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Abstract

This article identifies and corrects a commonly held miscon-
ception about the scalability evaluation of distributed con-
straint reasoning algorithms. We show how to ensure a con-
stant cost for thecomputation-unitin graphs depicting the
number of (sequential) computation-units at different prob-
lem sizes. This is needed for a meaningful evaluation of scal-
ability and efficiency, specially for distributed computations
where it is an assumption of the measurement. We report em-
pirical evaluation with ADOPT revealing that the computa-
tion cost associated with a constraint check (commonly used
– and assumed constant – in ENCCCs evaluations) actually
varies with the problem size, by orders of magnitude. This
flaw makes it difficult to interpret such skewed graphs. We
searched for methods to fix this problem and report a solu-
tion. We started from the hypothesis that the variation of the
cost associated with a constraint-check is due to the fact that
the most inner cycles of some common constraint solvers like
ADOPT do not consist of constraint checks, but of process-
ing search contexts (i.e., other data structures). We there-
fore proposecomputation-unitsbased on a basket of weighted
constraint-checks and context processing operations. Experi-
mental evaluation shows that we obtain a constant cost of the
computation-unit, proving the correctness of our hypothesis
and offering a better methodology for efficiency and scalabil-
ity evaluation.

Introduction
This article identifies and solves a wrong assumption with

the scalability evaluation of distributed constraint reasoning
algorithms. One of the major achievements of computer sci-
ence consists of the development of the complexity theory
for evaluating and comparing the efficiency of algorithms in
a scalable way (Garey & Johnson 1979). Complexity theory
proposes to evaluate an algorithm in terms of the number
of times it performsthe operation in the most inner loopor
the most expensive operation. This number is analyzed as
a function of the size of the problem. While such metrics
do not reveal how much actual time is required for a cer-
tain instance, they allow for interpolating how the technique
scales with larger problems. The assumption that computa-
tion speed doubles each few years makes a constant factor
irrelevant from a long perspective.
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For simple algorithms such as centralized sorting and
graph traversal,the most inner loopis easily detected, and
its operation is typically identified as the most expensive
one. Identifying the most expensive operation and the
most inner loop is not always trivial in distributed algo-
rithms. Constraint reasoning researchers have long used ei-
ther theconstraint check, thevisited search-tree node, or the
semijoin operationas thebasic operationin classical algo-
rithms (Zhang & Mackworth 1991; Kondrak 1994). An ad-
vantage of theconstraint checkandsemijoin operationfor
centralized problem solving is that cost associated with them
is typically independent of the problem size, and that they
often are really part of the most inner loop operations.
Evaluating distributed computing With distributed com-
puting, the evaluation is particularly sensitive to the poor
choice of the computation-unit. Main reasons are:

• the most inner loop is not easily revealed by the event-
driven program structure, and it may consist of validat-
ing incoming data or local data, rather than of constraint
checks or semijoin operations,

• the relative ratio between cost (latency) of messages
varies by 4-6 orders of magnitude between multi-
processors and remote Internet connections, and

• while the cost of a centralized computation can be ex-
pected to reduce over years, the cost (latency) of a mes-
sage between two points is not expected to decrease sig-
nificantly (in contrast with the other computation costs),
since the limits of the current technology are already dic-
tated by the time it takes light to traverse that distance over
optical cable. Future increase in bandwidth can eventually
remove only the congestion, leading to constant latency.

Indeed, the minimal time it can theoretically take a mes-
sage to travel between two diametrically opposed points on
the Earth is:

π ∗ REarth

speedlight

=
3.14 ∗ 6.378 ∗ 106m

3 ∗ 108m/s
≈ 67ms.

Since the optical cables do not travel on a perfect circle
around the Earth, it is reasonable to not expect significant
improvements beyond the current some 150ms latency for
such distances (other than possible elimination of conges-
tion events due to increased bandwidth).



We start introducing a simple framework for unifying var-
ious versions oflogic timesystems. These previous method-
ologies are presented in the unifying framework. In particu-
lar, we show how to verify that a metric respects the assump-
tion that itsunit (ordinate)has the same meaning at different
evaluation points (abscissae), condition which with ADOPT
we found not to be respected by the state of the art, but is re-
spected by our proposal.

Previous research saying that problems of certain
types/sizes are harder than problems of other types, based
on counting common computational units, might have com-
pared apples with oranges. The way in which algorithms
scale with problem size might have also been significantly
skewed, by orders of magnitude. We show how to verify if
this happened, and how to avoid it.

Framework
Distributed Constraint Optimization (DCOP) is a formal-

ism shown to model multi-agent scheduling problems, oil
distribution problems, auctions, or distributed control of
red lights in a city (Modi & Veloso 2005; Walsh 2007;
Petcu, Faltings, & Parkes 2007).

DEFINITION 1 (DCOP). A distributed constraint opti-
mization problem (DCOP), is defined by a setA of agents
{A1, ..., An}, a setX of variables,{x1, ..., xn}, and a set
of functions (aka constraints){f1, ...fi, ..., fm}, fi : Xi →
IR+, Xi ⊆ X , where only some agentAj knowsfi.

The problem is to findargminx

∑m

i=1 fi(x|Xi
).

DCOPs restricting the output of the functionsfi by defin-
ing them asfi : Xi → {0,∞}, are called Distributed Con-
straint Satisfaction Problems (DisCSPs).

Evaluation for MIMD.
Some of the early works on distributed constraint rea-

soning were driven by the need to speed up computations
on multiprocessors, in particular (multiple instruction mul-
tiple data) MIMD architectures (Zhang & Mackworth 1991;
Collin, Dechter, & Katz 2000; Kasif 1990), sometimes even
with a centralized command (Collin, Dechter, & Katz 2000).
However, their authors pointed out that those techniques can
be applied straightforwardly for applications where agents
are distributed on Internet.

The metric proposed by Zhang and Mackworth is based
on Lamport’s logic clocks described in the Definition 6.1
and in the Algorithm 18 in (Zhang & Mackworth 1991).

Certain authors use random values for the logic latency
of a message (Fernàndezet al. 2002) and therefore we al-
low this in our unifying framework by specifying a number
series generator (NSG)RL from which each message logic
time (logic latency) is extracted with a functionnext(). A
logic time systemwe will use here is therefore parametrized
as LT 〈RL, E, T 〉 where E is a vector of types of local
events andT a vector of logic costs, one for each type of
event. For measurements assuming a constant latency of
messages set to a valueL, theRL parameter used consists
of that particular number,L , (written in bold face).

Some reported experiments (Yokooet al. 1992)
use simultaneously several logic time systems,

% RL is the number series generator from which message
latencies are extracted using functionnext()
% E = {e1, ..., ek} is a vector ofk local events
% T = {t1, ..., tk} is a vector of (logic) costs for eventsE
wheneventej happensdo

LTi = LTi + tj ;

whenmessagem is sentdo
LT (m) = LTi + next(RL));

whenmessagem is receiveddo
LTi = max(LTi, LT (m));

Algorithm 1: Lamport’s logic time (LT ) maintenance for
Ai. Parameters〈RL, E, T 〉 unify previous versions.

LT 1〈R1
L, E1, T 1〉, ..., LT N〈RK

L , EK , T K〉 (see Algo-
rithm 1). Each agentAi maintains a separate logic clock,
with times LT u

i , for eachLT u〈Ru
L, Eu, T u〉. Also, to

each messagem one will attach a separate tagLT u(m)
for each maintained logic time systemLT u〈Ru

L, Eu, T u〉.
This is typically done in order to simultaneously evaluate a
given algorithm, and set of problems, for several different
scenarios (MIMD, LAN, remote Internet).

A common metric used to evaluate simulations of DCR
algorithms is given by thelogic time to stabilityof a com-
putation. The logic time to stability is given by the high-
est logic time of an event occurring beforequiescenceis
reached (Zhang & Mackworth 1991);Quiescenceof an al-
gorithm execution is the state where no agent performs any
computation related to that algorithm and no message gen-
erated by the algorithm is traveling between agents.

Uses of logic time for multiprocessors.
The operation environment targeted by (Zhang & Mack-

worth 1991) consists of a network of transputers. The met-
ric employed there with simulations for a constraint net-
work with ring topology is based on the logic time system
LT 〈1, {semijoin}, {1}〉, where the number series genera-
tor 1 outputs the value 1 at each call tonext(). Note that
the single local event associated there with a cost is the
semijoin. Their results depictlogic time to stabilityvs
problem size as (log scale) number of variables, and logic
time vs. number of processors (aka agents) at a given size
of the DisCSPdistributed to those agents (see Entries LTS1
and LTS2 in Table 1).

A theoretical analysis of the time complexity of a
DisCSP solver is presented in (Collin, Dechter, & Katz
2000). Logic time analysis is presented there under
the nameparallel time, targeting MIMD multiproces-
sors, where each value change (akavisited search-tree
node in regular CSP solvers) has cost 1. Note that the
obtained metric isLT 〈0, {value-change}, {1}〉, where
message passing is considered instantaneous. A se-
quential version of the same algorithm is also evaluated
in (Collin, Dechter, & Katz 2000) using the logic time
LT 〈0, {value-change, privilege-passing}, {1, 1}〉. The
term coined in (Kasif 1990) for a similar theoretical anal-
ysis issequential time.



NB coordinate axis (Oy) ordinates axis (Ox) example usage
LTS1 (logic) time to stability (latency=0) log – ring size – (Zhang & Mackworth 1991)
LTS2 speedup – size 800 – number of processors (Zhang & Mackworth 1991)
TSL number of time steps (aka ENCCCs)message delay (time steps) (Yokooet al. 1992)
ECL (equivalent) checks (aka ENCCCs) checks/message (w. lat. 0)(Silaghi, Sam-Haroud, & Faltings 2000a)
NCT NCCCs (ENCCCs latency=0) (constraint) tightness (Meiselset al. 2002)
ECT ENCCCs (at fix checks/message) (constraint) tightness (Chechetka & Sycara 2006)
ST seconds constraint tightness (Hamadi & Bessière 1998)
CT #checks constraint tightness (Hamadi & Bessière 1998)
MT #messages constraint tightness (Hamadi & Bessière 1998)
CBR checks constraint tightness (Davin & Modi 2005)

Table 1: Summary of the systems of coordinates used for comparing efficiency of distributed constraint reasoning.

Evaluation for applications targeting the Internet.
Distributed constraint reasoning algorithms targeting the

Internet had to account for the possibly high cost of message
passing between agents on remote computers. As mentioned
earlier, the theoretical lower bound on latency between dia-
metrically opposed point on the Earth is 67ms, eight orders
of magnitude larger than a basic operation on a computer (of
the order of 1ns).

One of the first algorithms specifically targeting Internet
is the Asynchronous Backtracking in (Yokooet al. 1992).
That work used simultaneously a set of different logic times,
LT 1, ..., LT 25, whereLT i is defined by parameters

LT i〈i, {constraint-check}, {1}〉 (1)

(Yokoo et al. 1992) reports the importance of the message
latency in deciding which algorithm is good for which task.
A curve in their type of graph (see Entry TSL in Table 1) re-
ports several metrics, but for a single problem size/type. The
time stepsintroduced in (Yokooet al. 1992) correspond to
the cost associated with a constraint check. A similar results
graph is used in (Silaghi, Sam-Haroud, & Faltings 2000b)
having as axes checks vs checks/message, i.e., the logic time
cost for one message latency when the unit is the duration as-
sociated with a constraint check (see Entry ECL in Table 1).
This last graph also reports logic time for the latencyL = 0

LT 0〈0, {constraint-check}, {1}〉, (2)

which corresponds to simulation of execution with agents
placed on the processors of a MIMD with very efficient (in-
stantaneous) message passing (similar to (Collin, Dechter,
& Katz 2000), but using the constraint check as the logic
unit). This particular metric is sometimes referred to asthe
number of non-concurrent constraint checks.

Cycles.
After the work in (Yokooet al. 1992), most DCOP re-

search focused on agents placed on remote computers with
problem distribution motivated by privacy (Yokooet al.
1998). Due to the small ratio between the cost of a con-
straint check and the cost of one message latency in Inter-
net, the standard evaluation model selected in many sub-
sequent publications completely dropped the accounting of
constraint checks. A common assumption adopted for eval-
uation is that local computations can be made arbitrarily fast

(local problems are assumed small and an agent can make
his local computation on arbitrarily fast supercomputers).
Instead, message latency between agents is a cost that cannot
be circumvented in environments distributed due to privacy
constraints. Such a metric used in (Yokooet al. 1998) is:

cycles = LT 〈1, ∅, ∅〉

This metric is sometimes referred to asnumber of sequential
messages (SMs)or longest causal chain of messages. The
original name for this metric iscycles, based on the next the-
orem (known among some researchers but not written down
in this context).

THEOREM 1. In a network system where all messages
have the same constant latencyL and local computa-
tions are instantaneous, all local processing is done syn-
chronously, only at time pointskL (in all agents).

PROOF. One assumes that all agents start the algorithm
simultaneously at timeL, being announced by a broadcast
message, which reaches all agents at exactly timeL (due to
the constant time latency). Each agent performs computa-
tions only either at the beginning, or as a result of receiving
a message.

Since each computation is instantaneous, any message
generated by that computation is sent only at the exact time
when the message triggering that computation was received.
It can be noted that (induction base) any message sent as a
result of the computation at the start will be received at time
L, since it takes messagesL logic time units after the start
to reach the target.

Induction step: All the messages that leave agents at time
kL, will reach their destination at exactly time(k + 1)L
(due to the constant latencyL). Therefore the observation is
proven by induction.

As a consequence of this observation, any network simu-
lation respecting these assumptions (that local computations
are instantaneous and that message latencies are constant)
can be performed employing a loop, where at each cycle
each agent handles all the messages sent to it at the previous
cycle. LT 〈1, ∅, ∅〉 is given by the total number of cycles of
this simulator. However, the assumption that local computa-
tions can be considered instantaneous with respect to latency
does not apply to some algorithms performing significant lo-
cal processing (Petcu & Faltings 2005).



NCCCs and ENCCCs.
Researchers voiced concerns1 about the lack of account-

ing for local computation in SMs. A subsequent re-
introduction of logic time in the form of the metric in Equa-
tion 2 is made in (Meiselset al. 2002), proposing to build
graphs with axes labeledNCCCs (non-concurrent constraint
checks)versus problem type (Entry NCT in Table 1).

REMARK 1. One infers the assumption that the cost as-
sociated with a constraint check (NCCC) is the same at dif-
ferent problem sizes!

In this approach the cost of a message is typically re-
stricted to only 0, reporting solely constraint checks, as
in (Collin, Dechter, & Katz 2000).

However, the importance of the latency of messages has
also been rediscovered recently and logic time cost for
message latency is reintroduced in (Chechetka & Sycara
2006) under the name EquivalentNon-Concurrent Con-
straint Checks (ENCCCs). ENCCCs are computed using
the Equation 1. Current ENCCCs usage in graphs typically
differs from earlier usage of the metric by being depicted
versusconstraint tightnessor versusdensity of constraint-
graph(with a label specifying the value of the logic latency
L, i.e. the number of checks/message-latency). Each graph
depicts the behavior of several problem types for one mes-
sage latency, rather than the behavior of one problem type
for several message latencies (Entry ECT in Table 1).

REMARK 2. One infers the assumption that the cost as-
sociated with a constraint check (ENCCC) is the same at dif-
ferent problem sizes! More exactly, it assumes that the ratio
between message latency and the time taken for a constraint
check is constant.

Evaluations not related with the logic time.
Three other important metrics (not based on logic

time) for evaluating DCOPs algorithm were introduced
in (Hamadi & Bessière 1998) in conjunction with a DisCSP
solver.

• the total running time in seconds (Entry ST of Table 1);

• the total number of constraint checks for solving a
DisCSP (or DCOP) with a simulator (see Entry CT of Ta-
ble 1), and

• the total number of exchanged messages (Entry MT of
Table 1).

Cycle-based runtime(CBR) gives the ENCCCs on a mod-
ified version of the algorithm, which adds synchronizations
before sending each message (Davin & Modi 2005).

Reporting the experimental setting for reproduction by
peer researchers is done by giving the specification of the
used computers, the distribution of agents to computers and
the type of the network. The time used per constraint check
(averaged over all problems) can also be reported (Silaghi
& Yokoo 2007b; Lasset al. 2007), to help determining
the ENCCCs’ constraint-check to latency ratio relevant to
a given application scenario. Congestion can lead to a large

1Debate at the CP 2001 conference.
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Figure 1: ADOPT performance: operating point ENC-
CUs.

variance in the value of latency, but one can provide an anal-
ysis for a future where increase in bandwidth would remove
congestion. The ENCCCs at such a latency/checks ratio
are calledoperation pointENCCCs (ENCCC-OPs), shown
in Figure 1. Equivalent message latencies in the operating
point (EML-OP) show the number of (equivalent) message
delays and are also proportional with thelogic simulated
seconds.

Constant Computational Unit
We studied the common DCOP solver ADOPT (Modiet

al. 2005) in more detail and we observed that the cost asso-
ciated with a constraint check is not constant over different
problem sizes, as assumed (see earlier Remarks). This can
be seen following the ms/check curve in the graph in Fig-
ure 2. In order to verify whether a chosen computation-unit
(e.g. the constraint check) has a constant cost/meaning at
different problem sizes in DCOPs, we follow the following
methodology.

Assumption Verification.

1. Compute the total execution time in seconds,tp, for solv-
ing each complete test set of problems at sizep using a
simulator (or a real execution where message latencies
are factored out, and where local computation times are
summed up).

2. Compute the total number of basic computation-units
#CUp (e.g. constraint checks,#CCp), at each problem
sizep (Hamadi & Bessière 1998).

3. Compute the cost in seconds that should be associ-
ated with a computation-unit by computing the ratio
tp/#CUp. Verify that the computation unit was correctly
selected by checking that this ratio is constant with the
problem size.

We note that for the previous ways of evaluating DCOP
solvers on a given machine and programming language, this
cost depends on the problem sizep, varying as much as
an order of magnitude. For example, our C simulator for
ADOPT on the problems in the Teamcore data-set uses be-
tween 3 to 28 microseconds associated with each constraint
check on a Linux PC at 700MHz. The smaller value was
found at problems with 8 agents and 8 variables and the
larger one at problems with 40 agents and variables.



LT i〈i, {constraint-check, nogood-inference, nogood-validity, nogood-applicability}, {1, 3, 2, 2}〉, ∀i > 0 (3)
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Figure 2: The running time associated with a
computation-unit for two metrics: checks and CUs.

Our hypothesis is that the failure of the assumption of con-
stant time constraint checks is due to the fact that checks are
not representative for the most inner loop(s) operations in
ADOPT. We try to identify other operations that weighted
will lead to a computation unit (CU) which is closer to con-
stant across problem sizes. Having constant cost across
problem sizes is a good indication of the fact that a logic
metric represents the most inner loop(s) of an algorithm.

Accounting for context, auxiliary data, and nogood
processing.

Certain DCOP algorithms are not based on checking
constraints repeatedly, but rather they compile information
about constraints into contexts and new entities, such as
nogoods. Afterward, these techniques work by perform-
ing inferences on such entities. Contexts, agent views, and
nogoods are a kind of constraints themselves. In such al-
gorithms it makes sense to attribute costs to the different
important operations on these entities such asnogood in-
ference, nogood validity check, and nogood applicability
check. A new method for computing logic times at various
message latencies in nogood-based techniques is the Equa-
tion 3, where the coefficients of different nogood handling
operations are selected based on a perceived complexity for
those operations. The nogood inference operation is typ-
ically the most complex of these operations as it accesses
two nogoods to create a third one (suggesting a logical cost
of 3). Nogood-validity and nogood-applicability both typi-
cally involve the analysis of a nogood and of other data, local
assignments and remote assignments, to be compared with
the nogood (hence a logical cost of 2). In some implemen-
tations these costs do not have an exact value if the sizes
of nogoods vary within the same problem. In our experi-
ments with ADOPT, all the messages and context (nogood)
have the same size. A constraint check for binary constraints
is cheaper than the verification of an average-sized nogood,
and is given the logical cost of 1. Experimentation reported
here shows that the CU obtained this way is practically con-
stant across problem sizes.

Why cost associated with checks varies with the prob-
lem size.

The cost associated with a constraint check (as measured
above) consist of an aggregation of the costs of all other op-
erations executed by DCOP algorithm in preparation of the
constraint check and in processing the results of the con-
straint check. Typically there are several data structuresto
maintain and certain information to validate, and these data
structures may be larger with large problem sizes than with
small problem sizes.

In certain situations, algorithms change their relative be-
havior in situations that are close to the operating point.
Then precise measurements are important, and it makes
sense to try to tune the logic time associated with each op-
eration, in order to reduce the variation of the meaning of a
unit of logic time with the problem size. One can approach
this problem by trying many different combinations, or try-
ing a hill climbing approach that tunes successively each of
the parameters. One has to run complete sets of experiments
for each of these possible costs (which is computationally
expensive). A valuable future research direction consistsin
finding an efficient way of tuning these parameters.

We selected weights as described earlier for operations
related nogood processing of a valued nogood-based imple-
mentation of ADOPT (Silaghi & Yokoo 2006), and were
able to obtain such a constant cost for the obtained com-
putational unit as reported in the Experiments section.

Generality of our conclusions.
Note that we do not claim (and do not think) that the com-

putation unit proposed in Equation 3 would necessarily fit
any algorithm, other than ADOPT. Our contribution is to de-
tect the problem with current practice, and to examplify how
to find computation units which render experimental results
both verifiable by peers and meaningful from the scalability
perspective.

When two different algorithms are compared, this may be
done for one of the following two goals:
• To find which technique scales better with the problem

size.
For this goal, each algorithm should be analyzed (and de-
picted) as a function of a computation unit that is appro-
priate for it (Figure 1), where onlythe order of growthof
the curves is relevant, not the relative position.

• To find which algorithm is better on a given set of
problems.
For this goal, the efficiency of each algorithm should be
analyzed in terms of a general metric, such as the EML-
OP orlogic simulated secondsdescribed above (see Fig-
ure 3). Those two metrics allow to comparable different
algorithms in a way that is verifiable by peers.

Experiments
The experiments are based on a sample of Teamcore

random graph coloring problems with 10 different sizes,
ranging between 8 agents and 40 agents, with graph den-
sity 30%. The results are averaged over 25 problems of
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Figure 3: Example of graph showing a) EML-OPs; b) logic simulated times; for the versions of ADOPT in (Silaghi &
Yokoo 2007a). The vertical bars in the EMLgraph show the range of the operating point.

p (agents) 8 10 12 14 16 18 20 25 30 40
tp (total seconds) 0.1404 0.1528 0.3012 0.5516 1.0068 2.5708 4.1176 47.7112 174.06 3767.38
#CCp total checks 43887 38279 70279 116080 191501 381415 516835 4.1*106 10.9*106 132*106

microseconds(tp)
check(#CCp) 3.199 3.992 4.286 4.752 5.257 6.74 7.967 11.47 15.98 28.4

Lp= checks
latency(200ms) 62518 50103 46666 42088 38041 29672 25103 17437 12519 7041.1

(106) ENCCC L=104 7,94 6,32 10,5 14,8 21,6 41,8 54,1 343 694 6594
(106) ENCCC L=105 79 63 105 148 216 417 541 3429 6939 65880
#CUp (106) 0.173 0.205 0.473 1.02 2.067 5.210 8.673 100 396 8521
microseconds(tp)

comp−unit(#CUp) 0.81 0.743 0.636 0.54 0.487 0.493 0.475 0.476 0.439 0.442
ENCCUL=105 (106) 79 63 105 148 216 418 542 3434 6953 66096

Table 2: Sample re-evaluation of ADOPT with our method. Columns represent problem size.

each size (Modiet al. 2003). The targeted application
scenario consists of remote computers on Internet. The
catalog message latency for our scenario is 200ms, vary-
ing between 150ms and 250ms (Neystadt & Har’El 1997;
Kopenaet al. 2004).

Following the steps of the discussed method we report the
following results using ENCCCs evaluation:

1. Simulated ADOPT with randomized latencies is imple-
mented in C++ and runs on a the 700MHz node of a Be-
owulf (Linux Red Hat). The total time in seconds is given
in the second row of Table 2.

2. The total number of constraint checks#CCp for each
problem size is given in the third row of Table 2.

3. The cost in (micro)seconds associated with each con-
straint check is computed astp/#CCp. It is given in the
fourth row of Table 2.

The message-latency/constraint-check ratio (Lp) is com-
puted by dividing the average latency found at Step 1
(200ms) by the items in the4th row. The results are given in
the5th row of Table 2.

We report results with logic time systems where the
checks/latency ratio areL = 100, 000 and where it is
L = 10, 000. In is now possible to re-run the experiments
with all the Lp values found in our table. Here we report
the results of the closestL, which is 10,000 for most prob-
lem sizes (one also can useL = 100, 000 for problems with

8 and 10 agents), see the6th and7th rows of Table 2. We
also interpolate the time between the predictions based on
L = 10, 000 andL = 100, 000, function of the predictedLp

at each problem size (obtaining the graph in Figure 1).
It is remarkable that the cost associated with constraint

checks varies so strongly with the problem size even for the
same implementation of the same algorithm. We felt that it
is good to verify this observation on a different implementa-
tion, and in particular on a LAN solver. We ran a set of ex-
periments using the JAVA based DCOPolis platform (Lass
et al. 2007). Here the agents are distributed on five HP-
TC4200 tablet PCs with 1.73Ghz Intel Pentium M proces-
sors and 512M of RAM connected via Ethernet to a Netgear
FS108 switch, isolated from the Internet and running Ubuntu
Linux (see Figure 4), and reveal similarly large variance.

The next part in Table 2 gives the ENCCU, i.e. ENC-
CCs with the computational unit based on counting context
processing as described in Equation 3. The cost of a CU is
given in the last but one row. The CUs/latency ratio at la-
tency 200ms ratio is5 ∗ 105. Note that the cost of CUs is
practically constant across problem sizes, with an increase
at very small problems (reflecting the predictable impact of
the overhead due to initializing data structures at the begin-
ning of the computation). The overhead producing variabil-
ity at low problem sizes may be taken into account adding
additional costs for initializations of data structures. This
shows that with ADOPT, the selected computation-unit sat-
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Figure 4: Results with DCOPolis on a LAN

isfies the assumption of constant time better than the con-
straint checks. The impact of the CU choice on ENCCUs
becomes stronger atL < 103.

Conclusion
We started introducing a framework for enabling an uni-

fied representation of different logic clocks-based metrics
used for efficiency evaluation of DCOPs. We show that all
major metrics used in the past for evaluating algorithms for
DCOPs fit into this framework. We identify a wrong as-
sumption with currently common metrics. Then we propose
a methodology to analyze whether the computational unit
was well selected to have a common cost for all problem
sizes.

We discuss remarkable experimental observations show-
ing that state of the art metrics for evaluating ADOPT fail to
satisfy an essential assumption, namely that the meaning of
the metric used for comparison is the same at different points
(problem sizes). We found that the cost associated with con-
straint checks can vary widely with the size of the problem
even for the same implementation of the same algorithm.
The conclusion is that some of the current DCOP research
on scalability of algorithms with the problem size maycom-
pare apples to oranges, and may be strongly skewed. We
discuss the possible explanations, their implications, and
how the issue can be fixed. A solution we propose is based
on selectingcomputational unitsthat account for a weighted
count of several common operations, such as context valida-
tion, and inferences. Experimentation shows that such a se-
lection leads to a closer to constant cost of the computational
unit across problem sizes, which is an important assumption
normally expected from common evaluation graphs.

Appendix

Random message latencies.
Some researchers report that the introduction of random

latencies has a strong impact on the efficiency for certain
DCOP algorithms (Fernàndezet al. 2002). We have ex-
tensively experimented and we have found random latencies

to have only around 5% impact (in both directions) on the
number of sequential messages for the ADOPT (Modiet
al. 2003) algorithm. In order to allow other researchers to
replicate such experiments we propose to publish the seed
with which we initialized the used random number genera-
tor (e.g., in our case the C library random number genera-
tor with seed 10000), as well as the equation used to dis-
tribute the latency uniformly in the range of expected la-
tencies for the targeted application (in our case uniformly
between 150ms and 250ms).

In Table 3 we show data for comparing between random-
ized versus constant latencies in simulation.

References
Chechetka, A., and Sycara, K. 2006. No-commitment
branch and bound search for distributed constraint opti-
mization. InAAMAS.

Collin, Z.; Dechter, R.; and Katz, S. 2000. Self-stabilizing
distributed constraint satisfaction.Chicago Journal of The-
oretical Computer Science.

Davin, J., and Modi, P. J. 2005. Impact of problem central-
ization in distributed COPs. InDCR.
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