Context-Free Grammars and Languages

Reading: Chapter 5

Context-Free Languages

- The class of context-free languages generalizes the class of regular languages, i.e., every regular language is a context-free language.
- The reverse of this is not true,i.e., every context-free language is not necessarily regular. For example, as we will see $\left\{0^{\mathrm{k}} 1^{\mathrm{k}} \mid \mathrm{k}>=0\right\}$ is context-free but not regular.

Context-Free Languages

- Many issues and questions we asked for regular languages will be the same for contextfree languages:

> Machine model - PDA (Push-Down Automata)
> Descriptor - CFG (Context-Free Grammar)
> Pumping lemma for context-free languages
> Closure of context-free languages with respect to various operations
> Algorithms and conditions for finiteness or emptiness

- Some analogies don't hold, e.g., non-determinism in a PDA makes a difference and, in particular, deterministic PDAs define a subset of the context-free languages.
- Informally a Context-Free Language (CFL) is a language generated by a Context-Free Grammar (CFG).
- What is a CFG?
- Informally, a CFG is a set of rules for deriving (or generating) strings (or sentences) in a language.
- Example CFG:

```
<sentence> -> <noun-phrase> <verb-phrase>
<noun-phrase> -> <proper-noun>
<noun-phrase> -> <determiner> <common-noun>(3)
<proper-noun> -> John(4)
<proper-noun> -> Jill
<common-noun> -> car
<common-noun> -> hamburger
<determiner> -> a
<determiner> -> the
<verb-phrase> -> <verb> <adverb> (10)
<verb-phrase> -> <verb>
<verb> -> drives (12)
<verb> -> eats
<adverb> -> slowly
<adverb> -> frequently
- Example Derivation:
\[
\begin{aligned}
\text { <sentence> } & \text { => <noun-phrase> <verb-phrase> } & & \text { by }(1) \\
& =>\text { <proper-noun> <verb-phrase> } & & \text { by }(2) \\
& =>\text { Jill <verb-phrase> } & & \text { by }(5) \\
& =>\text { Jill <verb> <adverb> } & & \text { by }(10) \\
& =>~ J i l l ~ d r i v e s ~<a d v e r b>~ & & \text { by }(12) \\
& =>\text { Jill drives frequently } & & \text { by }(15)
\end{aligned}
\]
- Informally a CFG consists of:
- A set of replacement rules.
- Each will have a Left-Hand Side (LHS) and a Right-Hand Side (RHS).
- Two types of symbols; variables and terminals.
- LHS of each rule is a single variable (no terminals).
- RHS of each rule consists of zero or more variables and terminals.
- A "string" consists of only terminals.

\section*{Formal Definition of Context-Free Grammar}
- A Context-Free Grammar (CFG) is a 4-tuple:
\[
\mathrm{G}=(\mathrm{V}, \mathrm{~T}, \mathrm{P}, \mathrm{~S})
\]

V - A finite set of variables or non-terminals
T - A finite set of terminals ( V and T do not intersect)
P - A finite set of productions, each of the form \(\mathrm{A} \rightarrow \alpha\), where A is in V and \(\alpha\) is in (V U T)* \(/ /\) Note that \(\alpha\) may be \(\varepsilon\)
S - A starting non-terminal ( S is in V )
- Example CFG \#1:
\(G=(\{A, B, C, S\},\{a, b, c\}, P, S)\)

P:
(1) \(\mathrm{S} \rightarrow \mathrm{ABC}\)
(2) \(\mathrm{A} \rightarrow \mathrm{aA} \quad \mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon\)
(3) \(\mathrm{A} \rightarrow \varepsilon\)
(4) \(\mathrm{B} \rightarrow \mathrm{bB}\)

B \(\rightarrow \mathrm{bB} \mid \varepsilon\)
(5) \(\mathrm{B} \rightarrow \varepsilon\)
(6) \(\mathrm{C} \rightarrow \mathrm{cC} \quad \mathrm{C} \rightarrow \mathrm{cC} \mid \varepsilon\)
(7) \(\mathrm{C} \rightarrow \varepsilon\)
- Example Derivations:
\[
\begin{align*}
S & \Rightarrow A B C  \tag{1}\\
& =>B C  \tag{3}\\
& =>C  \tag{5}\\
& =>\varepsilon
\end{align*}
\]
\[
\begin{align*}
\text { S } & \Rightarrow \mathrm{ABC} \\
& =>~ a A B C  \tag{2}\\
& =>~ a a A B C  \tag{2}\\
& =>~ a a B C  \tag{7}\\
& \Rightarrow \text { aabBC }  \tag{3}\\
& =>~ a a b C  \tag{5}\\
& =>~ a a b c C  \tag{6}\\
& =>~ a a b c \tag{7}
\end{align*}
\]
- Example CFG \#2:
\[
G=(\{S\},\{0,1\}, P, S)
\]

P:
(1) \(\mathrm{S} \rightarrow>0 \mathrm{~S} 1\)
or just simply \(S \rightarrow 0 S 1 \mid \varepsilon\)
(2) \(\mathrm{S} \rightarrow \varepsilon\)
- Example Derivations:
\[
\begin{array}{rlr}
S & \Rightarrow 0 S 1 & (1) \\
& =>01 & (2) \\
S & =>0 S 1 & (1) \\
& \Rightarrow 00 S 11 & (1) \\
& =>000 S 111 & (1) \\
& =>000111 & (2)
\end{array}
\]
- Note that G "generates" the language \(\left\{0^{\mathrm{k}} 1^{\mathrm{k}} \mid \mathrm{k}>=0\right\}\)

\section*{Formal Definitions for CFLs}
- Let \(\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})\) be a CFG.
- Definition: Let X be in \(\mathrm{V}, \mathrm{Y}\) be in (V U T)*, \(\mathrm{X} \rightarrow \mathrm{Y}\) be in P , and let \(\alpha\) and \(\beta\) be in (V U T)*. Then:
\[
\alpha X \beta=>\alpha \beta
\]

In words, \(\alpha \mathrm{X} \beta\) directly derives \(\alpha \mathrm{Y} \beta\), or rather \(\alpha \mathrm{Y} \beta\) follows from \(\alpha \mathrm{X} \beta\) by the application of exactly one production from P .
- Example: (for grammar \#1)
\[
\begin{aligned}
& \text { aaabBccC }=>\text { aaabbBccC } \\
& \mathrm{aAb}=>\mathrm{ab} \\
& \mathrm{aAb}=>\mathrm{aaAb} \\
& \mathrm{aaAbBcccC}=>\text { aaAbBccc } \\
& \mathrm{S}=>\mathrm{ABC}
\end{aligned}
\]

\[
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ABC} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \mid \varepsilon \\
& \mathrm{B} \rightarrow \mathrm{bB} \mid \varepsilon \\
& \mathrm{C} \rightarrow \mathrm{cC} \mid \varepsilon
\end{aligned}
\]
- Definition: Suppose that \(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{m}}\) are in \((\mathrm{V} \mathrm{U} \mathrm{T})^{*}, \mathrm{~m}>=1\), and
\[
\begin{gathered}
\alpha_{1}=>\alpha_{2} \\
\alpha_{2}=>\alpha_{3} \\
\quad: \\
\alpha_{m-1}=>\alpha_{m}
\end{gathered}
\]

Then \(\alpha_{1}=>* \alpha_{\mathrm{m}}\)

In words, \(\alpha_{1}\) derives \(\alpha_{m}\), or rather, \(\alpha_{m}\) follows from \(\alpha_{1}\) by the application of zero or more productions. Note that: \(\alpha=>^{*} \alpha\).
- Example: (for grammar \#1)
\[
\begin{aligned}
& \mathrm{aAbBcC}=>^{*} \text { aaabbccccC } \\
& \mathrm{aAbBcC}=>^{*} \mathrm{abBc} \\
& \mathrm{~S}=>^{*} \text { aabbbc }
\end{aligned}
\]

- Definition: Let \(\alpha\) be in (V U T)*. Then \(\alpha\) is a sentential form if and only if \(S=>^{*} \alpha\).
- Definition: Let \(\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})\) be a context-free grammar. Then the language generated by G , denoted \(\mathrm{L}(\mathrm{G})\), is the set:
\[
\left\{w \mid w \text { is in } T^{*} \text { and } S=>* w\right\}
\]
- Definition: Let L be a language. Then L is a context-free language if and only if there exists a context-free grammar \(G\) such that \(L=L(G)\).
- Definition: Let \(\mathrm{G}_{1}\) and \(\mathrm{G}_{2}\) be context-free grammars. Then \(\mathrm{G}_{1}\) and \(\mathrm{G}_{2}\) are equivalent if and only if \(L\left(G_{1}\right)=L\left(G_{2}\right)\).
- Observations: (we won't use these, but food for thought...)
\(\rightarrow\) forms a relation on V and (V U T)*
\(\Rightarrow\) forms a relation on (V U T)* and (V U T)*.
=>* forms a relation on (V U T)* and (V U T)*.
- Exercise: Give a CFG that generates the set of all strings of 0's and 1's that contain the substring 010.
- Exercise: Give a CFG that generates the set of all strings of \(a\) 's, \(b\) 's and \(c\) 's where every \(a\) is immediately followed by a \(b\).
- Exercise: Give a CFG that generates the set of all strings of 0's and 1's that contain an even number of 0's.
- Note - as with the states in a DFA, non-terminals in a CFG have "assertions" associated with them.
- Question: Is the following a valid CFG?
\[
\begin{aligned}
& S->0 A \\
& A->1 B \\
& B->0 S 1
\end{aligned}
\]
- Keep in mind the smaller, "toolkit" grammers:
```

S->0S|e 0*
S->0S1|e }\quad0\mp@subsup{}{}{\textrm{n}}\mp@subsup{1}{}{n
S->AB
A->aA|e, B->bB|e
S->AS|e
Zero or more occurrences of something from A
A->0A1|e (0n}1\mp@subsup{1}{}{n}\mp@subsup{)}{}{*

```

Something from \(A\) followed by something from \(B\) \(a^{*} b^{*}\)

Zero or more occurrences of something from A
- Sometimes it's helpful to start with a simpler language, and then modify the grammar:
\[
0^{\mathrm{i}} 1^{\mathrm{j}}, \quad \mathrm{j} \geq \mathrm{i} \geq 0
\]

So what is the relationship between the regular and context-free languages?
- Theorem: Let L be a regular language. Then L is a context-free language.
- Proof: (by induction)

We will prove that if \(r\) is a regular expression then there exists a CFG G such that \(L(r)=\) \(\mathrm{L}(\mathrm{G})\). The proof will be by induction on the number of operators in r .
- Basis: \(\mathrm{Op}(\mathrm{r})=0\)

Then r is either \(\varnothing, \varepsilon\), or \(\mathbf{a}\), for some symbol \(\mathbf{a}\) in \(\Sigma\).

For Ø:
Let \(G=(\{S\},\{ \}, P, S)\) where \(P=\{ \}\)

For \(\varepsilon\) :
\[
\text { Let } G=(\{S\},\{ \}, P, S) \text { where } P=\{S \rightarrow \varepsilon\}
\]

For \(\mathbf{a}\) :
\[
\text { Let } G=(\{S\},\{a\}, P, S) \text { where } P=\{S->\mathbf{a}\}
\]

\section*{Inductive Hypothesis:}

Suppose there exists a \(\mathrm{k}>=0\) such that for any regular expression r , where \(0<=\mathrm{op}(\mathrm{r})<=\mathrm{k}\), that there exists a CFG G such that \(\mathrm{L}(\mathrm{r})=\mathrm{L}(\mathrm{G})\).

\section*{Inductive Step:}

Let \(r\) be a regular expression with \(o p(r)=k+1\). Since \(k>=0\), it follows that \(k+1>=1\), i.e., \(r\) has at least one operator. Therefore \(r=r_{1}+r_{2}=r_{1} r_{2}\) or \(r=r_{1} *\).

Case 1) \(\quad r=r_{1}+r_{2}\)

Since \(r\) has \(k+1\) operators, one of which is + , it follows that \(0<=o p\left(r_{1}\right)<=k\) and \(0<=o p\left(r_{2}\right)<=k\).

From the inductive hypothesis it follows that there exist CFGs \(G_{1}=\left(V_{1}, T_{1}, P_{1}, S_{1}\right)\) and \(\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{~T}_{2}, \mathrm{P}_{2}, \mathrm{~S}_{2}\right)\) such that \(\mathrm{L}\left(\mathrm{r}_{1}\right)=\mathrm{L}\left(\mathrm{G}_{1}\right)\) and \(\mathrm{L}\left(\mathrm{r}_{2}\right)=\mathrm{L}\left(\mathrm{G}_{2}\right)\).

Assume without loss of generality that \(\mathrm{V}_{1}\) and \(\mathrm{V}_{2}\) have no non-terminals in common, and construct a grammar \(\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})\) where:
\[
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{1} \mathrm{U} \mathrm{~V}_{2} \mathrm{U}\{\mathrm{~S}\} \\
& \mathrm{T}=\mathrm{T}_{1} \mathrm{UT}_{2} \\
& \mathrm{P}=\mathrm{P}_{1} \mathrm{UP}_{2} \mathrm{U}\left\{\mathrm{~S} \rightarrow \mathrm{~S}_{1}, \mathrm{~S} \rightarrow \mathrm{~S}_{2}\right\}
\end{aligned}
\]

Clearly, L(r) = L(G).

Case 2) \(\quad r=r_{1} r_{2}\)
Let \(\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{~T}_{1}, \mathrm{P}_{1}, \mathrm{~S}_{1}\right)\) and \(\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{~T}_{2}, \mathrm{P}_{2}, \mathrm{~S}_{2}\right)\) be as in Case 1, and construct a grammar \(\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})\) where:
\[
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{1} \mathrm{U} \mathrm{~V}_{2} \mathrm{U}\{\mathrm{~S}\} \\
& \mathrm{T}=\mathrm{T}_{1} \mathrm{UT}_{2} \\
& \mathrm{P}=\mathrm{P}_{1} \mathrm{UP}_{2} \mathrm{U}\left\{\mathrm{~S}->\mathrm{S}_{1} \mathrm{~S}_{2}\right\}
\end{aligned}
\]

Clearly, L(r) \(=\mathrm{L}(\mathrm{G})\).

Case 3) \(\quad r=\left(r_{1}\right)^{*}\)
Let \(\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{~T}_{1}, \mathrm{P}_{1}, \mathrm{~S}_{1}\right)\) be a CFG such that \(\mathrm{L}\left(\mathrm{r}_{1}\right)=\mathrm{L}\left(\mathrm{G}_{1}\right)\) and construct a grammar \(\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})\) where:
\[
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{1} \mathrm{U}\{\mathrm{~S}\} \\
& \mathrm{T}=\mathrm{T}_{1} \\
& \mathrm{P}=\mathrm{P}_{1} \mathrm{U}\left\{\mathrm{~S} \rightarrow \mathrm{~S}_{1} \mathrm{~S}, \mathrm{~S} \rightarrow \varepsilon\right\}
\end{aligned}
\]

Clearly, L(r) \(=\mathrm{L}(\mathrm{G}) \cdot \bullet\)
- The preceding theorem is constructive, in the sense that it shows how to construct a CFG from a given regular expression.
- Example \#1:
\[
\begin{aligned}
& r=a^{*} b^{*} \\
& r=r_{1} r_{2} \\
& r_{1}=r_{3} * \\
& r_{3}=a \\
& r_{2}=r_{4}^{*} \\
& r_{4}=b
\end{aligned}
\]
- Example \#1: \(a^{*} b^{*}\)
\[
\begin{array}{ll}
\mathrm{r}_{4}=\mathrm{b} & \mathrm{~S}_{1} \rightarrow \mathrm{~b} \\
\mathrm{r}_{3}=\mathrm{a} & \mathrm{~S}_{2} \rightarrow \mathrm{a} \\
\mathrm{r}_{2}=\mathrm{r}_{4} * & \begin{array}{l}
\mathrm{S}_{3} \rightarrow \mathrm{~S}_{1} \mathrm{~S}_{3} \\
\mathrm{~S}_{3} \rightarrow \varepsilon
\end{array} \\
& \begin{array}{l}
\mathrm{S}_{4} \rightarrow \mathrm{~S}_{2} \mathrm{~S}_{4} \\
\mathrm{r}_{1}=\mathrm{r}_{3} *
\end{array} \\
& \mathrm{~S}_{4} \rightarrow \varepsilon
\end{array}
\]
- Example \#2:
\[
\begin{aligned}
& r=(0+1)^{*} 01 \\
& r=r_{1} r_{2} \\
& r_{1}=r_{3} * \\
& r_{3}=\left(r_{4}+r_{5}\right) \\
& r_{4}=0 \\
& r_{5}=1 \\
& r_{2}=r_{6} r_{7} \\
& r_{6}=0
\end{aligned}
\]
\[
r_{7}=1
\]
- Example \#2: \((0+1)^{*} 01\)
\[
\begin{array}{ll}
\mathrm{r}_{7}=1 & \mathrm{~S}_{1} \rightarrow 1 \\
\mathrm{r}_{6}=0 & \mathrm{~S}_{2} \rightarrow 0 \\
\mathrm{r}_{2}=\mathrm{r}_{6} \mathrm{r}_{7} & \mathrm{~S}_{3} \rightarrow \mathrm{~S}_{2} \mathrm{~S}_{1} \\
\mathrm{r}_{5}=1 & \mathrm{~S}_{4} \rightarrow 1 \\
\mathrm{r}_{4}=0 & \mathrm{~S}_{5} \rightarrow 0 \\
\mathrm{r}_{3}=\left(\mathrm{r}_{4}+\mathrm{r}_{5}\right) & \mathrm{S}_{6} \rightarrow \mathrm{~S}_{4}, \mathrm{~S} \\
\mathrm{r}_{1}=\mathrm{r}_{3}^{*} & \mathrm{~S}_{7} \rightarrow \mathrm{~S}_{6} \mathrm{~S}_{7} \\
& \mathrm{~S}_{7} \rightarrow \varepsilon \\
\mathrm{r}=\mathrm{r}_{1} \mathrm{r}_{2} & \mathrm{~S}_{8} \rightarrow \mathrm{~S}_{7} \mathrm{~S}_{3}
\end{array}
\]
- Note: Although every regular language is a CFL, the reverse is not true. In other words, there exist CFLs that are not regular languages, i.e., \(\left\{0^{n} 1^{n} \mid n>=0\right\}\).
=> Therefore the regular languages form a proper subset of the CFLs.

- By the way, note that it is usually very easy to construct a CFG for a given regular expression, even without using the previous technique.
- Examples:
- \(1(0+01) * 0\)
\(-\quad(0+1) * 0(0+1) * 0(0+1)^{*}\)
- Definition: A CFG is a regular grammar if each rule is of the following form:
- A -> a <non-terminal>-> terminal-symbol
- \(\mathrm{A} \rightarrow \mathrm{aB}\) <non-terminal>-> terminal-symbol <non-terminal>
- \(\mathrm{A} \rightarrow\) < \(\varepsilon\) <non-terminal> -> epsilon
where \(A\) and \(B\) are in \(V\), and \(a\) is in \(T\)
- Regular Grammar:
\[
\begin{aligned}
& S \rightarrow a S \mid \varepsilon \\
& S \rightarrow a B \\
& B \rightarrow b B \\
& B \rightarrow b
\end{aligned}
\]
- Non-Regular Grammar:
\[
S \rightarrow 0 S 1 \mid \varepsilon
\]
- Theorem: A language L is a regular language iff there exists a regular grammar G such that \(L=L(G)\).
- Proof: Exercise.•
- Observation: A language may have several CFGs , some regular, some not
- Recall that \(S \rightarrow 0 S 1 \mid \varepsilon\) is not a regular grammar.
- The fact that this grammar is not regular does not in and of itself prove that \(0^{\mathrm{n}} 1^{\mathrm{n}}\) is not a regular language.
- Similarly S -> S0| \(\varepsilon\) is not a regular grammar.

\section*{Derivation Trees}
- Definition: Let \(\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})\) be a CFG. A tree is a derivation (or parse) tree if:
- Every vertex has a label from V U T U \(\{\varepsilon\}\)
- The label of the root is S
- If a vertex with label \(A\) has children with labels \(X_{1}, X_{2}, \ldots, X_{n}\), from left to right, then
\[
A \rightarrow X_{1}, X_{2}, \ldots, X_{n}
\]
must be a production in P
- If a vertex has label from T, then that vertex is a leaf
- If a vertex has label \(\varepsilon\), then that vertex is a leaf and the only child of its' parent
- More Generally, a derivation tree can be defined with any non-terminal as the root.
- A derivation tree is basically another way of conveying a (part of a) derivation.
- Example:
\(S \rightarrow A B\)
\(A \rightarrow a A A\)
\(A \rightarrow a A\)
\(A \rightarrow a\)
\(B \rightarrow b B\)
\(B \rightarrow b\)

\[
\text { yield }=\mathrm{aaab}
\]

yield \(=\) aaAA
- However:
- Root can be any non-terminal
- Leaf nodes can be terminals or non-terminals
- A derivation tree with root \(S\) shows the productions used to obtain a sentential form
- Observation: Every derivation corresponds to one derivation tree.
\[
\begin{aligned}
\mathrm{S} & \Rightarrow \mathrm{AB} \\
& \Rightarrow \text { aAAB } \\
& \Rightarrow \text { aaAB } \\
& \Rightarrow \text { aaaB } \\
& \Rightarrow \text { aaab }
\end{aligned}
\]

- Observation: Every derivation tree corresponds to one or more derivations.
\[
\begin{aligned}
S & \Rightarrow \text { AB } & S & \Rightarrow A B \\
& =>\text { aAAB } & & \Rightarrow A b \\
& =>\text { aaAB } & & \Rightarrow \text { ab } \\
& \Rightarrow \text { aaaB } & & \\
& \Rightarrow \text { aaab } & & \Rightarrow a A a b \\
& & & \Rightarrow \text { aaAb } \\
& & & \Rightarrow \text { aaab }
\end{aligned}
\]
- Definition: A derivation is leftmost (rightmost) if at each step in the derivation a production is applied to the leftmost (rightmost) non-terminal in the sentential form.
- The first derivation above is leftmost, second is rightmost, the third is neither.
- Observation: Every derivation tree for a string \(x\) in \(L(G)\) corresponds to exactly one leftmost (and rightmost) derivation.

\[
\begin{aligned}
S & =>\mathrm{AB} \\
& =>\text { aAAB } \\
& =>~ a a A B \\
& \Rightarrow \text { aaaB } \\
& \Rightarrow \text { aaab }
\end{aligned}
\]
- Observation: Let \(G\) be a CFG. Then there may exist a string \(x\) in \(L(G)\) that has more than 1 leftmost (or rightmost) derivation. Such a string will also have more than 1 derivation tree.
- Example: Consider the string aaab and the preceding grammar.
\begin{tabular}{|c|c|}
\hline \(S \rightarrow A B\) & \(S=A B\) \\
\hline \(\mathrm{A} \rightarrow \mathrm{aAA}\) & \(\Rightarrow \mathrm{aAAB}\) \\
\hline \(A \rightarrow \mathrm{aA}\) & => aaAB \\
\hline A \(\rightarrow\) a & \(\Rightarrow\) aaaB \\
\hline \(\mathrm{B} \rightarrow \mathrm{bB}\) & => aab \\
\hline B \(\rightarrow\) b & \\
\hline
\end{tabular}

\[
\begin{aligned}
\mathrm{S} & \Rightarrow \mathrm{AB} \\
& \Rightarrow \text { aAB } \\
& \Rightarrow \text { aaAB } \\
& \Rightarrow \text { aaaB } \\
& \Rightarrow \text { aaab }
\end{aligned}
\]

- The string has two left-most derivations, and therefore has two distinct parse trees.
- Definition: Let \(G\) be a CFG. Then \(G\) is said to be ambiguous if there exists an \(x\) in \(L(G)\) with \(>1\) leftmost derivations.
- Equivalently, \(G\) is ambiguous if there exists an \(x\) in \(L(G)\) with \(>1\) rightmost derivations.
- Equivalently, \(G\) is ambiguous if there exists an \(x\) in \(L(G)\) with \(>1\) parse trees.
"So," the rabbit asked the frog, "why is ambiguity such a bad thing?"
- Consider the following CFG, and the string \(3+4 * 5\) :
\[
\begin{aligned}
& \mathrm{E}->\mathrm{E}+\mathrm{E} \\
& \mathrm{E}->\mathrm{E} * \mathrm{E} \\
& \mathrm{E}->(\mathrm{E}) \\
& \mathrm{E} \text {-> number }
\end{aligned}
\]
- A parsing algorithm is based on a grammar.
- The parse tree generated by a parsing algorithm determines how the algorithm interprets the string.
- If the grammar allows the algorithm to parse a string in more than one way, then that string could be interpreted in more than one way...not good!
* In other words, the grammar should be designed so that it dictates exactly one way to parse a given string.
"Oh, now I understand," said the rabbit. ..
- And there is some good news!
- Observation: Given a CFL L, there may be more than one CFG G with \(\mathrm{L}=\) \(\mathrm{L}(\mathrm{G})\). Some ambiguous and some not.
- For example, a non-ambiguous version of the previous grammar:
\[
\begin{aligned}
& \mathrm{E}->\mathrm{T} \mid \mathrm{E}+\mathrm{T} \\
& \mathrm{~T}->\mathrm{F} \mid \mathrm{T}^{*} \mathrm{~F} \\
& \mathrm{~F}->(\mathrm{E}) \mid \text { number }
\end{aligned}
\]
- Note that \(3+4 * 5\) has exactly one leftmost derivation, and hence, parse tree.
"So from this day forward, I will only write non-ambiguous CFGs," said the rabbit...
"But there is just one more problem," said the frog...
- Definition: Let \(L\) be a CFL. If every CFG \(G\) with \(L=L(G)\) is ambiguous, then L is inherently ambiguous.
- And yes, there do exist inherently ambiguous languages...
\[
\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{\mathrm{m}} \mathrm{~d}^{\mathrm{m}} \mid \mathrm{n}>=1, \mathrm{~m}>=1\right\} \cup\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{m}} \mathrm{c}^{\mathrm{m}} \mathrm{~d}^{\mathrm{n}} \mid \mathrm{n}>=1, \mathrm{~m}>=1\right\}
\]
"Oh, \(s @ \# t!\) !" said the rabbit...
"Don't worry," said the frog...
"Inherently ambiguous CFLs hide deep in the forest, so you won't see them very often."
- Exercise - try writing a grammar for the above language, and see how any string of the form \(\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mathrm{d}^{\mathrm{n}}\) has more than one leftmost derivation.
- Many, potential algorithmic problems exist for context-free grammars.
- Imagine developing algorithms for each of the following problems:
- Is L(G) empty?
- Is L(G) finite?
- Is L(G) infinite?
\(-\quad\) Is \(L(G)=T^{*}\)
- \(\quad\) Is \(L\left(\mathrm{G}_{1}\right)=\mathrm{L}\left(\mathrm{G}_{2}\right)\) ?
- Is \(G\) ambiguous?
- Is L(G) inherently ambiguous?
- Given ambiguous \(G\), construct unambiguous \(\mathrm{G}^{\prime}\) such that \(\mathrm{L}(\mathrm{G})=\mathrm{L}\left(\mathrm{G}^{\prime}\right)\)
- Given G, is G "minimal?"
- Most of the above problems are "undecidable," i.e., there is no algorithm, or they are computation difficult, i.e. NP-hard or PSPACE-hard.

S -> A
A -> S
B -> b```

