
Background Material

Reading: Sections 1.1 – 1.4
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Some Things that will Matter

1. Words, terminology, vocabulary

– lemma, theorem, proof, corollary, conjecture, antecedent (note: book calls this hypothesis), consequence

– A language is regular, a DFA is not

2. Logical structure of statements and proofs

– if A then B

– A if and only if B

– quantification, i.e., there exists, for all

3. Formal definitions
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Mathematical Induction

• An inductive proof has three parts:

– Basis case

– Inductive hypothesis

– Inductive step

• Related to recursive programming.



4

Theorem:

For all n>=1.

Proof #1: (by induction on n)

Basis:

n = 1

1 = 1
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Inductive hypothesis:

Suppose that                             for some k>=1.

Inductive step:

We will show that 

by the inductive hypothesis

It follows that                                     for all n>=1.     •
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Theorem:

For all n>=1.

Proof #2: (by induction on n)

Basis:

n = 1

1 = 1
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Inductive hypothesis:

Suppose there exists a k>=1 such that that                             for all m, 
where 1 <= m <= k.

Inductive step:

We will show that 

by the inductive hypothesis

It follows that                               for all n>=1.     •
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• What is the difference between proof #1 and proof #2?

– The inductive hypothesis for proof #2 assumes more than that for proof #1.

– Proof #1 is sometimes called weak induction

– Proof #2 is sometimes called strong induction

• Many times weak induction is sufficient, but other times strong induction is 

more convenient.
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Definition #1:

Let T=(V,E) be a tree with |V|>=1. Then T is a strict binary tree if and only if 

each vertex in T is either a leaf or has exactly two children.

Definition #2: (recursive)

1. A single vertex is a strict binary tree.

2. Let T1=(V1,E1) and T2=(V2,E2) be strict binary trees with roots r1 and r2, 

respectively, where V1 and V2 do not intersect. In addition, let r be a new 

vertex that is not in V1 or V2. Finally, let:

Then T3=(V3,E3) is a strict binary tree.

3. Nothing else is a strict binary tree.

Strict Binary Trees
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Note that the previous two definitions, although different, are equivalent.

In other words, tree T will satisfy definition #1 if and only if (iff) T satisfies 

definition #2.

A iff B:

1) A if B B => A

2) A only if B A => B

For our purposes here, definition #2 will be used.

Since definition #2 is a recursive definition, this will allow us to easily prove 

things about strict binary trees using induction.

An inductive proof that follows the recursive structure of some set of objects, it is 

also called structural induction.



11

Theorem:

Let L(T) denote the number of leaves in a strict binary tree T=(V,E). Then

2*L(T) – 2 = |E|

Proof: (by induction on L(T))

Basis:

L(T) = 1

Observation: The only strict binary tree with L(T) = 1 has a single 

vertex and 0 edges, i.e., |E| = 0. 

Lets evaluate 2*L(T)-2 and see if we can show it is equal to |E|.

2*L(T) – 2 = 2 *1 – 2 Since L(T) = 1

= 0

= |E| Since the observation tell us that |E| = 0
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Inductive hypothesis:

Suppose there exists a k>=1 such that for every strict binary tree where 
1<=L(T)<=k that 2*L(T) – 2 = |E|.

Inductive step:

Let T=(V,E) be a strict binary tree where L(T)=k+1. We must show that 
2*L(T) – 2 = |E|.

Notes about T:

1. Since k>=1 and L(T)=k+1, it follows that L(T)>1. Therefore T 
consists of a root r and two strict binary trees T1=(V1,E1) and 
T2=(V2,E2), where 1<=L(T1)<=k and 1<=L(T2)<=k.

2. L(T) = L(T1) + L(T2) by definition of T

3. |E| = |E1| + |E2| + 2 also by definition of T

Lets start with 2*L(T) - 2 and, using 1-3, see if we can show that it is 
equal to |E|.
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2 * L(T) – 2 = 2 * (L(T1) + L(T2)) – 2 by (2)

= 2 * L(T1) + 2 * L(T2) – 2

= (2 * L(T1) – 2) + (2 * L(T2) – 2) + 2

Since 1<=L(T1)<=k and 1<=L(T2)<=k from (1), it follows from the 

inductive hypothesis that:

2 * L(T1) – 2 = |E1| and

2 * L(T2) – 2 = |E2|

Substituting these in the preceding equation gives:

= |E1| + |E2| + 2

= |E| by (3)

Hence, for all strict binary trees, 2 * L(T) – 2 = |E|. •

Finally, note the use of strong induction in the above proof.
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Relations and Functions

Let A and B be two sets.

The cartesian product of A and B, denoted A B, is {(a,b) | aA and bB}

For example, if A = {a, b, c} and B = {d, e, f}, then A B is:

{(a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e), (c, f)}

A binary relation on A and B is a subset of A B.

Example (using A and B):

R = {(a, d), (a, f), (b, e)}

Note that a binary relation is sometimes also referred to as a mapping.
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A binary relation R on A and B is said to be a total function if for every element a A, there 
is exactly one element b B such that (a, b) R. In such a case we use the notation f(a) = b.

Example:

R’ = {(a, d), (b, e)} is not a total function from A to B

R’’ = {(a, d), (a, f), (b, e)} is not a total function from A to B

R’’’ = {(a, d), (b, e), (c, e)} is a total function from A to B

For our purposes, a total function will be referred to simply as a function.
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Let f be a function from A to B. Then f is said to be one-to-one if f(a)  f(b), for all a, b A
where ab.

Let f be a function from A to B. Then f is said to be onto if for each bB there exists an a
A such that f(a) = b.

Let f be a function form A to B. Then f is said to be a bijection if it is one-to-one and onto.

If R is a binary relation on sets A and B then the inverse of R, denoted R-1, is:

{(b, a) | (a, b)  R}
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Given the above definitions, the following observations can be made:

– A one-to-one function is not necessarily onto. Similarly, an onto function is not 

necessarily one-to-one.

– If a binary relation R is a function, then its inverse R-1 is not necessarily a function.

– If there is a bijection f from A to B then the inverse f -1 is a bijection from B to A

(prove this as an exercise).
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Two sets A and B have the same cardinality iff there is a bijection (a one-to-one 

and onto function) from A to B (or, equivalently, from B to A).

Let N = {0, 1, 2,…} denote the natural numbers. Then a set is countably infinite iff 

it has the same cardinality as N.

A set is countable iff it is finite or countably infinite.

A set that is not countable is said to be uncountable.

Note:

– If A and B are finite sets and A  B then A and B have different cardinality.

– If A and B are infinite sets and A  B then A and B can still have the same cardinality!

– “Cardinality” is defined as a relation between two sets, and no definition for the “cardinality of 

a set” is given.

Now for Some “New” Definitions
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Given the above definitions, how would one prove that an arbitrary set is or is not 

countable infinite or, more generally, countable?

As another definition, a set is countably infinite iff it has the same cardinality as 

the set of integers (prove that this definition is equivalent to the one given above).
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Countable and Countably Infinite Sets

Theorem: N-{0} and N have the same cardinality.

Proof:

Define a function f from N-{0} to N as f(i) = i-1.

– f is a function

– f is one-to-one

– f is onto

f is therefore a bijection and, by definition of cardinality, N-{0} and N have the 

same cardinality.    •

Corollary: N-{0} is countably infinite.

Corollary: N-{0} is countable.
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Lemma

Theorem

Proof

Corollary

Conjecture

Observation

Antecedent (hypothesis)

Conclusion

Tangent!

(vocabulary)
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Theorem:

Let A be the set of all even integers >=2, and let B be the set of all positive 

integers (i.e., >=1). Then A and B have the same cardinality.

Proof:

Let f(i) = i/2. Then it can be easily verified that f is a bijection from A to B. •
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Diagonalization

Fact: Many books exist.

Fact: Some books contain the titles of other books within them.

Fact: Some books contain their own titles within themselves, others do not.

Consider the following book with title The Special Book.

The Special Book is defined to be that book that contains the titles of all books that do not

contain their own titles.

Question: Does the special book exist? Could one write the special book?

A similar contradiction is known as The Barber of Seville Paradox.

More formally known as Russell’s Paradox.


