
1

P2P Meta-Recommenders: Aggregated
Diversity Maximization as a Bulwark against
Attacks on Reviewers
Khalid Alhamed a,c, Markus Zanker b and Elmane Shakre and Marius C. Silaghi c
a Information Technology Department, Institute of Public Administration, Riyadh, Saudi Arabia
E-mail: hamedk@ipa.edu.sa
b Alpen-Adria-Universität Klagenfurt
E-mail: markus.zanker@aau.at
c Computer Sciences and Cybersecurity Department, Florida Institute of Technology, 150 W. University Blvd.
Melbourne, FL 32901
E-mail: msilaghi@fit.edu

Abstract. We focus on the problem of selecting reviewers (or raters) that are considered by a recommender system (or a user)
under the aspect of security. Malicious reviewers can exert unreasonable influence, and can bias online consumers unfairly against
an attacked item or competitor. This paper proposes an approach where a meta-recommender maximizes the aggregated diversity
of reviewers when deciding which reviews should be considered by a recommender system or an online consumer. This problem
can be of interest in many domains where producers or service providers may seek advantages by compromising competitors
with fake reviews or ratings such as tourism and hospitality industries or even free open-source software. A solution is proposed
for users linked in social networks, such as unstructured P2P societies. In order to evaluate the proposed solution, we describe
a mechanism of selecting reviewers of software updates such that not all end-users of a software are impacted by a potentially
malicious strict subset of all available reviewers, and we experimentally assess resistance to attacks.

Keywords: Recommender system, peer-to-peer, open-source, security, attack, software update

1. Introduction

Ratings and reviews play an important role in mo-
tivating users into selecting a specific item or do-
ing some action such as listening to a specific song
or downloading a specific software. In collaborative
recommender systems, these ratings and reviews are
driven or estimated based on the opinions of other
users, referred to as reviewers or raters [3]. Different
techniques have been used to associate/link review-
ers/raters to a user in order to provide personal rec-
ommendations and to increase the accuracy of the rec-
ommendations. In this paper, we focus on the prob-
lem of selecting reviewers (or raters) that are evaluated
by a recommender system (or a user) under the aspect
of security. Attackers can take over reviewers/raters of

products to influence their adoption. For example, re-
viewers of restaurants and hotels can bias customers
against competitors of the attacker. Maximizing the
diversity and thereby the independence of reviewers,
can help make such attacks more difficult. This prob-
lem can be of interest in many domains where produc-
ers or service providers may seek advantages by com-
promising competitors with fake reviews or ratings. In
this paper, we investigate this problem by providing
an example in the software updates domain. Reviewers
can play an essential role in the mechanism for auto-
updating agent software based on free open-source
software (FOSS). Software updates can drop essen-
tial features, can introduce attack vectors, and some-
times have led even to immediate system failure (e.g.,

2

Fig. 1. a) Meta-recommendation, b) Updates case

Apache takeover in 2001). For some sensitive FOSS
systems a review process can be put in place where ex-
perts act as reviewers/raters. Attackers can take over
a centralized recommendation system of software up-
dates, with the same ease with which they can take
over the development. The goal of this research is
therefore to provide a distributed meta-recommender
that addresses security concerns by a rating and ad-
vertising mechanism for reviewers. Reviewers are thus
treated as items (illustrated in Figure 1). The proposed
technique can be readily integrated with peer-to-peer
FOSS.

The rest of this paper is organized as follows. In
the next section, we survey related work. Next the
motivation for the aggregated diversity maximization
is explained and we describe its implementation in a
P2P meta-recommender. Finally, results from an ex-
perimental assessment on a synthetic dataset are re-
ported.

2. Related Work

Recommender systems are investigated in academia
and industry [2,15]. In this paper, we present a tech-
nique that can help to avoid attacks that can bias
the recommendations. The proposed solution encom-
passes four areas related to recommender systems: col-
laborative filtering, distributed recommendations, di-
versity of recommendations, and attacks on recom-
mender systems.

Collaborative filtering (CF): Collaborative recom-
mender systems estimate the utility of items for a par-
ticular user, based on the items previously rated by
other users who shared the same interests in these
items in the past (i.e., it is based on the opinions of
other users) [17,20]. In general, algorithms for col-
laborative recommendations can be classified into two
groups [3]: (1) Memory-based (or heuristic-based) [3,
20] and (2) Model-based [12,3,11,16]. The core dif-
ference between heuristic-based and model-based ap-

proaches in collaborative filtering systems is that the
heuristic-based techniques predict ratings based on
heuristic rules that use the entire collection of previ-
ously rated items by the users for estimating the rates
for unrated items, while, model-based techniques are
based on a model learned by using machine learning
and statistical techniques that analyze the underlying
data (e.g., users’ ratings, users’ preferences, or items’
features.). In the proposed solution, the suggestion of
reviewers (meta-recommendations) to a user is based
on other users (peers) opinions. It is a personalized rec-
ommendations in the sense that not all users (peers)
get the same recommendations. However, the proposed
technique of suggesting reviewers to users is differ-
ent than previous techniques in the literature of the
RS field. We emphasize more on increasing global sta-
bility and security rather than on increasing the ac-
curacy level of the recommendations. Global stability
and security are important qualities for some domains
i.e., recommending software updates for peer-to-peer
open-source projects (Section 5).

Distributed Recommendations: The distributed
recommendation appears in peer-to-peer based recom-
mender systems that distribute the recommendations
handling between peers in the network. Each peer is
equipped with a distributed recommender module that
receives the underlying data (e.g., user ratings, user
profiles, and item attributes.) supplied from the source
peers (neighbor peers), and delivers data to the desti-
nation peers (neighbor peers) after some certain pro-
cessing or decision making [23]. One example of such
systems is proposed in [6,22], using a distributed col-
laborative filtering algorithm (PipeCF) based on a dis-
tributed hash table to build a scalable distributed rec-
ommender system. Another example of a distributed
collaborative filtering algorithm is the one used by the
PocketLens system [13], which introduced five peer-
to-peer architectures to find neighbors. PEOR is a P2P
collaborative filtering-based recommendation system
for multimedia recommendations [9]. A distributed

3

recommender system (MUADDIB) based on commu-
nity partitions is introduced in [18]. A distributed rec-
ommender system has also beed used for P2P knowl-
edge sharing among collaborative team members [23].

In order to avoid that attackers take over a cen-
tralized recommendation system, we propose an ap-
proach of recommending reviewers to users based on
distributed heuristic-based recommendations in a P2P
environment.

Diversity of Recommendations: A way of evaluat-
ing the recommendation quality is based on the diver-
sity of recommendations. The idea here is to suggest
varied recommendations to users and to avoid restrict-
ing all users to the same sets of similar items [1]. This
is unlike most of the algorithms used by recommender
systems which aim to improving recommendation ac-
curacy quality only, i.e., the Netflix Prize competition
(Netflix.com). For example, in Social Network-Based
Recommender Systems (SNRS) [8], depending on ac-
curacy quality only can lead to a social filter bubble ef-
fect [14]. The term ”filter bubble” is used in social net-
work to refer to users being surrounded only by friends
who have similar interests, which leads them to adopt
a similar sets of items (in our case, similar sets of re-
viewers). This effectively isolates users from adopting
items out of their current social neighborhood. In or-
der to reduce this effect, we enhance our recommenda-
tion model to give priority to reviewers outside a user’s
current social neighborhood. Thus, we use a diversity
heuristic rule as a mechanism to improve recommen-
dation diversification.

Among many different aspects that cannot be mea-
sured by accuracy metrics alone, we focus on the di-
versity of recommendations. In general, there are two
ways to measure the diversity of recommendations: in-
dividual and aggregate [1]:

This paper proposes an approach where a meta-
recommender maximizes the aggregated diversity of
reviewers when deciding which reviews/ratings should
be considered by a recommender system or an online
consumer.

Attacks in recommender systems (RS): A survey
of research into making recommender systems (RS)
robust against attacks is described in [5]. Obviously
malicious reviewers of software projects could be seen
as a profile-injection attack in the sense of entering at-
tack profiles to the software ecosystem. The presented
work distinguishes itself from existing research on at-
tacks in RS by lifting the recommendation one level
higher and treating reviewers as items that can be rec-
ommended by a meta-recommender. We propose a di-

versity maximization strategy for meta-recommenders
to increase stability and emphasize security.

Fig. 2. Exchanging Reviewers Information in the Proposed Peer–
to-Peer Recommender System

3. Motivation: Properties

The independence of the reviewers is the main prin-
ciple that can help to maximize the security of the pro-
posed system. In this section, we introduce heuristic
rules that can enhance the independence of the review-
ers.

Principle [Decentralization] The recommendation
procedure should not be under the control of a strict
subset of users.

Without this principle, an attacker controlling the
recommender system can filter only reviewers that she
controls. Even with a decentralized recommender, the
recommendation criteria can be exploited to focus on a
few reviewers (since they are few, they are easier to at-
tack). A heuristic to help distribute the trust away from
a small kernel is to take into account proximity.

Heuristic [Proximity] Give priority to reviewers that
are close to the user, in terms of some social network.

Another heuristic gives priority to reviewers that are
used by fewer neighbors, as a mechanism to improve
diversification.

Heuristic [Diversity] Give priority to reviewers that
are used by fewer neighbors, in terms of some social
network.

4

4. Priority of Diversity for Security

The goal of the most widely used recommender sys-
tems is to automatically identify the items that best fit
users’ personal tastes [5]. Even when aggregated di-
versity is used as a target property, commonly it was
used in the context where its importance was not sig-
nificantly exceeding the accuracy [1,21].

Due to the security requirements for diversity in
the type of problems addressed by our research, the
aggregate diversity can have significantly more rele-
vance than the accuracy. Our goal is to recommend
items (reviewer_items) that increase diversity to in-
crease the degree of the decentralization of items (re-
viewer_items) in the whole system. In other words,
we focus here on the impacts of the recommendations
(distribution of items) on the society of users, not only
on individuals.

Next we investigate an example in the software up-
dates domain which shows how the proposed P2P
meta-recommendations diversifies reviewers/raters and
limits the impact of attacks. However, the proposed so-
lution is not limited to a single domain, it can be im-
plemented in different domains such as business rec-
ommendation domain.

5. Example in Software Updates Domain

When accepting automatic updates for sensitive
open source software, one can evaluate options based
on reviewers. The security concern we address is that
such reviewers can be biased by an attacker, and our
goal here is to maximize the aggregate diversity of
reviewer-items to increase the difficulty of such at-
tacks. Aggregate diversity here is a heuristic for maxi-
mizing the independence of reviewers.

There are various ways to build systems that rec-
ommend reviewers to end-users. We investigate a dis-
tributed collaborative recommender CF system de-
signed such that it favors the independence of the re-
viewers. As mentioned above, to address the single
point of failure presented by centralized systems to
attacks via corrupted reviewers, we propose a peer-
to-peer based recommender system. This system dis-
tributes recommendation management between expert
peers in the network and automatically assigns review-
ers to unsophisticated users. For sophisticated users,
the system simply recommends a set of reviewers but
lets users manually select the reviewers that they use.
Each peer is equipped with a recommender module

that receives ratings and information about reviewers,
supplied from the neighbor peers. It then delivers the
reviewer’s information along with ratings to the neigh-
bor peers after a local re-rating and decision making
(see Figure 2).

For peer-to-peer systems, such as PeerSoN [4], there
exists an intrinsic social network as defined by the con-
nections of each peer (e.g., peers and social-links in
PeerSoN). Such a social network is supposed to pro-
vide the base of the proposed recommender system,
which uses a heuristic neighborhood-based CF tech-
nique for rating prediction. In one such scheme, re-
viewers used by a peer are recommended to neighbor-
ing peers (directly linked peers) as shown in Figure 2.

The recommendation made to a peer for a reviewer
has a weight given as a function on the weights com-
ing on all its links (neighbors). Sophisticated users
are those that overwrite this default for themselves by
increasing or decreasing the weight manually (user-
assigned ratings). Their recommendation is forwarded
only if the user manually accepts using the recom-
mended reviewer.

6. P2P Meta-Recommender Specifications

Our approach of recommending reviewers to users
is based on distributed heuristic-based recommenda-
tions in a P2P environment. In this section, we for-
mally identify the exchanged messages between peers
and then describe the processing algorithms and deci-
sion making applied by each peer.

To exchange the information about reviewers be-
tween peers, we are now formalizing the concept of
the reviewer-item. We assume that global identifiers
(GIDs) are used to uniquely specify peers and review-
ers (as done by common peer platforms).

Definition 1 (Reviewer-Item) A reviewer-item is a tu-
ple 〈τ,A,W, d,P,S〉, where τ is the GID (public key)
of the reviewer, A is the address where the reviewer
can be contacted for retrieving her data,W is the rec-
ommendation weight (trust coefficient) associated with
τ and made by the sender P (this weight has been au-
tomatically calculated by the sender’s agent or manu-
ally assigned by the sender), d is the timestamp of the
given weight, P is the GID of the sending peer, and S
is the digital signature with which the sender authenti-
cates the provided weight:
S = SIGN(SK(P), 〈τ,A,W, d〉).

5

Fig. 3. Overall Architecture of the P2P Recommender System: Only applying the Proximity Heuristic

Here SK(P) denotes the secret key of P . Only the
newest reviewer-item is stored by a peer for a given
pair 〈τ,P〉, as per timestamp d.

6.1. Applying the Proximity Heuristic

At a user, each reviewer is associated with a weight
(trust coefficient). Reviewers manually introduced by
the user are given a fixed weight (e.g., 100%). This
weight can decrease with each level of forwarding (us-
ing an amortization coefficient). This amortization is
a mechanism to implement a version of the aforemen-
tioned heuristic, namely of giving priority to review-
ers who are close to the user in terms of the social net-
work (i.e., proximity heuristic). Proximity, in this con-
text, plays the role of the social influence in social net-
works where such influence can be defined as a user
behavior that leads users to adopt items as a result of a
friend’s adoption [10,19].

At a certain time tp,m (where p is the name of the
peer and m is a logical time based on its local clock),
peer p aggregates the received recommendations Ω and
computes the new weight for each received reviewer τi
based on Equation 1.

Wp,τi,Ω = f ·max
j∈Ω
{Wj |τi = τj}, (1)

whereWp,τ,Ω is the estimation of the weight given or
calculated by peer p for reviewer τ based on the re-
ceived recommendations Ω, f is the amortization fac-
tor, {a|b} denotes the set of elements a for which the
condition b holds, and max(A) is the maximum nu-
merical element of the set A. In other words, peer p
selects the maximum weight for reviewer τ received
from neighbors of p (source peers) and then reduces

the selected weight with f (the amortization factor).
Based on this scheme, peer p gives high priority to
reviewers who are introduced by close neighbors and
low priority to those who are introduced by far neigh-
bors (close and far neighbors are measured based on
the underlying social network). Then peer p updates its
recommendation matrix (see Figure 3.b). After calcu-
lating the new weight for all received reviewers, peer p
will send only its used reviewers to its neighbors (des-
tination peers).

For example, assuming the amortization coefficient
is 0.9 (i.e., the trust coefficient is reduced by 10% for
each new link in the chain of recommendation), the ob-
tained recommendation in the agent system is shown
in Figure 3. There are five peers (P1,...,P5) that use
two reviewers: R1 and R2. The user of P5 introduces
and uses R1 as a trusted reviewer and she has started
giving R1 a 100% as weight. P3 introduces and uses
the reviewer R2, to whom she also assigns a weight of
100%. Both P3 and P5 pass their selected reviewers in-
formation to neighboring peers (destination peers). In
Figure 3, P3 announces R2 to her neighbor peers P2,
P4, and P5. Also, P5 recommended R1 to her neigh-
bor peers P1, P2, and P3. Based on these recommen-
dations, each peer updates its recommendation matrix
and decides which reviewer to use. For instance, Fig-
ure 3.b shows the recommendation matrix of peer P5
as it is changed (updated) from time:0 to time:3 (green
cells in the matrix show reviewers used by the peer).
At time tP5,0, peer P5 had only one trusted reviewer
R1 with weight = 100%, i.e., WP5,R1,Ω = 100%
(manually assigned by P5), where Ω = {} (P5 has
not yet received any recommendations from neigh-
bors). Later on, P5 updated its matrix in time tP5,1

based on recommendations received from its neigh-

6

bors Ω = {(P3, R2, 100%)}. Therefore, the new ma-
trix has a new column R2 and based on Equation 1;
R2 is recommended with 90%, i.e.,WP5,R2,Ω = 90%
(automatically predicted by the system). At that time,
P3 had decided to trust only one reviewer R1. In time
tP5,2, P5 received new recommendations and updated
its matrix based on recommendations received from
its neighbors Ω = {(P3, R2, 100%), (P2, R2, 90%)}
(note thatWP5,R2,Ω still equals 90%). P5 keeps using
only one trusted reviewer R1 for all time (time=0 to
time=3). On the other hand, P4 has decided to use R2
as a trusted reviewer and forward R2’s information to
P1. In addition, P1 has evaluated R1 and R2, then de-
cided to use R1 as a trusted reviewer (P1 had the choice
to use R1[90%] or R2[81%] or both). However, P3 has
decided to use R1 as a trusted reviewer beside R2.

6.2. Applying The Diversity Heuristic

Applying proximity through an amortization factor
f as described in Equation 1 can lead to a social fil-
ter bubble effect [14]. The term ”filter bubble” is used
in social networks to refer to users being surrounded
only by friends who have similar interests, which leads
them to adopt a similar sets of items (in our case, re-
viewers). This effectively isolates users from adopting
items out of their current social neighborhood. In order
to reduce the social filter bubble effect, we give prior-
ity to reviewers less utilized in a user’s current social
neighborhood. Thus, we use a diversity heuristic rule
as a mechanism to improve recommendation diversifi-
cation.

Given a set Ω of n reviewer-items of the form
〈τi,Ai,Wi, di,Pi,Si〉 received from distinct neigh-
bors of peer p, the current weight of the recommenda-
tion made to the user of peer p for reviewer τi is com-
puted as:

Wp,τi,Ω =

f ·

1−
#
j∈Ω
{j|τi = τj}

K · n

·max
j∈Ω
{Wj |τi = τj},

(2)

where f is an amortization factor used to enforce prox-
imity, # is the cardinality function, and K is a factor
modeling the trade-off between proximity and diver-
sity (K ≥ 1).

For example, if all neighbors recommend only one
and the same reviewer, based on Equation 2 that re-
viewer receives an aggregated recommendation with a

weight given by half of the maximum weight received
from neighbors (whenK = 2), amortized with the fac-
tor f .

In another example, if the user has many neighbors
and a given reviewer is recommended by only one
of them, the received recommendation is a large frac-
tion, Kn−1

Kn , of the weight received from that neighbor,
amortized with f . This technique also can solve the
new-item problem as appears in many recommender
systems [7], where the new introduced reviewer can be
distributed with a high weight.

Note: With the described mechanism, once a user
influences many of her neighbors to switch to the same
reviewers as she selected, then she will be recom-
mended different reviewers (for diversification), and
the recommendation she has for the original review-
ers is decreased. To avoid a cycle of switching review-
ers, we implement the probabilistic replacement mech-
anism described further in the next section. Also this
does not lead to an iterative decrease to 0 of all recom-
mendation weights, as some weights are pinned at cer-
tain values by users manually setting values for them.

6.3. The Frequency of Reviewer Replacement

Recommendation for a peer p is done by sorting all
received reviewer-items in a list called ”Known Re-
viewers List” (LK(p)) based on their recommendation
scores in decreasing order and recommending the top-
N items as a list called ”Used Reviewers List,” which
is denoted as LU (p) = {τ1, · · · , τN}. This process is
detailed below:

6.3.1. Known Reviewers List
All the reviewers known by a peer are stored in a

list LK(p), sorted by their weight. Based on the Equa-
tion 2, each peer p evaluates the weight of the review-
ers in LK(p) based on the recommendations received
from links (neighbors):

LK(p)
sort←− ∀τ ∈ Ω, Wp,τ,Ω (3)

LK(p) items are stored as a pair 〈τ,W〉.

6.3.2. Used Reviewers List
Each peer maintains a list of used reviewers, LU (p).

Advanced users populate this list manually while re-
maining users get their LU (p) list populated automati-
cally by the distributed recommender system based on

7

Equation 4.

LU (p)[N]
Pr←− LK(p)

[
argmin

i,LK(p)[i]/∈L̂U (p)

Wp,LK(p)[i],Ω

]
(4)

With the software updates problem, the more differ-
ent reviewer configurations are adopted by a peer, the
higher is the risk that a configuration controllable by
an attacker is eventually selected. In order to reduce
the number of configurations with different sets of re-
viewers, a peer only switches at most a single reviewer
at a time, only to a higher ranked one, and only with
a probability Pr. This mechanism increases the stabil-
ity of the system by reducing the switching frequency
of reviewers in LU (p), and by helping to reach con-
vergence. Formally, each peer p updates its trusted re-
viewers list LU (p) based on the following procedure.
Note that there are two cases of populating the LU (p)
list:

1. When the current used reviewer list L̂U (p)
is empty or is not fully populated (the size
of L̂U (p) is less than the threshold N). Here
LU (p)←L̂U (p) and the missing positions in
LU (p) are filled with the top elements in LK(p).

2. When L̂U (p) already has N reviewers. Here
LU (p)←L̂U (p), except that the reviewer L̂U (p)[N],
the one with the lowest weight, is a candidate
for being replaced by the highest weight re-
viewer LK(p)[i], as long as LK(p)[i] does not
exist in L̂U (p). Switching reviewers from list
L̂U (p) is done with a certain probability, Pr
(e.g., if Pr = 0.5, then the chance of replacing
L̂U (p)[N] with a new reviewer from LK(p) is
50%).

6.4. Reviewer’s Life-Cycle

Each reviewer in the system has a life-cycle that
starts by having him introduced to the system and ends
when there are no more recommendations of that re-
viewer distributed across the system. There are three
stages:

1) Introducing reviewer stage: each reviewer is in-
troduced to the system with mechanisms that de-
pend on the given application. The reviewer in-
formation is distributed (disseminated) between
users in the P2P evaluation network only after it

is adopted by some sophisticated user (introducer
peer).

2) Reviewer-item distribution stage: a reviewer-
item is passed from one peer to another in the
system and the weight of the reviewer is changed
each time by the receiver peer, based on Equa-
tion 2. This weight can increase or decrease to
satisfy the system constraints/properties (e.g., di-
versity, proximity, ...).

3) Termination stage: A reviewer can eventually be
discarded by the system if the reviewer’s expira-
tion date is passed. Each reviewer is tagged with
an expiration date that can be updated by retriev-
ing the reviewer status from the reviewer’s refer-
ence URL.

7. Evaluation And Experiments

In order to evaluate the performance of our dis-
tributed recommender system for reviewers, we simu-
late instances with the following characteristics:

– 10000 peers (P0..P9999) divided into 100 neigh-
borhoods (of 100 peers each). For example,
P0..P99 are in neighborhood N1, P100..P199 in
neighborhood N2, etc.

– Each peer is linked to 50 other peers; 48 of these
links are within the neighborhood of the peer
(only two of the links are out of the neighbor-
hood).

– 100 reviewers (T0..T99), each introduced by a
peer as follows: P100i manually selects Ti for us-
age with weight 100%.

– Each peer not manually selecting its reviewers au-
tomatically uses at most 10 reviewers (i.e. N =
10), as per our mechanism.

– We evaluate the behavior for multiple values of
the parameters f, k, and p.

Our simulation works in rounds (intuitively the deci-
sions taken in one round corresponds to the decision
taken at a fixed interval by each peer, e.g., each day). In
each round of the simulation, all peers synchronously
evaluate recommendations from their links and decide
new usage. We ran 100 such rounds for each experi-
ment and then analyzed the results.

7.0.1. Evaluation of Distribution
In the first reported experiment, we show the dis-

tribution (usage) of reviewers among peers after run-
ning the simulation with 100 rounds. In this experi-

8

Fig. 4. Number of users trusting each reviewer.

Fig. 5. Global Stability

ment, each peer switches to the top 10 reviewers rec-
ommended to her in the round. The other parameters
are k = 2 and f = 0.9. As one can see in Figure 4
the standard deviation for reviewer usage is 331. For
example (in the worst scenario), assuming an attacker
peer introduced the malicious reviewer T21, one ends
up with 2803 peers using T21 (maximum usage in this
experiment). We also ran an experiment with p = 5%,
k = 2, and f = 0.9. One can see in Figure 4 that
the standard deviation for reviewer usage is reduced to
173. Now (in the worst scenario) when an attacker peer
introduces a reviewer T59, then T59 is used by 1393
peers (maximum usage in this experiment), which re-
duces its negative effects by more than 50%. Also, the
usage of each reviewer tends to be distributed over sev-
eral neighborhoods. For example T86 is used by 846
peers where only 50 peers are from the same neighbor-
hood N86.

7.0.2. Global Stability
In this experiment, we compute the local devia-

tion between reviewers’ weights in the previous list
of used reviewers (LU (pj)time(k−1)) and the new
(LU (pj)time(k)) for peer pj :∣∣LU (pj)time(k) − LU (pj)time(k−1)

∣∣. Then we com-
pute the global deviation by summing up all local de-
viations for each peer pj ∈ P , where P is a set
of all peers in the system, as in Equation 5. For ex-
ample, let’s assume that the previous list of used re-
viewers for peer pj is as follows: LU (pj)time(k−1) =

Fig. 6. Casualties after 50 rounds where f=0.7

[(T1 : 40%), (T2 : 70%), (T3 : 20%)] and the
new list is as follows: LU (pj)time(k) = {(T1 :
50%), (T2 : 60%), (T4 : 80%)}. In this exam-
ple, the local reviewers’ weight deviations for peer
pj can be calculated as follows: |(T1:50 - T1:40) +
(T2:60 - T2:70) + (T3:0 - T3:20) + (T4:80 - T4:0)|
= |(10) + (−10) + (−20) + (80)| = |60|. Simula-
tions with 50 rounds each are performed for the param-
eters f = 0.7 and f = 0.9. Here we use p = 5%. In
Figure 5 we report results for k = 2 and k = 1.1. The
experiment suggests that the best parameter values in
these situations are f = 0.7 and k = 2.

n−1∑
j=0

∣∣LU (pj)time(k) − LU (pj)time(k−1)

∣∣ (5)

7.0.3. Casualties
For this experiment, we introduced 20 malicious re-

viewers (controlled by an attacker). We want to count
the number of peers who eventually end up making
decisions relying on these malicious reviewers. Here,
we consider that any peer who has more than half of
its Used Reviewers List (LU (p)) from the introduced
malicious reviewers is an affected peer. This indicates
that the majority of its reviewers are controlled by the
attacker. An experiment based on simulations with 50
rounds each, for the parameter f = 0.7, is used to
detect the best value for the parameters p and k. The
results in Figure 6 are averaged over 10 instances for
each of the values 5%, 15%, and 25% for the parame-
ter p and the values 1.1%, 2%, and 3% for the param-
eter k. The experiment suggests that the lowest num-
ber of affected peers can be achieved with low values
for parameters p and k in this situation is p = 5% and
k = 1.1 as shown in Figure 6.

8. Conclusions

We design and propose a distributed meta-recommender
system for advertising reviewers based on heuristics of

9

proximity and diversity meant to improve the chances
of independence of the used reviewers. The indepen-
dence of the used reviewers is essential for the resis-
tance to attacks where reviewers can be biased to in-
fluence end users.

A set of metrics is defined for quantifying the
promise of the investigated distributed recommenda-
tion system. These are: Distribution, Local Stability,
Global Stability, and Casualty Rate. It is also shown
how using simulations we have evaluated the parame-
ters of the proposed mechanisms for distributed meta-
recommendation of reviewers for software updates.

References

[1] G. Adomavicius and Y. Kwon. Improving aggregate recom-
mendation diversity using ranking-based techniques. IEEE
TKDE, 2012.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation
of recommender systems: a survey of the state-of-the-art and
possible extensions. Knowledge and Data Engineering, IEEE
Transactions on, 17(6):734–749, June 2005.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In Proceed-
ings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, UAI’98, pages 43–52, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

[4] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta. Peer-
son: P2p social networking: Early experiences and insights. In
Proceedings of the Second ACM EuroSys Workshop on Social
Network Systems. ACM, 2009.

[5] R. Burke, M. O. Mahony, and N. Hurley. Robust collaborative
recommendation. In F. Ricci, L. Rokach, and B. Shapira, ed-
itors, Handbook on Recommender Systems, chapter 28, pages
969–999. Springer, 2015.

[6] P. Han, B. Xie, F. Yang, and R. Shen. A scalable {P2P} rec-
ommender system based on distributed collaborative filtering.
Expert Systems with Applications, 27(2):203 – 210, 2004.

[7] S. Hauger, K. Tso, and L. Schmidt-Thieme. Comparison of
recommender system algorithms focusing on the new-item and
user-bias problem. In Data Analysis, Machine Learning and
Applications. Springer Berlin Heidelberg, 2008.

[8] J. He and W. Chu. A social network-based recommender sys-
tem (snrs). In N. Memon, J. J. Xu, D. L. Hicks, and H. Chen,
editors, Data Mining for Social Network Data, volume 12 of
Annals of Information Systems, pages 47–74. Springer US,
2010.

[9] J. K. Kim, H. K. Kim, and Y. H. Cho. A user-oriented contents
recommendation system in peer-to-peer architecture. Expert
Systems with Applications, 34(1):300 – 312, 2008.

[10] W. Lu, S. Ioannidis, S. Bhagat, and L. V. Lakshmanan. Opti-
mal recommendations under attraction, aversion, and social in-
fluence. In ACM 2014 International Conference on Knowledge
Discovery and Data Mining (SIGKDD 2014), 2014.

[11] B. M. Marlin. Modeling user rating profiles for collaborative
filtering. In S. Thrun, L. Saul, and B. SchÃűlkopf, editors,
Advances in Neural Information Processing Systems 16, page
None. MIT Press, Cambridge, MA, 2003.

[12] D. B. Michael. Learning collaborative information filters,
1998.

[13] B. N. Miller, J. A. Konstan, and J. Riedl. Pocketlens: To-
ward a personal recommender system. ACM Trans. Inf. Syst.,
22(3):437–476, July 2004.

[14] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A.
Konstan. Exploring the filter bubble: The effect of using rec-
ommender systems on content diversity. In the 23rd Intl. Conf.
on WWW. ACM, 2014.

[15] D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim. A lit-
erature review and classification of recommender systems re-
search. EXPERT SYSTEMS WITH APPLICATIONS, 39(11),
Sept. 2012.

[16] D. Y. Pavlov and D. M. Pennock. A maximum entropy
approach to collaborative filtering in dynamic, sparse, high-
dimensional domains. In In Proceedings of Neural Information
Processing Systems, pages 1441–1448. MIT Press, 2002.

[17] P. Resnick and H. R. Varian. Recommender systems. Commun.
ACM, 40(3):56–58, Mar. 1997.

[18] D. Rosaci, G. M. L. Sarné, and S. Garruzzo. Muaddib: A
distributed recommender system supporting device adaptivity.
ACM Trans. Inf. Syst., 27(4), 2009.

[19] S. Shang, P. Hui, S. R. Kulkarni, and P. W. Cuff. Wisdom of
the crowd: Incorporating social influence in recommendation
models. CoRR, abs/1208.0782, 2012.

[20] U. Shardanand and P. Maes. Social information filtering: Al-
gorithms for automating “word of mouth”. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’95, pages 210–217, New York, NY,
USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[21] S. Vargas and P. Castells. Rank and relevance in novelty and
diversity metrics for recommender systems. In Proceedings of
the Fifth ACM Conference on Recommender Systems, RecSys
’11, pages 109–116, New York, NY, USA, 2011. ACM.

[22] B. Xie, P. Han, F. Yang, R.-M. Shen, H.-J. Zeng, and Z. Chen.
Dcfla: A distributed collaborative-filtering neighbor-locating
algorithm. Information Sciences, 177(6):1349 – 1363, 2007.

[23] L. Zhen, Z. Jiang, and H. Song. Distributed recommender
for peer-to-peer knowledge sharing. Information Sciences,
180(18):3546 – 3561, 2010.

