Context-Free Grammars
and Languages

Reading: Chapter 5

Context-Free Languages

The class of context-free languages generalizes the class of regular languages, i.e., every
regular language is a context-free language.

The reverse of this is not true,i.e., every context-free language is not necessarily regular.
For example, as we will see {0k1¥ | k>=0} is context-free but not regular.

{01k | k>=0}

Context-Free Languages

Regular Languages

Context-Free Languages

« Many issues and guestions we asked for regular languages will be the same for context-
free languages:

Machine model — PDA (Push-Down Automata)

Descriptor — CFG (Context-Free Grammar)

Pumping lemma for context-free languages

Closure of context-free languages with respect to various operations

Algorithms and conditions for finiteness or emptiness

» Some analogies don’t hold, ¢.g., non-determinism in a PDA makes a difference and, in
particular, deterministic PDAs define a subset of the context-free languages.

Informally a Context-Free Language (CFL) is a language generated by a
Context-Free Grammar (CFG).

What is a CFG?

Informally, a CFG is a set of rules for deriving (or generating) strings (or
sentences) in a language.

Example CFG:

<sentence> —> <noun-phrase> <verb-phrase>
<noun-phrase> —> <proper-noun>
<noun-phrase> —> <determiner> <common-noun>
<proper-noun> —> John

<proper-noun> —> Jill

<common-noun> —> car

<common-noun> —> hamburger
<determiner> —> a

<determiner> —> the

<verb-phrase> —> <verb> <adverb>
<verb-phrase> —> <verb>

<verb> —> drives

<verb> —> eats

<adverb> —> slowly

<adverb> —> frequently

Example Derivation:

<sentence> => <noun-phrase> <verb-phrase>
=> <proper-noun> <verb-phrase>
=> Jill <verb-phrase>
=> Jill <verb> <adverb>
=> Jill drives <adverb>
=> Jill drives frequently

1)
)
©)
(4)
()
(6)
(7)
(8)
©)
(10)
(11)
(12)
(13)
(14)
(15)

by (1)
by (2)
by (5)
by (10)
by (12)
by (15)

« Informally a CFG consists of:

— A set of replacement rules.

— Each will have a Left-Hand Side (LHS) and a Right-Hand Side (RHS).
— Two types of symbols; variables and terminals.

— LHS of each rule is a single variable (no terminals).

— RHS of each rule consists of zero or more variables and terminals.

— A “string” consists of only terminals.

Formal Definition of Context-Free Grammar

« A Context-Free Grammar (CFG) is a 4-tuple:

G=(V,T,P,S)

V - A finite set of variables or non-terminals

T - A finite set of terminals (V and T do not intersect)

P - A finite set of productions, each of the form A — «a, where A is in V and
a isin (VUT)* // Note that a may be €

S - A starting non-terminal (S is in V)

Example CFG #1:

G=({A B,C, S} {a b,c} P,YS)

P:
(1)
(2)
3
(4)
(5)
(6)
(7)

S—> ABC

A —>aA
A—>¢
B —>DbB
B—>¢
C—>cC
C—>¢

Example Derivations:

S

=> ABC
=>BC
=>C
=g

1)
3)
(5)
(7)

A—>aA e
B-—>bB|¢

C—>cC|e

S =>ABC
=> aABC
=>aaABC
=> aaBC
=> aabBC
=> aabC
=> aabcC
=> aabc

Note that G generates the language a*b*c*

1)
(2)
(2)
3)
(4)
()
(6)
(7)

Example CFG #2:

G=({S}{0,1},P,S)

(1) S—>0s1 or just simply S —0S1 | ¢
(2) S—¢

Example Derivations:

S =>0S1 (1) S =>¢
=> 01)

S =>0S1 (1)
=> 00S11 (1)

=>000S111 (1)
=>000111 (2

Note that G “generates” the language {0K1X | k>=0}

Formal Definitions for CFLs

LetG=(V,T,P,S)beaCFG.

Definition: Let XbeinV,Y bein (VU T)*, X—Y bein P, and let o and fp be in (V U
T)*. Then:

aXB=>a¥Yp

In words, aXp directly derives aY, or rather a Y follows from aXf by the application
of exactly one production from P.

Example: (for grammar #1)

aaabBccC => aaabbBccC bBcC => agAbBcC i';p;ic'g
aAb =>ab =>/aAbbbCB B> bB [c
aAb => aaAb C—>cCle
aaAbBcccC => aaAbBccc

S=>ABC

10

Definition: Suppose that a4, a,,...,a are in (V U T)*, m>=1, and

0 == 0y
O => O3

Op.1 = O
e %k
Then o, =>* a,,

In words, a, derives a,, or rather, o, follows from a, by the application of zero or more
productions. Note that: o =>* a.

S->ABC
Example: (for grammar #1) A—>aA ¢
B->bB|¢
aAbBcC =>* aaabbccccC C—>cCle

aAbBcC =>* abhBc
S =>* aabbbc

Definition: Let a be in (V U T)*. Then a is a sentential form if and only if S =>* a.

11

Definition: Let G = (V, T, P, S) be a context-free grammar. Then the language
generated by G, denoted L(G), is the set:

{w|wisin T* and S=>* w}

Definition: Let L be a language. Then L is a context-free language if and only if there
exists a context-free grammar G such that L = L(G).

Definition: Let G, and G, be context-free grammars. Then G, and G, are equivalent if
and only if L(G,) = L(G,).

Observations: (we won’t use these, but food for thought...)
—> forms a relationon VV and (V U T)*
=> forms a relation on (V U T)* and (V U T)*.
=>* forms a relation on (V U T)* and (V U T)*.

12

Exercise: Give a CFG that generates the set of all strings of 0’s and 1°s that contain the
substring 010.

Exercise: Give a CFG that generates the set of all strings of a’s, b’s and ¢’s where every
a is immediately followed by a b.

Exercise: Give a CFG that generates the set of all strings of 0’s and 1’s that contain an
even number of 0’s.

Note — as with the states in a DFA, non-terminals in a CFG have “assertions” associated
with them.

Question: Is the following a valid CFG?

S ->0A
A->1B
B -> 0S1

13

Keep in mind the smaller, “toolkit” grammers:

S->0S|e 0*

S->0Slle 0"l

S->AB Something from A followed by something from B
A->aAle, B->bBJe a*b*
S->AS|e Zero or more occurrences of something from A

A->0Alle (O"1M)*

Sometimes it’s helpful to start with a simpler language, and then modify the
grammar:

0, j>i=>0

14

So what is the relationship between the regular and context-free languages?

« Theorem: Let L be a regular language. Then L is a context-free language.
« Proof: (by induction)

We will prove that if r is a regular expression then there exists a CFG G such that L(r) =
L(G). The proof will be by induction on the number of operators in .

15

Basis: Op(r) =0

Then r is either O, ¢, or a, for some symbol a in X.

For @:

Let G = ({S}, {}, P, S) where P = {}
For &:

Let G = ({S}, {}, P, S) where P = {S —> ¢}
For a:

Let G = ({S}, {a}, P, S) where P = {S —>a}

16

Inductive Hypothesis:
Suppose there exists a k>=0 such that for any regular expression r, where 0<=o0p(r)<=k, that there exists a
CFG G such that L(r) = L(G).

Inductive Step:
Let r be a regular expression with op(r)=k+1. Since k>=0, it follows that k+1>=1, i.e., r has at least one
operator. Thereforer=r; +r,, r=ryr,orr=r*

Casel) r=r;+r,
Since r has k+1 operators, one of which is +, it follows that 0<=o0p(r,)<=k and 0<=op(r,)<=k.

From the inductive hypothesis it follows that there exist CFGs G, = (V,, T{, P, S;)
and G, = (V,, T,, P, S,) such that L(r,) = L(G,) and L(r,) = L(G,).

Assume without loss of generality that V, and V, have no non-terminals in common, and construct a
grammar G = (V, T, P, S) where:

V=V, UV,U {S}

T=T,UT,

P=P,UP,U{S—>S,,S—>S,}
Clearly, L(r) = L(G).

17

Case2) r=rn,

LetG, =(V,, T, P, S) and G, = (V,, T,, P,, S,) be as in Case 1, and construct a grammar
G=(V,T,P,S)where:

V=V, UV,U{S}
T=T,UT,
P=P,UP,U{S—>S5,5,}

Clearly, L(r) = L(G).

Case3) r=(r)*

Let G, = (V,, T4, P4, Sp) be a CFG such that L(r,) = L(G,) and construct a grammar
G=(V,T,P,S) where:

V=V, U({S}
T=T,
P=P,U{S—>S,;S,S—>¢}

Clearly, L(r) = L(G).=

18

The preceding theorem is constructive, in the sense that it shows how to construct a
CFG from a given regular expression.

Example #1:

r=a*pb*

19

Example #1: a*b*

r,=b S,—>b
r,=a S,—>a
r,=r,* S;—>S,S;
S;—=>¢
r=r* S,—>S,S,
S,—>¢

20

Example #2:

r = (0+1)*01
r=rn,r,
r=rg*

r3 = (ry+rs)
r,=0
=1

[,= gl
=0
r,=1

21

Example #2: (0+1)*01

r,=1
=0

[,= Igl-
=1
r,=0

ry = (ry+rs)
r=r;*
r=ryr,

S, —>1

S,—>0

S,—>S,S,

S,—>1

S, —>0

Se—> Sy, Sg—> Ss

S, —> 5SS,
S, —>¢

Sg—>S;S;

22

Note: Although every regular language is a CFL, the reverse is not true. In other words,
there exist CFLs that are not regular languages, i.e., {0"1" | n>=0}.

=> Therefore the regular languages form a proper subset of the CFLs.

{Ok1k | k>=0}

Context-Free Languages

Regular Languages

23

By the way, note that it is usually very easy to construct a CFG for a given regular
expression, even without using the previous technique.

Examples:
— 1(0+01)*0
— (0+1)*0(0+1)*0(0+1)*

24

» Definition: A CFG is a regular grammar if each rule is of the following form:

- A—>a <non-terminal> -> terminal-symbol
- A—>aB <non-terminal> -> terminal-symbol <non-terminal>
- A—>¢ <non-terminal> -> epsilon

where Aand BareinV,andaisinT

* Regular Grammar:

S—>aS|¢
S—>aB
B —>bB
B-—>Db

* Non-Regular Grammar:

S—>0S1|e

25

Theorem: A language L is a regular language iff there exists a regular grammar G such
that L = L(G).

Proof: Exercise.=

Observation: A language may have several CFGs, some regular, some not
— Recall that S — 0S1 | € is not a regular grammar.

— The fact that this grammar is not regular does not in and of itself prove that 0"1" is not a regular
language.

— Similarly S -> S0 | € is not a regular grammar.

26

Derivation Trees

« Definition: Let G=(V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if:

— Every vertex has a label from VU T U {¢}
— The label of the root is S
— Ifavertex with label A has children with labels X, X,,..., X, from left to right, then

A—>X, X, X,
must be a production in P

— If avertex has label from T, then that vertex is a leaf
— Ifavertex has label g, then that vertex is a leaf and the only child of its’ parent

« More Generally, a derivation tree can be defined with any non-terminal as the root.

27

A derivation tree is basically another way of conveying a (part of a) derivation.

Example:
S—>AB S S A
A > aAA AN /N / x
A —>aA A B A B a
NN NN /|
B—>DbB a- A A b a A A b a AA
B—>b ‘ ‘
a a a

yield = aaab yield = aAab yield = aaAA

However:

— Root can be any non-terminal
— Leaf nodes can be terminals or non-terminals
— A derivation tree with root S shows the productions used to obtain a sentential form

28

» Observation: Every derivation corresponds to one derivation tree.

S =>AB S
=> aAAB RN
=> aaAB A B
=> a0aB NN
=> aaab a A A b
b

« Observation: Every derivation tree corresponds to one or more derivations.

S =>AB S =>AB S =>AB
=>aAAB => Ab => Ab
=> aaAB => aAAb =>aAAb
=> gaaB =>aAab => aaAb
=> gaab => gaab => gaab

« Definition: A derivation is leftmost (rightmost) if at each step in the derivation a
production is applied to the leftmost (rightmost) non-terminal in the sentential form.
— The first derivation above is leftmost, second is rightmost, the third is neither. 29

« Observation: Every derivation tree for a string x in L(G) corresponds to
exactly one leftmost (and rightmost) derivation.

S S=>AB
/ \ => aAAB
A B » => aaAB
SN\ > aaB
a A A b => gaab
|

d d

» Observation: Let G be a CFG. Then there may exist a string x in L(G) that
has more than 1 leftmost (or rightmost) derivation. Such a string will also have
more than 1 derivation tree.

30

« Example: Consider the string aaab and the preceding grammar.

S—> AB S == AB S
A—>aAA => aAAB y \
A —>aA => aaAB A B
A—>a => aaaB / ‘ \ \
B—>bB => aaab a A A b
B-—>bh ‘ ‘
a a
S =>AB
=> aAB / \
=> aaAB

e 7 \ \
a/ \A
|

a

« The string has two left-most derivations, and therefore has two distinct parse trees.

31

Definition: Let G be a CFG. Then G is said to be ambiquous if there exists an
X in L(G) with >1 leftmost derivations.

Equivalently, G is ambiguous if there exists an x in L(G) with >1 rightmost
derivations.

Equivalently, G is ambiguous if there exists an x in L(G) with >1 parse trees.
“So, ” the rabbit asked the frog, “why is ambiguity such a bad thing?”

Consider the following CFG, and the string 3+4*5:

>E+E
>E*E
-> (E)

-> number

m m m m

32

A parsing algorithm is based on a grammar.

The parse tree generated by a parsing algorithm determines how the algorithm
interprets the string.

If the grammar allows the algorithm to parse a string in more than one way,
then that string could be interpreted in more than one way...not good!

In other words, the grammar should be designed so that it dictates exactly one
way to parse a given string.

“Oh, now [understand, ” said the rabbit...

33

And there is some good news!

Observation: Given a CFL L, there may be more than one CFG G with L =
L(G). Some ambiguous and some not.

For example, a non-ambiguous version of the previous grammar:

E->T|E+T
T->F|T*F
F -> (E) | number

Note that 3+4*5 has exactly one leftmost derivation, and hence, parse tree.

“So from this day forward, I will only write non-ambiguous CFGs,”
said the rabbit...

“But there is just one more problem, ” said the frog...

34

Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then

L is inherently ambiguous.

And yes, there do exist inherently ambiguous languages...

{a"b"cmd™ | n>=1, m>=1} U {a"b™cMd" | n>=1, m>=1}
“Oh, s@##t!,” said the rabbit...

“Don’t worry,” said the frog...

“Inherently ambiguous CFLs hide deep in the forest, so you won’t see them
very often.”

Exercise — try writing a grammar for the above language, and see how any
string of the form a"b"c"d" has more than one leftmost derivation.

35

Many, potential algorithmic problems exist for context-free grammars.

Imagine developing algorithms for each of the following problems:

— Is L(G) empty?

— Is L(G) finite?

— Is L(G) infinite?

— IsL(G)=T*

— IsL(G,) = L(G,)?

— Is G ambiguous?

— 1Is L(G) inherently ambiguous?

— Given ambiguous G, construct unambiguous G’ such that L(G) = L(G’)

— @Given G, 1s G “minimal?”

Most of the above problems are “undecidable,” i.e., there is no algorithm, or
they are computation difficult, i.e. NP-hard or PSPACE-hard.

S->A
A->S
B->b

36

