a

version with earlier date or identical date but lexicographically smaller digest

value is found);

Before handling any item, first the software agent checks whether the item

is not blocked by the user (i.e., by being generated by a blocked peer, or

constituent, or for a blocked organization, neighborhood, motion, justification,

or choice for the motion).

The procedures to handle messages start by handling first the more basic

30

Algorithm 3: Receiving and Handling a Vote

3.1 on vote(Peer, interests, (p, o, c, N,m, j, v)) do
3.2 handle interests(Peer, interests);
3.3 if !verifySignature(p) then return;
3.4 store-or-update(p);
3.5 if (blocked(p)) then return;
3.6 if !verifySignature(o) then return;
3.7 store-or-update(o);
3.8 if (blocked(o)) then return;
3.9 for n ∈ N do

3.10 if verifySignature(n) then
3.11 store-or-update(n);
3.12 if (blocked(n)) then return;

3.13 if !verifySignature(c) then return;
3.14 store-or-update(c);
3.15 if (blocked(c)) then return;
3.16 if !verifySignature(m) then return;
3.17 store-or-update(m);
3.18 if (blocked(m)) then return;
3.19 if !verifySignature(j) then return;
3.20 store-or-update(j);
3.21 if verifySignature(v) then store-or-update(v);

types of items before handling the ones that are based of the first. The typical

order is: peer, organization, constituent, neighborhood, motion, justification,

vote. Note that there can be a circular relation between constituent and neigh-

borhood since a constituent may reside in a neighborhood and the neighborhood

is supported/created by a constituent (potentially the same). In this case the

two are stored only either if they are simultaneously available, or if storage of

temporary items is enabled (as discussed earlier).

31

4.4 Messages Structure

We now describe the exchange messages contents. We implement five types of

messages Peer, Organization, Constituent, Neighborhood, Witness, and Vote.

Our reported experiments where done by giving witness and vote messages the

highest broadcasting probability (see Chapter 7). These messages are encoded

and decoded using ASN1 (see Appendix A). The ASN1 structure name for

the messages are : Peer (D PeerAddress), organization (D Organization), con-

stituent (D Constituent), neighborhood (D Neighborhood), witness (D Witness),

and vote (D Vote).

Peer Message :

D PeerAddress

D PeerAddress

Organization Message:

D PeerAddress

D Organization

Constituent Message:

D PeerAddress

D Organization

D Constituent

Neighborhood Message:

32

D PeerAddress

D Neighborhood

D Constituent

Witness Message:

D PeerAddress

D Organization

D Witness

Vote Message :

D PeerAddress

D Organization

D Vote

33

Chapter 5

Heuristics

To model incentives and their relation with the behavior of the users, we for-

malize the utility of a message. In practice each item has its own utility, and a

different utility for different users.

Definition 12 (Utility of messages) Each user draws a certain utility for

learning an item, depending on that item. A user also gains a given utility for

disseminating an item.

In the following we assume that the utility of storing items is flat for the items in

an organization, while the utility of forwarding an item depends on its similarity

with the items generated by the user (and therefore describing her values).

34

5.1 Uninformed Heuristics

Uninformed heuristics for broadcasting correspond to an assumption that no

hints received from peers should be trusted and transmission is made based

on an a priori model of frequency for vehicles with peers traveling in the two

directions. With uninformed heuristics, all peers are supposed to be interested

in all items that the current peer has, and to be able to store all messages that

they receive from this user. Such a model assumes that a number of A reachable

vehicles travel in the same direction with a relative speed vA while a number of

B reachable vehicles travel at each moment in opposite direction with relative

speed vB. The local computer is able to load new items from a local database

with an efficiency of M messages a second. Messages (each with utility uM) can

be emitted at a speed of vM messages a second from a sending queue of size Bs,

the buffer of the queue being reloaded from database at a period of time:

Preload ≥
Bs

min(vM ,M)
. (5.1)

If D is the communication range of the device then TA = D
vA

is the duration

for which a car traveling in the same direction is reachable, and TB = D
vB

is the

similar duration for the opposite direction. We also assume that the assumption

that the queues of preloaded messages used for sending data are long enough to

35

provide data for the whole time TB, i.e.,

Bs

vM
≥D
vB
. (5.2)

Then, the utility of sending data during time TA is:

UTA
= uM ·A·Bs·d

TA
Preload

e+ uM ·B·
TA
TB
·TB·vM

where the first part of the right hand expression refers to the utility obtained by

sending items to cars in the same direction (cars that each receive the content

of d TA

Preload
e full buffers of messages, each of size Bs). Note that in this equation

we assume that the reminder of Preload : TA is larger than Bs

vM
. The second part

of the expression is the utility from the items transmitted to cars driving in

opposite direction. There are TA

TB
road segments of size D with such cars that

travel in opposite direction, each holding B cars, and each of these cars receives

vM ·TB messages.

If one set Preload to the closest (smaller) divisor of TA, then the utility rate per

unit of time that the agent gets for broadcasting from a given queue of messages

in this condition is approximated to (obtained by dividing UTA
by TA):

∂U

∂t
= uM

(
A·Bs

Preload

+B·vM
)

(5.3)

36

The current peer has a number NP of personal items, a number NS of simi-

lar items, a number NO of other items and a number NF of opposing opinions

of positive utility (opposing opinions of negative utility are not sent). An as-

sumption is that NP � NO. Based on this model we search for the best policy

in terms of number of times that items with high utility should be broadcast

before broadcasting some items with a lower utility.

5.2 Informed Heuristics

Informed heuristics assume that peers announce their interests as sets of GIDs

for organizations, constituents, neighborhoods, motions or justifications for

which they want to get related items, and that they drop any other messages.

Senders thereby build special queues with data of interest to these peers and give

these messages priority over other items. In our experiments, agents broadcast

only data relevant to current peers and found in current queues.

Each message loaded in sending queues is tagged with information about con-

tained organizations, constituents, neighborhoods, motions, justification (and

potentially vote choice), to help dynamically retrieve those of interest to new

detected peers.

While our experiments were run with laptops that were not provided with

GPS sensors, such sensors can provide extra information as to when the peers

travel in the same direction or in opposite direction, and for how long the peer

37

be reachable.

Our utility model can be combined with the statistical model of the effi-

ciency of communication described at uninformed heuristics (as shown in the

Experiments section), to decide the policy of transmission for each type of data

(what percentage of each type of data should be sent at each moment of time).

One can select the ratio of data of each type such as to maximize the expected

utility of the sender. Rather than using the model resulting in Equation 5.3,

one can introduce utilities in decisions based on the statistical models in [10].

38

Chapter 6

Agent Architecture Details

In this section we describe the architecture and implementation challenges en-

countered while developing the described protocols. Our implementation can

run on Linux, Windows, and Mac OS. The network configuration is automated

on Linux and Windows while the Mac OS network configuration has to be

performed manually. We performed experiments with our implementation of

a VANET platform, based on agents running on laptops that are located in

moving vehicles. We allocate an Ad Hoc wireless cell based on the open (unen-

crypted) SSID DirectDemocracy at Frequency 2.462 GHz resulting in the cell

46:32:D1:F2:88:67.

39

6.1 Portable Detection of Wireless Cards

Each device in the system could have more than one wireless card (Interface).

This may be a useful feature in case users want to be simultaneously con-

nected to the Internet via one wireless card and to the “DirectDemocracy”

Ad Hoc network via a 2nd wireless card. In order to run the POLLER on

the Ad Hoc network, the user should select one of the wireless interfaces for

this purpose. The available wireless interfaces are automatically detected. The

detection of wireless interfaces is not yet well supported by Java in a OS inde-

pendent manner. Currently the Java application calls OS-dependent external

scripts to learn the wireless interface names. For example in Windows one gets

wireless card interface names and IP addresses using “ipconfig /all”, while

in Linux “iwconfig”. Operating systems vary in how they name the wireless

interfaces. For example, Windows 8 refers to a wireless interface as ”Wi-Fi”.

From the second wireless card on, the string is followed by a number starting

with 2 and separated with a space. Windows 7 refers to a wireless interface

as ”Wireless Network Connection”. Subsequent interfaces will have a number

after the string. In Linux operating system, the interface names is configured

by the distribution, where the common names are “wlan” or “eth” followed by

a number. The wireless interfaces names and their configuration are stored in

the database, to be re-instated when the application is restarted. The format

of the retrieved information is (Interface Name, IP, SSID). In the following

40

section we describe how the software agent detect wireless configuration and

connection process to DirectDemocracy Ad Hoc network.

6.2 Global Wireless Cell

We designed a GUI widget Figure 6.1 that provides access to the database

used to store the configuration of the wireless interfaces. The user may use

this widget to select the interface to be used for the Ad Hoc network. When

a particular interface is selected, the POLLER automatically configures it to

connect to DirectDemocracy. The process in which the system detect current

connection information and connects to this Ad Hoc network differs between

operating systems. A set of OS-dependent external scripts are used for this

purpose.

Figure 6.1: Wireless Widget

41

6.2.1 Windows

Detect Wireless Configuration

In order to capture connection information in Windows we rely on a system

command utility ”netsh”. To obtain Wireless interface name and current SSID

we use the following command:

netsh wlan show interface.

“netsh” is used to display static IP addresses, while for the DHCP configured

interfaces we use “ipconfig” [15]. If we obtain DirectDemocracy as SSID

(means that the wireless card is already connected to POLLER network) then

we get the IP using “netsh” to retrieve the IP using the command:

netsh int ipv4 show addresses name="Interface name".

Otherwise we use ipconfig /all.

Connect to DirectDemocracy

To connect to a new Ad Hoc network, a profile for that network can be added

to the desired interface. A profile is a XML file that contain the specifications

of the network. Figure 6.2 shows the DirectDemocracy network profile. A

new profile is added with the command:

netsh wlan add profile filename="DirectDemocracy.XML" interface=

"Interface name".

The system connect to this network using this command:

42

netsh wlan connect name="DirectDemocracy" interface="Interface name".

-<WLANProfile xmlns="http://www.microsoft.com/networking/WLAN/profile/v1">

<name>DirectDemocracy</name>

-<SSIDConfig>

-<SSID>

<hex>44697265637444656D6F6372616379</hex>

<name>DirectDemocracy</name>

</SSID>

<nonBroadcast>false</nonBroadcast>

</SSIDConfig>

<connectionType>IBSS</connectionType>

<connectionMode>manual</connectionMode>

-<MSM>

-<security>

-<authEncryption>

<authentication>open</authentication>

<encryption>none</encryption>

<useOneX>false</useOneX>

</authEncryption>

</security>

</MSM>

</WLANProfile>

Figure 6.2: DirectDemocracy.XML Ad Hoc Network Profile

Setting IP Address

When the agent connect to DirectDemocracy it will set the IP of the network.

The command used to change the IP is :netsh interface IP set address

InterfaceName static IPAddress SubnetMask. This command demand an

administrative permission in order to run it. In some versions of Windows

(such as Windows 7 Professional) the command runs successfully in the following

format:

RUNAS /savecred /USER:UserName "netsh interface IP set address

InterfaceName static IPAddress SubnetMask".

43

In order to run the command in other types of Windows versions we provide

the command in the widget to be copied by the user. This command should

be implemented in an administrator command prompt window. In Windows,

the IP is assigned only when two devices come into close proximity. If the IP is

not assigned to the network, the software will not broadcast data until a valid

broadcast address is obtained. We can learn that other peers are reachable on

the Ad Hoc network by checking whether the IP of the network is displayed

by ipconfig. When the user start broadcasting the system perform “ipconfig”

command every 1 second.

Disconnect from DirectDemocracy

The user can disconnect from DirectDemocracy by deselecting it from the

wireless widget. The command is:

netsh wlan disconnect interface=’’InterfaceName’’.

Setting the IP from static to DHCP require administrator privilege as with

setting IP value. The following command will run on some versions (Windows

7 Professional):

RUNAS /savecred /USER:UserName "netsh int IP set address Interfa-

ceName DHCP".

In general, wireless cards are configured to automatically reconnect to the user

preferred network. Note that further scripts can be added to capture user

44

wireless configuration before connecting to DirectDemocracy to be used when

user deselect from it.

6.2.2 Linux

Detect Wireless Configuration

We use the command:

IP link show.

It gets all available Interfaces names. For each Interface we use the command

iwconfig to get current SSID. Lastly, to obtain IP address we use the command:

IP addr list InterfaceName.

Connect to DirectDemocracy

Figure 6.3 shows the script used in Linux to connect to a new Ad Hoc network.

service network-manager stop

ip link set InterfaceName down

iwconfig InterfaceName mode ad-hoc

iwconfig InterfaceName channel 11

iwconfig InterfaceName essid "SSID"

iwconfig InterfaceName key off

ip link set InterfaceName up

ip addr add IP

/sbin/ifconfig InterfaceName IP broadcast BroadcastAddress

Figure 6.3: Script to connect to a new Ad Hoc network in Linux

45

Disconnect from DirectDemocracy

The user can disconnect from DirectDemocracy by deselecting it from the

wireless widget. The command in Linux is :

service-network manager start.

6.3 Broadcasting Server and Client

The architecture of the system is depicted in Figure 6.4. Each agent starts a

server bound to local port UDP/54321 and accepting broadcast messaged. Our

experiments were done with the Network ID of the network card set to “10/8”.

The local Host ID part of the IP is set to a random value. If the random

part of the IP is considered insufficient to avoid IP collisions between peers, an

additional random identifier is also generated to uniquely detect the agent, and

messages tagged with this identifier can be discarded assuming that their source

is the agent of the server. When the device has more than one wireless card,

the agent can be configured to only use a subset of them for this protocol. Each

agent has a client that broadcasts messages on the network interfaces allocated

to our protocol, sending them to the address “10.255.255.255:54321” from a set

of queues prepared with preloaded messages. A small pause (e.g. 5 ms) can be

introduced between the transmission of packets, as this was found to slightly

improve transmission rates as well as CPU load (see Chapter 7).

46

Figure 6.4: Architecture of the Peer

Each of the queues with preloaded messages has a special policy as to the

type of contained items (personal, similar to personal, recent, random, round-

robin, requested) and its mechanisms for loading and reloading. The broadcast

client picks items from the various existing queues based on a probability distri-

bution that can be specified by the user. We experiment with various heuristics

for specifying these probabilities. To maximize its dissemination efficiency, the

probability of sending items of interest must grow with the number of receivers

having expressed that interest (potentially serving only the items of interest to

most current peers). Before broadcasting a message, the client prepends to it a

header describing: the interests of the current user, its random identifier, and

available GPS data about current location and velocity. Potentially this header

can include extra information about the content of the body of the message

47

(such as GIDs of organizations, motions, etc) to help receivers decide faster on

storing or dropping messages that are not of interest. The existence of peers

that drop messages not tagged with interest could push self-interested agents

to provide this extra information (which otherwise reduces their bandwidth).

The servers may not be fast enough in handling and storing all the data

they can receive in real time and therefore incoming data is stored in buffers.

Our server has a receiving buffer of size Br set to 20000 messages (average

message size being measured to be 5KB in the current experiments). The server

extracts the interests advertised by peers from the header of received messages

and enqueues all the message bodies deemed new based on their size (or hash).

A separate storing thread is used to dequeue received messages and to store

their data based on the aforementioned algorithms.

If the receiving buffer is full, until the internal storing thread frees some

entries, the server drops new incoming messages except if they are tagged in

their header with information specifying that they contain items of interest to

the receiver (in which case these messages are used to replace untagged messages

from the buffer).

48

Chapter 7

Experiments

For the reported measurements, the databases of the agents were filled with

60000 votes for 10 organizations (O1 to O10) and 3816 motions, 9094 justifica-

tions, 629 constituents, and 4486 witness stances. These numbers were chosen

based on our estimation of the ratio of the various types of items in a deployed

system. To generate these items we implement a simulator that allocates each

new generated vote probabilistically. First we manually generated a certain

number of organizations. Then, each generated vote is allocated to a new orga-

nization with probability 10−5, otherwise it is uniformly assigned to one of the

existing organizations. Similarly, each vote is allocated with probability 10−2

to a new constituent. The size of the text of each artificially generated motion

is 1000 characters and the size of each justification is 300 characters.

We performed experiments with transitive dissemination across several ve-

49

hicles, validating the fact that data can be disseminated between cars that do

not have direct contact. First we report numerical results about the measured

characteristics of the communication between immediately connected nodes.

Time (minutes)

2
2
2
2

Figure 7.1: Experiments measuring the speed of messages transmitted (vM).
Averages for duplex communication is: 3ms pauses at 10.2 msg

sec
, 5ms pauses at

10.78 msg
sec

, and 10ms pauses at 9.97 msg
sec

We measure the speed of communication vM between two nodes in ideal

conditions (when the nodes are placed far from other wireless devices). Com-

munication is measured between an HP G62-111EE with 3GB RAM and an

Acer Aspire P5WE0 with 4GB RAM running Ubuntu 12.04 on an I3 proces-

50

sor. Preliminary measurements were made with different pause duration (0, 3,

5, 10, 15, 250, 500, 750, 1000 ms) between transmitted packets. This pause

impacts on the number of packet collisions, and therefore on the transmission

efficiency. More extensive measurements were performed on the values that

showed promise (3, 5, 10 ms). Measurements were taken over 25 minutes of

communication for each pause duration and for each of the following two cases:

when both devices transmit data. and when only one device transmits data.

The results, averaged over a sliding window of size 30 seconds, are displayed in

Figure 7.1. The maximum value of 26.7 messages per second for one direction

broadcasting at 5 ms pause duration is used as reference.

roads speed TB M = vM ·TB
Parking lot – crowded 15 15 158

Street – open area 40 4.3 50
Street – school area 35 2.6 15

Highway – free 70 6.3 91
Highway – trucks 70 4.5 34

Table 7.1: Average time of encounter (seconds) and number of exchanged mes-
sages in this time for various vehicle speeds (mph) and environments, with
communication in one direction (5 ms pauses)

We measure an estimate of the range of communication D and of the time

TB during which two devices are able to communicate. These measurements

are performed with laptops found in two vehicles moving in opposite direction

in several scenarios: in a parking lot (crowded) at 15 mph, on a city street in an

open area (10 wireless networks) with median strip at 40 mph, on a city street

51

close to a school (35 wireless networks) with median strip at 35 mph, on an

empty highway with median strip at 70 mph, and on the same highway (with

trucks separating the communicating cars). The measurement in the parking

lot and on the city street were averaged over 10 encounters. The numbers of

messages successfully transmitted in the three scenarios are shown in Table 7.1,

as well as the duration TB estimated from logs. It can be noticed that the

speed of communication between devices is strongly influenced by the number

of wireless networks in that area.

To have all messages available for a peer encountered while driving in oppo-

site direction in a crowded parking lot, the sender needs queues of size Bs≥D·vM
vB

,

which correspond to the maximum number of messages M in Table 7.1.

Dissemination over Chains of Vehicles To evaluate and confirm empiri-

cally the dissemination between vehicles that do not meet each other but com-

municate via other intermediary vehicles, we run experiments with three cars:

A, B, and C. The car C contains a device with a preloaded database (as per the

previous experiments) while the devices in the other two cars are initially empty.

We evaluate two topologies of communication patterns between these vehicles:

chain and triangle. For each topology the vehicles have a fix trajectory that

they repeat 20 times, synchronized in such a way that pairs of vehicles meet at

the same location. Also we evaluate the impact of the studied heuristics and of

52

S

E

S

E

S

S

E

E

Car-B
Car-C

Car-A

Figure 7.2: Trajectories in the chain topology. Areas of communication for each
meeting point start at the corresponding S point and end at the corresponding
E point, for each car.

the user types (interests) on the efficiency of dissemination.

The trajectory of these cars on a map in the chain topology is shown in

Figure 7.2. Two curves in the diagram in Figure 7.3 shows the number of new

data items received and stored in each of the two cars during 20 rounds of

encounters with this topology. We remark that the Car A chain curve shows

that its device receives approximately 60% of what is received by the device in

car B (see Car B chain). It is nevertheless logical to expect that the ratio would

decrease with time and rounds due to the expected decrease in overlap between

53

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20

N
um

be
r

of
 n

ew
 m

es
sa

ge
s.

Rounds

Car A triangle
Car B triangle

Car B chain
Car A chain

Figure 7.3: Received items (votes and witness stances) for cars A and B in the
chain and triangle topologies. The ratio votes to witness stances is approx 2:1.

messages received by B from C, and messages sent by B when her database

increases. The usage of queue handled (containing data recently received from

other peers) is meant to mitigate this effect.

A comparison is made with the situation when the three cars communicate

according to a triangular topology (see Figure 7.4). We see that the number of

messages received by the car B (and car A) in this topology is approximately

50% more than the number of messages received by car B in the chain topology.

Impact of Interests on Efficiency We count the number of messages of in-

terest to the receiver, successfully transmitted to a given peer, in scenarios with

54

S

E

S

E

S

S

E

E

S

E

S

E

Figure 7.4: Trajectories in the triangle topology. Areas of communication for
each meeting point start at the corresponding S point and end at the corre-
sponding E point, for each car.

the studied peer expressing interests in two organizations, while other peers also

express their interests. The graph in Figure 7.5 shows the number of received

messages given the number of different interests considered by the sender. It

can be observed that the efficiency for the receiver decreases with the number

of interests submitted by neighboring peers.The other straight horizontal line in

the graph shows the efficiency of the receiver when no interests are advertised

by anybody and the sender transmits randomly data from its 10 organizations.

Note that the efficiency of the server is given by the sum of the efficiency of

55

Served Organization Interests

2
2

Figure 7.5: Comparison of efficiency with and without advertisement of inter-
ests.

its receivers, being expected to grow monotonically with the number of peer

vehicles receiving its data. The efficiency of the sender in disseminating its data

without advertisement of interest be smaller than with advertisement of interest

except when all the available data of equal interest to receivers.

With the computed parameters, when we use a single sending queue with

randomly picked data or with round-robin transmission, the occurrence of per-

sonally generated items has a negligible probability and the utility is practically

equivalent to sending only messages of type other. Assuming that the trans-

56

mission of each item has a utility of 1¢ for the sender and the utility of a

personally generated item is 10¢, the obtained utility per second with A = 2

vehicles driving in the same direction and B = 2 vehicles traveling in oppo-

site direction on a highway is ≈107¢

s
(based on Equation 5.3). For the case

NP = 10, on a highway, the speed of sending messages with personal items has

to be vPM ≥ Bs

TB
= 10

4.5
= 2.2. Therefore the speed of sending the other types of

messages (assumed to be all of type “other”) can be vmax
M −vPM ≈ 24.5. The total

utility with this configuration is 88 + 98 = 186¢

s
(88¢

s
for personal messages).

This proves that it is useful to separate messages into queues of specialized types

(gaining 186¢

s
rather than 107¢

s
).

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

N
um

be
r

of
 n

ew
 m

es
sa

ge
s.

Rounds

Car B with advertisements triangle
Car B no advertisements triangle

Car A no advertisements chain
Car B no advertisements chain

Figure 7.6: Impact of interest advertisement.

57

Empirical Results with Interests We ran experiments with the three cars

(A, B, and C) where A is only interested in storing and forwarding the organiza-

tions O1 to O7, and B is only interested in storing and forwarding organizations

O4 to O10. The impact of advertising their interests is shown in Figure 7.6,

with an improvement of 28%, proportional with the ratio of interest in the

available organizations. It can be seen that, when devices filter received data

based on their interests, car A eventually receives a lower fraction (36%) of the

data received by B than in the absence of such filtering (54%, see Figure 7.3).

Advertisement of interests compensates for this difference.

58

Chapter 8

Conclusion

A set of techniques for dissemination of data in decentralized opinion polls

via Vehicular wireless Ad Hoc Networks of self-interested peers is proposed

and evaluated. For comparing heuristics we compute the utility of achieved

dissemination from the perspective of the given sender. The long term goal is

to find the behavior at equilibrium of self-interested senders. A utility model is

discussed where the highest utility is for items generated by the sender, followed

by items with similar opinion, while the least utility is assigned to items of

opposing opinion (which may even have a negative utility for the sender).

Based on a set of experiments with our VANET implementation we compute

the parameters of a model for the vehicle to vehicle interaction. Strategies for

broadcasting based on several queues are evaluated as well as percentages of

broadcast time to allocate to different types of data items. The tested heuristics

59

can be uninformed or informed with data received from peers such as their

interests, identity, position and relative speed and bearing. Interests of peers

are expressed in terms such as opinion (vote choice), issues (motions), voters

(constituents), or topics (organization).

Separate outgoing queues can be maintained for data of different types (ran-

dom, generated by sender, similar with sender, opposing senders, others). Cars

traveling in opposite direction should get the most valuable data (generated

by this sender) while cars traveling in the same direction and in contact for a

long time should eventually fully synchronize with the sender on all items with

positive utility and of interest to them.

60

Bibliography

[1] S. Busanelli, G. Ferrari, and S. Panichpapiboon. Efficient broadcasting in

ieee 802.11 networks through irresponsible forwarding. In Global Telecom-

munications Conference, 2009. GLOBECOM 2009. IEEE, pages 1 –6, 30

2009-dec. 4 2009.

[2] Murat Caliskan, Daniel Graupner, and Martin Mauve. Decentralized dis-

covery of free parking places. In Proceedings of the 3rd international work-

shop on Vehicular ad hoc networks, VANET ’06, pages 30–39, New York,

NY, USA, 2006. ACM.

[3] Wai Chen and Shengwei Cai. Ad hoc peer-to-peer network architecture

for vehicle safety communications. Communications Magazine, IEEE,

43(4):100 – 107, april 2005.

61

[4] L. Chisalita and N. Shahmehri. A peer-to-peer approach to vehicular com-

munication for the support of traffic safety applications. In Intelligent

Transportation Systems, 2002. Proceedings. The IEEE 5th International

Conference on, pages 336 – 341, 2002.

[5] EUREKA. http://www.eurekanetwork.org/project/-/id/6252, 2010.

[6] Meng Guo, M.H. Ammar, and E.W. Zegura. V3: a vehicle-to-vehicle live

video streaming architecture. In Pervasive Computing and Communica-

tions, 2005. PerCom 2005. Third IEEE International Conference on, pages

171 – 180, march 2005.

[7] Hsu-Chun Hsiao, Ahren Studer, Chen Chen, Adrian Perrig, Fan Bai, Bhar-

gav Bellur, and Aravind Iyer. Flooding-resilient broadcast authentication

for vanets. In Proceedings of the 17th annual international conference on

Mobile computing and networking, pages 193–204. ACM, 2011.

[8] P. Jacquet, P. Mhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Vi-

ennot. Optimized link state routing protocol for ad hoc networks. pages

62–68, 2001.

[9] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc

wireless networks. In Mobile Computing, pages 153–181. Kluwer Academic

Publishers, 1996.

62

[10] Gunnar Karlsson, Vincent Lenders, and Martin May. Delay-tolerant broad-

casting. IEEE Transactions on Broadcasting, 53(1):369–381, March 2007.

[11] T. Kaur, A. Malhi, and A.K. Verma. Simulation and comparision of aodv

and dsr routing protocols in vanets. International Journal of Computing,

Intelligent and Communication Technologies (IJCICT), 1(1):51–56, Oct

2012.

[12] Srinivasan Keshav. The network simulator ii. http://www.isi.edu/

nsnam/ns/, 2013.

[13] K.C. Lee, Seung-Hoon Lee, Ryan Cheung, Uichin Lee, and M. Gerla. First

experience with cartorrent in a real vehicular ad hoc network testbed. In

2007 Mobile Networking for Vehicular Environments, pages 109 –114, may

2007.

[14] Uichin Lee, Joon-Sang Park, Joseph Yeh, Giovanni Pau, and Mario Gerla.

Code torrent: content distribution using network coding in vanet. In Pro-

ceedings of the 1st international workshop on Decentralized resource sharing

in mobile computing and networking, MobiShare ’06, pages 1–5, New York,

NY, USA, 2006. ACM.

[15] Technet Microsoft. http://technet.microsoft.com/en-us/library/

bb490943.aspx, 2013.

63

[16] Tamer Nadeem, Sasan Dashtinezhad, Chunyuan Liao, and Liviu Iftode.

Trafficview: traffic data dissemination using car-to-car communication.

SIGMOBILE Mob. Comput. Commun. Rev., 8(3):6–19, July 2004.

[17] A. Nandan, S. Das, G. Pau, M. Gerla, and M.Y. Sanadidi. Co-operative

downloading in vehicular ad-hoc wireless networks. In Wireless On-demand

Network Systems and Services, 2005. WONS 2005. Second Annual Confer-

ence on, pages 32 – 41, jan. 2005.

[18] Alok Nandan, Alok N, Saurabh Tewari, Shirshanka Das, Mario Gerla, and

Leonard Kleinrock. Adtorrent: Delivering location cognizant advertise-

ments to car networks, 2006.

[19] J. Nzouonta, N. Rajgure, Guiling Wang, and C. Borcea. Vanet routing on

city roads using real-time vehicular traffic information. Vehicular Technol-

ogy, IEEE Transactions on, 58(7):3609 –3626, sept. 2009.

[20] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector rout-

ing. In Mobile Computing Systems and Applications, 1999. Proceedings.

WMCSA ’99. Second IEEE Workshop on, pages 90 –100, feb 1999.

[21] O. Tonguz, N. Wisitpongphan, F. Bai, P. Mudalige, and V. Sadekar. Broad-

casting in vanet. In 2007 Mobile Networking for Vehicular Environments,

pages 7 –12, may 2007.

64

[22] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. The

broadcast storm problem in a mobile ad hoc network. Wirel. Netw.,

8(2/3):153–167, March 2002.

[23] S.Y. Wang, C.C. Lin, Y.W. Hwang, K.C. Tao, and C.L. Chou. A practical

routing protocol for vehicle-formed mobile ad hoc networks on the roads. In

Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, pages

161 – 166, sept. 2005.

[24] L. Wischhof, A. Ebner, and H. Rohling. Information dissemination in self-

organizing intervehicle networks. Intelligent Transportation Systems, IEEE

Transactions on, 6(1):90 – 101, march 2005.

[25] Lars Wischhof, Andr Ebner, and Hermann Rohling. Self-organizing traffic

information system based on car-to-car, 2004.

[26] N. Wisitpongphan, Fan Bai, P. Mudalige, and O.K. Tonguz. On the routing

problem in disconnected vehicular ad-hoc networks. In INFOCOM 2007.

26th IEEE International Conference on Computer Communications. IEEE,

pages 2291 –2295, may 2007.

[27] Xi Yu, Huaqun Guo, and Wai-Choong Wong. A reliable routing protocol

for vanet communications. In Wireless Communications and Mobile Com-

puting Conference (IWCMC), 2011 7th International, pages 1748 –1753,

july 2011.

65

[28] Yang Zhang, Jing Zhao, and Guohong Cao. Roadcast: A popularity aware

content sharing scheme in vanets. In Distributed Computing Systems, 2009.

ICDCS ’09. 29th IEEE International Conference on, pages 223 –230, june

2009.

66

Appendix

ASN1 Definitions

D Message ::= IMPLICIT SEQUENCE {

sender [APPLICATION 0] D PeerAddress OPTIONAL,

Peer [APPLICATION 1] D PeerAddress OPTIONAL,

interest WB ASN Interest [APPLICATION 2] OPTIONAL,

organization [APPLICATION 3] D Organization OPTIONAL,

motion [APPLICATION 4] D Motion OPTIONAL,

constituent [APPLICATION 5] D Constituent OPTIONAL,

witness [APPLICATION 6] D Witness OPTIONAL,

vote [APPLICATION 7] D Vote OPTIONAL,

signature [APPLICATION 8] OCTET STRING OPTIONAL,

neighborhoods D Neighborhood [APPLICATION 9] OPTIONAL,

recent senders [APPLICATION 10] SEQUENCE OF UTF8String OPTIONAL,

dictionary GIDs [APPLICATION 17] UTF8String OPTIONAL

}

D PeerAddress ::= IMPLICIT SEQUENCE {

globalID PrintableString,

name UTF8String OPTIONAL,

slogan [APPLICATION 0] UTF8String OPTIONAL,

67

creation date GeneralizedDate OPTIONAL,

address SEQUENCE OF TypedAddress OPTIONAL,

broadcastable BOOLEAN,

signature alg PrintableString OPTIONAL,

served orgs [APPLICATION 12] SEQUENCE OF D PeerOrgs OPTIONAL,

signature OCTET STRING

}

D Organization ::= IMPLICIT SEQUENCE {

global organization ID PrintableString,

name UTF8String OPTIONAL,

last sync date GeneralizedDate OPTIONAL,

params [APPLICATION 1] D OrgParams OPTIONAL,

concepts [APPLICATION 2] D OrgConcepts OPTIONAL,

signature OCTET STRING OPTIONAL,

signature initiator [APPLICATION 14] OCTET STRING OPTIONAL,

creator [APPLICATION 0] D PeerAddress OPTIONAL,

neighborhoods [APPLICATION 3] SEQUENCE OF ASNNeighborhoodOP OPTIONAL,

constituents [APPLICATION 4] SEQUENCE OF ASNConstituentOP OPTIONAL,

witnesses [APPLICATION 5] SEQUENCE OF D Witness OPTIONAL,

motions [APPLICATION 6] SEQUENCE OF D Motion OPTIONAL,

justifications [APPLICATION 7] SEQUENCE OF D Justification OPTIONAL,

signatures [APPLICATION 8] SEQUENCE OF D Vote OPTIONAL,

translations [APPLICATION 9] SEQUENCE OF D Translations OPTIONAL,

news [APPLICATION 10] SEQUENCE OF D News OPTIONAL,

requested data [APPLICATION 11] SEQUENCE OF D Message OPTIONAL

}

D Constituent ::= [APPLICATION 48] IMPLICIT SEQUENCE {

global organization ID PrintableString OPTIONAL,

global constituent id [APPLICATION 0] PrintableString OPTIONAL,

surname [APPLICATION 1] UTF8String OPTIONAL,

forename [APPLICATION 15] UTF8String OPTIONAL,

68

address [APPLICATION 2] SEQUENCE OF D FieldValue OPTIONAL,

email [APPLICATION 3] PrintableString OPTIONAL,

creation date [APPLICATION 4] GeneralizedDate OPTIONAL,

global neighborhood ID [APPLICATION 10] PrintableString OPTIONAL,

neighborhood [APPLICATION 5] SEQUENCE OF D Neighborhood OPTIONAL,

picture [APPLICATION 6] OCTET STRING OPTIONAL,

hash alg PrintableString OPTIONAL,

signature [APPLICATION 7] OCTET STRING OPTIONAL,

global constituent id hash [APPLICATION 8] PrintableString OPTIONAL,

certificate [APPLICATION 9] OCTET STRING OPTIONAL,

languages [APPLICATION 11] SEQUENCE OF PrintableString OPTIONAL,

global submitter id [APPLICATION 12] PrintableString OPTIONAL,

slogan [APPLICATION 13] UTF8String OPTIONAL,

weight [APPLICATION 14] UTF8String OPTIONAL,

submitter [APPLICATION 15] D Constituent OPTIONAL,

external BOOLEAN,

revoked BOOLEAN

}

D Neighborhood ::= IMPLICIT SEQUENCE {

global organization ID PrintableString OPTIONAL,

global neighborhood ID [APPLICATION 0] PrintableString OPTIONAL,

name [APPLICATION 1] UTF8String OPTIONAL,

name lang [APPLICATION 2] UTF8String OPTIONAL,

description [APPLICATION 3] UTF8String OPTIONAL,

boundary SEQUENCE OF ASNPoint OPTIONAL,

name division [APPLICATION 4] UTF8String OPTIONAL,

names subdivisions [APPLICATION 6] SEQUENCE OF UTF8String OPTIONAL,

parent global ID [APPLICATION 7] PrintableString OPTIONAL,

parent [APPLICATION 8] D Neighborhood OPTIONAL,

submitter global ID [APPLICATION 9] PrintableString OPTIONAL,

submitter [APPLICATION 10] D Constituent OPTIONAL,

69

creation date [APPLICATION 11] GeneralizedDate OPTIONAL,

picture [APPLICATION 12] OCTET STRING OPTIONAL,

signature [APPLICATION 13] OCTET STRING OPTIONAL

}

D Witness ::= IMPLICIT SEQUENCE {

hash alg PrintableString,

global witness ID PrintableString,

witness category UTF8String,

witnessed global neighborhoodID PrintableString,

witnessed global constituentID PrintableString,

witnessing global constituentID PrintableString,

global organization ID PrintableString,

creation date GeneralizedDate,

signature OCTET STRING,

witnessing [APPLICATION 0] D Constituent OPTIONAL,

witnessed [APPLICATION 1] D Constituent OPTIONAL

}

D Vote ::= IMPLICIT SEQUENCE {

hash alg [APPLICATION 0] PrintableString OPTIONAL,

global vote ID [APPLICATION 1] PrintableString OPTIONAL,

global constituent ID [APPLICATION 2] PrintableString OPTIONAL,

global motion ID [APPLICATION 3] PrintableString OPTIONAL,

global justification ID [APPLICATION 4] PrintableString OPTIONAL,

choice [APPLICATION 5] UTF8String OPTIONAL,

format [APPLICATION 6] UTF8String OPTIONAL,

creation date [APPLICATION 7] GeneralizedDate OPTIONAL,

signature [APPLICATION 8] OCTET STRING OPTIONAL,

constituent [APPLICATION 9] D Constituent OPTIONAL,

motion [APPLICATION 10] D Motion OPTIONAL,

justification [APPLICATION 11] D Justification OPTIONAL,

global organization ID [APPLICATION 12] PrintableString OPTIONAL

70

}

D Motion ::= IMPLICIT SEQUENCE {

hash alg [APPLICATION 0] PrintableString OPTIONAL,

global motionID [APPLICATION 1] PrintableString OPTIONAL,

motion title [APPLICATION 2] D Document Title OPTIONAL,

motion text [APPLICATION 3] D Document OPTIONAL,

global constituent ID [APPLICATION 4] PrintableString OPTIONAL,

global enhanced motionID [APPLICATION 5] PrintableString OPTIONAL,

global organization ID [APPLICATION 6] PrintableString OPTIONAL,

creation date [APPLICATION 7] GeneralizedDate OPTIONAL,

signature [APPLICATION 8] OCTET STRING OPTIONAL,

choices [APPLICATION 9] SEQUENCE OF D MotionChoice OPTIONAL,

constituent [APPLICATION 10] D Constituent OPTIONAL,

enhanced [APPLICATION 11] D Motion OPTIONAL,

organization [APPLICATION 12] D Organization OPTIONAL,

category [APPLICATION 13] UTF8String OPTIONAL

}

D Justification ::= IMPLICIT SEQUENCE {

hash alg [APPLICATION 0] PrintableString OPTIONAL,

global justificationID [APPLICATION 1] PrintableString OPTIONAL,

global motionID [APPLICATION 2] PrintableString OPTIONAL,

global answerTo ID [APPLICATION 3] PrintableString OPTIONAL,

global constituent ID [APPLICATION 4] PrintableString OPTIONAL,

justification title [APPLICATION 5] D Document Title OPTIONAL,

justification text [APPLICATION 6] D Document OPTIONAL,

creation date [APPLICATION 9] GeneralizedDate OPTIONAL,

signature [APPLICATION 10] OCTET STRING OPTIONAL,

motion [APPLICATION 11] D Motion OPTIONAL,

constituent [APPLICATION 12] D Constituent OPTIONAL,

answerTo [APPLICATION 13] D Justification OPTIONAL,

global organization ID [APPLICATION 14] PrintableString OPTIONAL

71

}

WB ASN Interest ::=IMPLICIT SEQUENCE {

organizations [APPLICATION 0] SEQUENCE OF PrintableString OPTIONAL,

motions [APPLICATION 1] SEQUENCE OF PrintableString OPTIONAL,

constituents [APPLICATION 2] SEQUENCE OF PrintableString OPTIONAL,

justifications [APPLICATION 3] SEQUENCE OF PrintableString OPTIONAL

}

D Document Title ::=IMPLICIT SEQUENCE {

title document [APPLICATION 0] D Document OPTIONAL

}

D Document ::= IMPLICIT SEQUENCE {

format [APPLICATION 0] PrintableString OPTIONAL,

document [APPLICATION 1] OCTET STRING OPTIONAL

}

D News ::= IMPLICIT SEQUENCE {

hash alg [APPLICATION 0] PrintableString OPTIONAL,

global news ID [APPLICATION 1] PrintableString OPTIONAL,

title [APPLICATION 2] D Document Title OPTIONAL,

news [APPLICATION 3] D Document OPTIONAL,

global constituent ID [APPLICATION 4] PrintableString OPTIONAL,

global organization ID [APPLICATION 6] PrintableString OPTIONAL,

creation date [APPLICATION 7] GeneralizedDate OPTIONAL,

signature [APPLICATION 8] OCTET STRING OPTIONAL,

constituent [APPLICATION 10] D Constituent OPTIONAL,

organization [APPLICATION 12] D Organization OPTIONAL,

global motion ID [APPLICATION 14] PrintableString OPTIONAL,

motion [APPLICATION 13] D Motion OPTIONAL

}

D Translations ::= IMPLICIT SEQUENCE {

72

hash alg PrintableString,

global translation ID PrintableString,

value PrintableString,

value lang PrintableString,

value ctx PrintableString,

translation PrintableString,

translation lang PrintableString,

translation charset PrintableString,

translation flavor PrintableString,

global constituent ID PrintableString,

global organization ID PrintableString,

creation date GeneralizedDate,

signature OCTET STRING

}

D OrgConcepts ::= IMPLICIT SEQUENCE {

name forum [APPLICATION 0] SEQUENCE OF UTF8String OPTIONAL,

name justification [APPLICATION 1] SEQUENCE OF UTF8String OPTIONAL,

name motion [APPLICATION 2] SEQUENCE OF UTF8String OPTIONAL,

name organization [APPLICATION 3] SEQUENCE OF UTF8String OPTIONAL

}

D PeerOrgs ::= SEQUENCE {

org name [APPLICATION 0] UTF8String OPTIONAL,

global organization IDhash [APPLICATION 1] PrintableString OPTIONAL,

global organization ID [APPLICATION 2] PrintableString OPTIONAL

}

D FieldValue ::= IMPLICIT SEQUENCE {

field extra GID PrintableString,

value OCTET STRING,

field GID above PrintableString,

field GID default next PrintableString,

73

value lang PrintableString,

neighborhood D Neighborhood OPTIONAL

}

D OrgParams ::= IMPLICIT SEQUENCE {

certifMethods ENUMERATED,

hash org alg [APPLICATION 0] PrintableString OPTIONAL,

creation time [APPLICATION 1] GeneralizedDate OPTIONAL,

creator global ID [APPLICATION 2] PrintableString OPTIONAL,

category [APPLICATION 3] UTF8String OPTIONAL,

certificate [APPLICATION 4] OCTET STRING OPTIONAL,

default scoring options [APPLICATION 5] SEQUENCE OF UTF8String OPTIONAL,

instructions new motions [APPLICATION 6] UTF8String OPTIONAL,

instructions registration [APPLICATION 7] UTF8String OPTIONAL,

description [APPLICATION 10] UTF8String OPTIONAL,

languages [APPLICATION 8] SEQUENCE OF PrintableString OPTIONAL,

orgParam [APPLICATION 9] SEQUENCE OF D OrgParam OPTIONAL

}

orgParam::= IMPLICIT SEQUENCE {

global field extra ID PrintableString,

can be provided later BOOLEAN,

certificated BOOLEAN,

entry size INTEGER,

partNeigh INTEGER,

required BOOLEAN,

label [APPLICATION 0] UTF8String OPTIONAL,

label lang [APPLICATION 1] PrintableString OPTIONAL,

default value [APPLICATION 2] UTF8String OPTIONAL,

default value lang [APPLICATION 3] PrintableString OPTIONAL,

list of values [APPLICATION 4] UTF8String OPTIONAL,

list of values lang [APPLICATION 5] PrintableString OPTIONAL,

tip [APPLICATION 6] UTF8String OPTIONAL,

74

tip lang [APPLICATION 7] PrintableString OPTIONAL

}

ASNNeighborhoodOP ::= IMPLICIT SEQUENCE {

neighborhood D Neighborhood,

op INTEGER

}

ASNConstituentOP ::= IMPLICIT SEQUENCE {

constituent D Constituent,

op INTEGER

}

TypedAddress ::= SEQUENCE {

address UTF8String,

type PrintableString

}

ASNPoint::= SEQUENCE {

latitude REAL,

longtitude REAL

}

D MotionChoice ::= IMPLICIT SEQUENCE {

name [APPLICATION 0] UTF8String,

short name [APPLICATION 1] UTF8String

}

75

