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Abstract

A problem that received recent attention is the development of negotiation/cooperation tech-
niques for solving naturally distributed problems with privacy requirements. An important
amount of research focused on those problems that can be modeled with distributed constraint
satisfaction, where the constraints are the secrets of the participants. Distributed AI develops
techniques where the agents solve such problems without involving trusted servers. Some of the ex-
isting techniques aim for various tradeoffs between complexity and privacy guarantees [MTSY03],
some aim only at high efficiency [ZM04], while others aim to offer maximal privacy [Sil03].

While the last mentioned work achieves an important level of privacy, it seems to be very slow.
The technique we propose builds on that work, maintaining the same level of privacy, but being
an order of magnitude faster, reaching the optimality in efficiency for this type of privacy. Un-
fortunately, all the versions of the new technique have an exponential space requirement, namely
requiring the agents to store a value for each tuple in the search space. However, all existing
techniques achieving some privacy were also applicable only to very small problems (typically 15
variables, 3 values), which for our technique means 14MB of required memory. Practically speak-
ing, it improves the privacy with which this problems can be solved, and improves the efficiency
with which n/2-privacy can be achieved, while remaining inapplicable for larger problems.

1 Introduction

Someone’s private concerns can often be formulated in a general framework such as constraint sat-
isfaction problems (i.e. where everything is modeled by either variables, values, or constraints on
those variables) and then can be solved with any of the applicable CSP techniques. Often, one has to
also find agreements with the other agents for a solution from the set of possible valuations of shared
resources that satisfy her subproblem. The general framework modeling this kind of combinatorial
problems is called Distributed Constraint Satisfaction.

In practice one also meets optimization problems. Distributed Weighted CSPs (DisWCSPs) is a
general formalism that can model distributed problems with some optimization requirements. Now
we introduce the distributed Weighted Constraint Satisfaction Problem and present shortly the Se-
cureRandomSolution algorithm as well as the modifications proposed in this work. The new technique
is called MPC-DisCSP2. Its exponential logic time complexity can be made logarithmic by parallelism.
The technique is extended for solving DisWCSPs.

CSP A constraint satisfaction problem (CSP) is defined by three sets: (X, D, C). X = {x1, ..., xm}
is a set of variables and D = {D1, ...,Dm} is a set of domains such that xi can take values only from
Di. C = {f1, ..., fc} is a set of constraints such that fi is a predicate over an ordered subset Xi of the
variables in X, Xi ⊆ X. An assignment is a pair 〈xi, v〉 meaning that the variable xi is assigned the
value v. fi specifies the legality of each combination of assignments to the variables in Xi.

A tuple is an ordered set. The projection of a tuple t of assignments over a tuple of variables Xi

is denoted t|Xi
. A solution of a CSP (X, D, C) is a tuple of assignments t with one assignment for

each variable in X (i.e. t∈D1×...×Dm) such that all the fi ∈ C are satisfied by t|Xi
.

Constraint Satisfaction Problems (CSPs) do not model optimization requirements. An extension
allowing for modeling optimization concerns is given by Weighted CSPs.

Definition 1 ([Lar02]) A Weighted CSP (WCSP) is defined by a triplet of sets (X,D,C) and a
bound B. X and D are defined as in CSPs. In contrast to CSPs, C={f1, ..., fc} is a set of func-
tions, fi : Di1×...×Diki

→ [0..B] where ki is the arity of ki, and B is a maximal weight considered
unacceptable for the solution.

Its solution is argmin
t∈D1×...×Dm

∑c
i=1 fi(t|Xi

), if its weight is smaller than B.

A Distributed CSP (DisCSP) is defined by four sets (A,X,D,C). A={A1, ..., An} is a set of agents.
X, D, C and the solution are defined like in CSPs. Each predicate (aka constraint) fi is known only
by one agent.
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Definition 2 (DisWCSP) A Distributed Weighted CSP is defined by four sets (A,X,D,C).
A,X,D are defined as for DisCSPs. In contrast to DisCSPs, the elements of C are functions
fi : Di1×...×Diki

→ [0..B].
Its solution is argmin

t∈D1×...×Dn

∑c
i=1 fi(t|Xi

), if its weight is smaller than B.

We assume that agents know the variables involved in the constraints of each other (variables can
be falsely declared as involved when this is needed to hide the structure of the problem). Instead,
agents want to avoid that others find details about the exact combinations allowed by the constraints
that they enforce.

Several multi-party computation techniques are known to solve general functions, mainly versions
of oblivious evaluation of boolean circuits, or arithmetic circuit evaluation. However, a DisWCSP
is not a function. For a given input problem a DisWCSP can have several solutions or no solution
at all. The author of [Sil03] proposed an algorithm for compiling DisCSPs to a secure solution,
called SecureRandomSolution, that we refer here as MPC-DisCSP1 and that uses evaluations of some
arithmetic circuits as one of its building blocks. The algorithm described here is an extension of
MPC-DisCSP1. It also allows the n participating agents to securely find a solution by interacting
directly without any external arbiters and without divulging any secrets. This is a threshold scheme,
guaranteeing that no subset of t malicious agents that follow the protocol (aka honest but curious
agents [CGH00]), t<(n+1)/2, can find anything about others’ problems except what is revealed by
the solution.

MPC-DisCSP2 can be extended to perform optimization in distributed Weighted CSPs. The
extension consists in first redesigning one of the basic arithmetic circuits involved in MPC-DisCSP2
such that the algorithm is enabled to find a solution with a predefined weight. Then one can simply
find the optimal solution of the DisWCSP by scanning for a solution with weight 0, then weight 1,
etc. until the first solution is found. But, this reveals to everybody the quality of the found solution!
We then propose a new extension called MPC-DisWCSP2 which reveals the quality of the solution
only to a set of agents chosen by the participants, or to nobody.

2 Overview of MPC-DisCSP

MPC-DisCSP1 uses general multi-party computation techniques. General multi-party computation
techniques can solve securely only certain functions, one of the most general classes of solved problems
being the arithmetic circuits. A Distributed CSP is not a function. A DisCSP can have several
solutions for an input problem, or can even have no solution. Three reformulations of DisCSPs as a
function are relevant:

i A function DisCSP1() returning the first solution in lexicographic order, respectively an invalid
valuation τ when there is no solution.

ii A function DisCSP() which picks randomly a solution if it exists, respectively returns τ when
there is no solution.

For privacy purposes only the 2nd definition is satisfactory. DisCSP() only reveals what we expect
to get from a DisCSP, namely one solution. MPC-DisCSP1 proposes to implement DisCSP() in three
phases:

1. The input DisCSP problem is jointly shuffled by reordering variables and values randomly and
with permutations hidden from each subset of participant agents.

2. A version of DisCSP1() where operations performed by agents are independent of the input
secrets, is computed (e.g. by evaluating arithmetic circuits).

3. The solution returned by the DisCSP1() at step 2 is translated into the initial problem definition
using a transformation that is inverse of the shuffling at step 1.
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At step 2 MPC-DisCSP1 requires a version of the DisCSP1() function whose cost is independent
of the input since otherwise the users can learn things like: The returned solution is the only one as
it was found after unsuccessfully checking all other valuations, all other valuations being infeasible.
However, the DisCSP1() used by MPC-DisCSP1 is very complex and we propose a much simpler and
faster solution.

3 Background

Secure evaluation of functions with secret inputs (where sometimes secret functions can also be treated
as secret inputs and vice-versa) have been often addressed in literature. Several recent versions are
based on (oblivious) boolean circuit evaluation [CDG88, AF88, Kil88, Hab88, GHY88]. Others, like
MPC-DisCSP1, are based on arithmetic circuit evaluation.

MPC-DisCSP uses (+,×)-homomorphic encryption functions EKE
: DP→DC (DP is the domain

of the plaintext and DC the domain of the ciphertext), i.e. respecting ∀m1,m2 ∈ DP :

EKE
(m1)EKE

(m2) = EKE
(m1 +m2).

Some encryption functions take a randomizing parameter r. Sometimes we write Ei(m) instead of
Ei(m, r), to simplify the notation. A good example of a (+,×)-homomorphic scheme with randomizing
parameter is the Paillier encryption [Pai99].

To destroy the visibility of the relations between the initial problem formulation and the formula-
tion actually used in computations one can exploit random joint permulations that are not known to
any participant. Here we reformulate the initial problem by reordering the values and the variables.
Such permutations appeared in Chaum’s work and in Merritt’s election protocol [Mer83, Cha81]. The
shuffling is obtained by a chain of permutations (each being the secret of a participant) on the en-
crypted votes. n agents, A1, ..., An, are ordered in a chain (called in the following, Merritt chain). The
agents encrypt their votes with the public keys of all agents in the order of the chain, twice. The votes
are then decrypted by the corresponding agents by passing the messages along the chain of agents,
while each agent secretly shuffles all messages at each such step. The shuffling of each agent remains
its secret.

Shamir’s secret sharing is based on the fact that a polynomial f(x) of degree t−1 with unknown
parameters can be reconstructed given the evaluation of f in at least t distinct values of x. This can
be done using Lagrange interpolation. Instead, absolutely no information is given about the value of
f(0) by revealing the valuation of f in any at most t−1 non-zero values of x. Therefore, in order to
share a secret s to n participants A1, A2, ..., An, one first selects t−1 random numbers a1, ..., at−1 that
will define the polynomial f(x) = s+

∑t−1
i=1(aix

i). A distinct non-zero number ki is assigned to each
participant Ai. Each participant Ai is then communicated over a secure channel (e.g. encrypted with
Ei) the value of the pair (ki, f(ki)). This is called a (t, n)-scheme.

Once secret numbers are split and distributed with a (t, n)-scheme, computations of an arbitrary
agreed function of a certain class can be performed over the distributed secrets, in such a way that all
results remain shared secrets with the same security properties (the number of supported colluders,
t−1) [Yao82]. For [Sha79]’s technique, one knows to perform addition and multiplications when
t ≤ (n+ 1)/2.

4 Arithmetic circuits for DisCSP1()

The main building blocks of DisCSP1() consist of evaluating some arithmetic circuits. It is for this
step that we are proposing a simpler and faster version. An implementation of DisCSP1() can be easily
obtained by checking all tuples until one satisfies all the constraints. Such a solution has a number
of operations dependent on the secrets of the problem and this is why [Sil03] claims that it cannot
be used in DisCSP(). DisCSP1() is a building block of DisCSP(). Consider the CSP P = (X,D,C).
One can interpret the predicates of C as functions with results in the set {0, 1} (0 is infeasible and 1
is feasible). All domains are extended to d values. The solutions of P are the valuations ε (of type
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function value-to-unary-constraint2(v, M)
1. Jointly, all agents build a vector u,

u = 〈u0, u1, ..., uM 〉 with 3M−1
multiplications of secrets, by computing:
1. the shared secret vector:

{xi}0≤i≤M , x0=1, xi+1=xi ∗ (v−i)
2. the shared secret vector:

{yi}0≤i≤M , yM=1, yi−1=yi ∗ (i−v)

then, uk = 1
k!(M−k)!

xkyk, where 0!
def
= 1.

2. Return u.

Algorithm 1: Transforming secret value v ∈ {0, 1, 2, ...,M} to a shared secret unary constraint. This
is a multi-party computation using the shares of secret v.
〈(x1, v

1
ε1), ..., (xm, v

m
εm

)〉) with
∏

f∈C f(ε|f )=1. Here ε|f denotes the projection of ε to the variables in
f .

If p(ε) =
∏

f∈C f(ε|f ), and εk denotes the kth tuple in the lexicographic order, then define:

h1(P ) = 1
hi(P ) = hi−1(P ) ∗ (1 − p(εi−1))

The index of the lexicographically first solution can be computed by accumulating the terms of the h
series, weighted as follows:

id(P ) =
dm∑
i=1

i ∗ p(εi) ∗ hi (1)

A result of 0 means that there is no solution. The cost of this computation is (c+1)dm multiplications
of secrets, md times less than the technique in MPC-DisCSP1, which is O((fm+m2)dm+1). We call
this DisCSP21.

The method proposed now in MPC-DisCSP2 is to first transform the index id of the solution
computed with Equation 1 into a shared vector S, of size dm where only the idth element is 1 and all
other elements are 0. This is achieved using Equation 2. The technique for transforming the solution
to a vector, shown in Algorithm 1, has 3M multiplications, M less than value-to-unary-constraint1
used in MPC-DisCSP1.

S = value-to-unary-constraint2(id, dm+1) (2)

It is possible to end here this stage and to start unshuffling S (which would take rather large
messages, of size dm). In this last case the obtained technique for this stage is called DisCSP31.

Alternatively, we can translate already now the vector S into values for each variable, and we
believe that this approach is slightly better. The obtained technique for this step is referred to as
DisCSP21.

The value of the (u + 1)th variable in the tth tuple of the search space is ηu(t), computed with
Equation 3. An arithmetic circuit, fi(P ), (see Equation 4), can now be used to compute the value of
each variable xi in the solution.

ηu(t) = [(t− 1)/du] mod d (3)

fi(P ) =
dm∑
t=1

ηi(t) ∗ S[t] (4)

θk = θk−1 ∗ (id− 1)

S =
θk

∏dm

i=k(id− i)
k!(M − k)!

(5)

It can be noticed that the space required for computing and storing S is O(dm). This can be
reduced by not reusing intermediary results in Algorithm 1 and computing S on demand during the
evaluation of f functions, using Equation 5, but with efficiency losses that are inacceptable, O(d2m).
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5 Computation of DisCSP()

Revealing the first solution ε0 in a lexicographic order reveals two distinct things: ε0 is a solution (or
at least that the elements communicated to each participant are part of a solution ε0), and there exists
no solution lexicographically ordered before ε0. MPC-DisCSP1 returns a solution picked randomly
from the existing solutions by rephrasing the DisCSP with a hidden permutation after its secrets were
shared.

5.0.1 MPC-DisCSP’s mix net for reordering shared secret DisCSPs

MPC-DisCSP2 shares and shuffles the DisCSP in the same way as MPC-DisCSP1. To recall, each
agent Ai has to share a set of secrets {si

k} where indexes k, are taken from disjoint sets for dis-
tinct agents (∀si

k1
, sj

k2
, (i�=j)⇒(k1 �=k2)). A pair (εk, vk), where vk ∈ {0, 1} is the evaluation of a

constraint of Ai for the partial valuation tuple εk, is called an atomic predicate. For each (partial)
valuation εk = ((xk1 , v

k1
k1 ), ..., (xkt

, vkt

kt )), having Aj ’s share of the secret feasibility value vk ∈ {0, 1}
equal to sj

k, the submission takes the form: 〈〈(kl, k
l)〉l∈[1..t], k, Ej(s

j
k), j〉. All the submissions are

made to A1, the first in the chain of permutation agents. Assuming the total number of submit-
ted atomic predicates is K, each agent Ai generates Z=K+mn sets of Shamir secret shares of 0,
{zk

j |j ∈ [1..n], zk
j =

∑t−1
u=1 ak,u(kj)u}}, for some ak,u, k∈[1..Z], and the secret permutations:

π : [1..m] → [1..m], (variables)
π1, ..., πm : [1..d] → [1..d], (domains)

π0 : [1..K] → [1..K].(atomic predicates)

For performing the mix net, when A1 or a subsequent Ai receives (all the elements of)
a vector {〈{(kl, k

l)}l∈[1..t], k, Ej(s
j
k), j〉}k∈[1..K], it generates a permutation wk and the vector

π0({〈{(π(kwk(l)), πk
wk(l)

(kwk(l)))}l∈[1..t], π0(k),

Ej(s
j
k)Ej(zk

j ), j〉}k∈[1..K]), which is sent to A2, respectively to Ai+1. Namely, the position of pairs
inside each permuted valuation are randomly shuffled according to wk. An distributes the vectors to
corresponding Aj .

Hiding shares As in MPC-DisCSP1, to avoid that everybody learns all the secret shares, these
are sent encrypted with the public key of their destination participant. To also avoid that agents
recognize shares that they have sent and retrieve part of the overall permutation, each agent Ai in
the Merritt chain generates random sets of n shares for 0 with the technique of Shamir. The jth share
in the kth set is denoted by zk

j . Whenever Ai performs a shuffling/unshuffling of a set of encrypted
secret shares, Ai uses a new set of shares for 0 and multiplies the corresponding encrypted shares with
the point product. Therefore, since we use a (+,×)-homomorphic encryption, the obtained shares
represent the sum of the secret with 0 and is a re-sharing of the initial secret.

f ′
i = value-to-unary-constraint2(fi−1, d) (6)

Decoding solutions after DisCSP31 After DisCSP21 is run on the shared problem shuffled as
shown by the previous technique, the solution has to be revealed without revealing the permutation.
Let Sj be j’s share of S. The vectors {〈{Ej(Sj [t])}t∈[1..dm], j〉}, for each j, are sent backward through
the Merritt chain of agents. When Ak receives {〈{Ej(Sj [t])}t∈[1..dm], j〉}, it generates and sends to
Ak−1 the vector {〈{Ej(Sj [

∑m−1
i=0 di ∗ ππ−1(i)(ηπ−1(i)(t))]}t∈[1..dm],

j〉}. A1 broadcasts them.

Decoding solutions after DisCSP31 After DisCSP1 is run on the shared problem shuffled as
shown by the previous technique, the shares of the results of functions f (processed with Equation 6)
have to be revealed without revealing the permutation. The vectors {〈{Ej(f ′

i
j [t])}t∈[1..d], j〉}i∈[1..m],
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for each j, are sent backward through the chain of agents, where f ′
i
j [t] is Aj ’s share for f ′

i [t].
When Ak receives {〈{Ej(f ′

i
j [t])}t∈[1..d], j〉}i∈[1..m], it generates and sends to Ak−1 the vector

π−1({〈π−1
π−1(i)({Ej(f ′

i
j [t])Ej(zK−i−t+2

j )}t∈[1..d]),
j〉}i∈[1..m]). A1 broadcasts them.

Complexity and parallelism The total number of messages that have to be sent with MPC-
DisCSP2 is 2n (for shuffling), n2(c + 1)dm for Equation 1, n23dm for Equation 2, n2m3d for m
Equations 6, and O(n2) for decoding the solution. The total number of messages is n2(4+dm(c+4)+
3md). n2 of them are always sent concurrently, for multiplications, obtaining O(dmc+m) rounds.

One can enable additional parallelism, performing some of the multiplications of Equations 1, 2,
and 6 in a parallel divide and conquer manner. This is dependent of the amount of parallelim supported
by the network: Ideally, one can reduce the total number of rounds to O(m log2(d) + log2(c)), but
unfortunately that requires O(n2dm) concurrent messages.

6 MPC-DisWCSP2: extension to distributed weighted CSPs

Let q(ε)=
∑

f∈C f(ε). A solution of a CSP (X,D,C) is a valuation ε with q(ε)=|C|. For addressing
Distributed WCSPs, the function p has to be further adapted as follows. Now the maximum value of
q(ε) is no longer |C| but |C|B. We still want to isolate solutions whose q(ε) is given by some value x0

(actually we now need the minimal x0 allowing for a solution).

p(ε) =

∏x0−1
i=0 (q(ε)−i)∏|C|B

i=x0+1(i−q(ε))
x0!(|C|B − x0)!

. (7)

A solution with lowest weight of a DisWCSP can be found by iterating MPC-DisCSP with the
definition 7 for p, for x0 increasing from 0 to |C|B. Note that the last two techniques reveal to
everybody the quality of the solution, i.e. the number of satisfied constraints respectively the sum of
constraint weights in the solution.

Theorem 1 The described technique offers t-privacy (No collusion of less than t attackers can learn
anything, but the final solution with its quality, and what can be inferred from it).

Proof. Each step of the previous technique is based on the evaluation of a set of functions consisting solely
of additions and multiplication. It has been proven in [Yao82, GMW86] that the compilation to multi-party
computations of such a technique is t-private. The mix net is hiding the permutation (and the order under
which the solution was found). It is always possible that the found solution was the first in lexicographic
order, as it is possible that is was the last one. No information can be extracted about the acceptance of the
other possible allocations.

The information revealed to everybody is the quality of the solution and the allocation of their resources

in that solution. The quality of the solution is revealed by the number of computation rounds.

MPC-DisWCSP2: Solving a DisWCSP while hiding the weight of the solution DisCSP1

can hide the number of rounds needed to find the first solution to a DisCSP. In a similar way we hide
the number of rounds needed to find the first solution to a DisWCSP. A new set of functions wi is
defined to hold the value of xi in the best solution found so far.

wj
i

def=




0 if j=− 1
fi(P ) wj−1

1 =0
wj−1

i wj−1
1 <> 0

7



This can be computing with the following arithmetic circuits (for i∈[1..d] and j∈[1..|C|B]):

w−1
i = 0

wj
i = wj−1

i (P )(1 −
∏d

k=1 k − wj−1
1 (P )

d!
)

+fi(P )

∏
k∈[1..d] k − wj−1

1 (P )

d!

MPC-DisWCSP also consists in three phases:

1. First the DisWCSP is shared and then shuffled through the mix net in the same way as it was
done with the DisWCSP (except that the values assigned by constraints to tuples are in [0..B]
rather than {0,1}).

2. The vector {w|C|B
i }i∈1..m is computed by iteratively building the vectors {wj

i }i∈1..m for j increas-
ing from 0 to |C|B. The computation in each iteration j is performed according to DisCSP21

but with the new definition of p and with x0=j. It is followed by evaluating the arithmetic
circuit {wj

i }i∈1..m with a multiparty computation.

3. The solution is unshuffled and distributed as in MPC-DisCSP, except that the solution vector
is the one containing the results of the functions w|C|B

i rather than fi.

The complexity of MPC-DisWCSP is |C|B times higher than the complexity of MPC-DisCSP. For
the most parallel version of MPC-DisCSP, the longest chain of messages is |C|B times longer.

In MPC-DisWCSP nobody can learn the total weight of the solution. In some problems one may
nevertheless want to let some particular agents learn the total weight of the solution, while the rest
of the agents should not learn it. This can be achieved by computing at the end of the second phase
the first element of the solution vector according to:

w
|C|B
0 =

∑
k∈[0..|C|B]

k(1 −
∏

k∈[1..d] k − wk
1 (P )

d!
)

∏
k∈[1..d] k − wk−1

1 (P )

d!

The single non-zero term in the summation defining w
|C|B
0 is for the round k where wk

1 is for the
first time non-zero. w|C|B

0 specifies the weight of the solution and after unshuffling is revealed only to
the agents that should learn it.

7 Conclusions

DisCSPs are a very active research area and secrecy within DisCSPs has been recently stressed
in [MJ00, FMW01, WF02, YSH02, Sil03] as an important issue. The described technique is a �n/2�-
privacy threshold scheme. While we work on techniques that may provide such robustness as in other
multiparty computations, they were not addressed in this discussion (notably see (�t/3�,n) threshold
schemes) [BOGW88].

We presented a technique where agents that need to cooperate and whose problems can be modeled
as CSPs can find a random solution without leaks of additional information about their constraints.
The technique is exponential in space such that only problems up to 15 variables can be addressed.
To be noted that this is the typical problem size that can be addressed by other techniques that aim
at some lesser privacy. We also show how the technique can be extended to perform optimization in
distributed Weighted CSPs.
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