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Context-Free Languages

• The class of context-free languages generalizes the class of regular languages, i.e., every 

regular language is a context-free language.

• The reverse of this is not true,i.e., every context-free language is not necessarily regular.  

For example, as we will see {0k1k | k>=0} is context-free but not regular.

Context-Free Languages

Regular Languages

{0k1k | k>=0}
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Context-Free Languages

• Many issues and questions we asked for regular languages will be the same for context-

free languages:

Machine model – PDA (Push-Down Automata)

Descriptor – CFG (Context-Free Grammar)

Pumping lemma for context-free languages

Closure of context-free languages with respect to various operations

Algorithms and conditions for finiteness or emptiness

• Some analogies don’t hold, e.g., non-determinism in a PDA makes a difference and, in 

particular, deterministic PDAs define a subset of the context-free languages.
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• Informally a Context-Free Language (CFL) is a language generated by a 

Context-Free Grammar (CFG).

• What is a CFG?

• Informally, a CFG is a set of rules for deriving (or generating) strings (or 

sentences) in a language.
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• Example CFG:

<sentence>  –>  <noun-phrase> <verb-phrase> (1)

<noun-phrase>  –>  <proper-noun> (2)

<noun-phrase>  –>  <determiner> <common-noun> (3)

<proper-noun>  –>  John (4)

<proper-noun>  –>  Jill (5)

<common-noun>  –>  car (6)

<common-noun>  –>  hamburger (7)

<determiner>  –>  a (8)

<determiner>  –>  the (9)

<verb-phrase>  –>  <verb> <adverb> (10)

<verb-phrase>  –>  <verb> (11)

<verb>  –>  drives (12)

<verb>  –>  eats (13)

<adverb>  –>  slowly (14)

<adverb>  –>  frequently (15)

• Example Derivation:

<sentence> => <noun-phrase> <verb-phrase> by (1)

=> <proper-noun> <verb-phrase> by (2)

=> Jill <verb-phrase> by (5)

=> Jill <verb> <adverb> by (10)

=> Jill drives <adverb> by (12)

=> Jill drives frequently by (15)
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• Informally a CFG consists of:

– A set of replacement rules.

– Each will have a Left-Hand Side (LHS) and a Right-Hand Side (RHS).

– Two types of symbols; variables and terminals.

– LHS of each rule is a single variable (no terminals).

– RHS of each rule consists of zero or more variables and terminals.

– A “string” consists of only terminals.
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Formal Definition of Context-Free Grammar

• A Context-Free Grammar (CFG) is a 4-tuple:

G = (V, T, P, S)

V - A finite set of variables or non-terminals

T - A finite set of terminals (V and T do not intersect)

P - A finite set of productions, each of the form A –> α, where A is in V and 

α is in (V U T)* // Note that α may be ε

S - A starting non-terminal (S is in V)



8

• Example CFG #1:

G = ({A, B, C, S}, {a, b, c}, P, S)

P:

(1) S –> ABC

(2) A –> aA

(3) A –> ε

(4) B –> bB

(5) B –> ε

(6) C –> cC

(7) C –> ε

• Example Derivations:

S => ABC (1) S => ABC (1)

=> BC (3) => aABC (2)

=> C (5) => aaABC (2)

=> ε (7) => aaBC (3)

=> aabBC (4)

=> aabC (5)

=> aabcC (6)

=> aabc (7)

• Note that G generates the language a*b*c*

A –> aA | ε

B –> bB | ε

C –> cC | ε
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• Example CFG #2:

G = ({S}, {0, 1}, P, S)

P:

(1) S –> 0S1 or just simply S –> 0S1 | ε

(2) S –> ε

• Example Derivations:

S => 0S1 (1) S => ε (2)

=> 01 (2)

S => 0S1 (1)

=> 00S11 (1)

=> 000S111 (1)

=> 000111 (2)

• Note that G “generates” the language {0k1k | k>=0}
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Formal Definitions for CFLs

• Let G = (V, T, P, S) be a CFG.

• Definition: Let X be in V, Y be in (V U T)*, X –> Y be in P, and let α and β be in (V U 

T)*. Then:

αXβ => αYβ

In words, αXβ directly derives αYβ, or rather αYβ follows from αXβ by the application 

of exactly one production from P.

• Example: (for grammar #1)

aaabBccC => aaabbBccC aAbBcC => abAbBcC

aAb => ab aAbbbC => aAbbbCB

aAb => aaAb S => aaabbbc

aaAbBcccC => aaAbBccc

S => ABC

S -> ABC

A –> aA | ε

B –> bB | ε

C –> cC | ε
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• Definition: Suppose that α1, α2,…,αm are in (V U T)*, m>=1, and

α1 => α2

α2 => α3

:

αm-1 => αm

Then α1 =>* αm

In words, α1 derives αm, or rather, αm follows from α1 by the application of zero or more
productions. Note that: α =>* α.

• Example: (for grammar #1)

aAbBcC =>* aaabbccccC aAbBcC =>* bac

aAbBcC =>* abBc aabbccc =>* aAbBc

S =>* aabbbc S=>* CaAB

• Definition: Let α be in (V U T)*. Then α is a sentential form if and only if S =>* α.

S -> ABC

A –> aA | ε

B –> bB | ε

C –> cC | ε
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• Definition: Let G = (V, T, P, S) be a context-free grammar. Then the language 
generated by G, denoted L(G), is the set:

{w | w is in T* and S=>* w}

• Definition: Let L be a language. Then L is a context-free language if and only if there 
exists a context-free grammar G such that L = L(G).

• Definition: Let G1 and G2 be context-free grammars. Then G1 and G2 are equivalent if 

and only if L(G1) = L(G2).

• Observations: (we won’t use these, but food for thought…)

–> forms a relation on V and (V U T)*

=> forms a relation on (V U T)* and (V U T)*.

=>* forms a relation on (V U T)* and (V U T)*.
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• Exercise: Give a CFG that generates the set of all strings of 0’s and 1’s that contain the 

substring 010.

• Exercise: Give a CFG that generates the set of all strings of a’s, b’s and c’s where every 

a is immediately followed by a b.

• Exercise: Give a CFG that generates the set of all strings of 0’s and 1’s that contain an 

even number of 0’s.

• Note – as with the states in a DFA, non-terminals in a CFG have “assertions” associated 

with them.

• Question: Is the following a valid CFG?

S -> 0A

A -> 1B

B -> 0S1
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• Keep in mind the smaller, “toolkit” grammers:

S->0S|e 0*

S->0S1|e 0n1n

S->AB Something from A followed by something from B

A->aA|e, B->bB|e a*b*

S->AS|e Zero or more occurrences of something from A

A->0A1|e (0n1n)*

• Sometimes it’s helpful to start with a simpler language, and then modify the 

grammar:

0i1j,   j ≥ i ≥ 0
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So what is the relationship between the regular and context-free languages?

• Theorem: Let L be a regular language. Then L is a context-free language.

• Proof: (by induction)

We will prove that if r is a regular expression then there exists a CFG G such that L(r) = 

L(G). The proof will be by induction on the number of operators in r.
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• Basis: Op(r) = 0

Then r is either Ø, ε, or a, for some symbol a in Σ. 

For Ø:

Let G = ({S}, {}, P, S) where P = {}

For ε:

Let G = ({S}, {}, P, S) where P = {S –> ε}

For a:

Let G = ({S}, {a}, P, S) where P = {S –> a}
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Inductive Hypothesis:

Suppose there exists a k>=0 such that for any regular expression r, where 0<=op(r)<=k, that there exists a 

CFG G such that L(r) = L(G).

Inductive Step:

Let r be a regular expression with op(r)=k+1. Since k>=0, it follows that k+1>=1, i.e., r has at least one 

operator. Therefore r = r1 + r2, r = r1r2 or r = r1*.

Case 1) r = r1 + r2

Since r has k+1 operators, one of which is +, it follows that 0<=op(r1)<=k and 0<=op(r2)<=k.

From the inductive hypothesis it follows that there exist CFGs G1 = (V1, T1, P1, S1)

and G2 = (V2, T2, P2, S2) such that L(r1) = L(G1) and L(r2) = L(G2).

Assume without loss of generality that V1 and V2 have no non-terminals in common, and construct a 

grammar G = (V, T, P, S) where:

V = V1 U V2 U {S}

T = T1 U T2

P = P1 U P2 U {S –> S1, S –> S2}

Clearly, L(r) = L(G).
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Case 2) r = r1r2

Let G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2) be as in Case 1, and construct a grammar
G = (V, T, P, S) where:

V = V1 U V2 U {S}

T = T1 U T2

P = P1 U P2 U {S –> S1S2}

Clearly, L(r) = L(G).

Case 3) r = (r1)*

Let G1 = (V1, T1, P1, S1) be a CFG such that L(r1) = L(G1) and construct a grammar
G = (V, T, P, S) where:

V = V1 U {S}

T = T1

P = P1 U {S –> S1S, S –> ε}

Clearly, L(r) = L(G). •
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• The preceding theorem is constructive, in the sense that it shows how to construct a 

CFG from a given regular expression.

• Example #1:

r = a*b*

r = r1r2

r1= r3*

r3 = a

r2= r4*

r4 = b
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• Example #1: a*b*

r4 = b S1 –> b

r3 = a S2 –> a

r2= r4* S3 –> S1S3

S3 –> ε

r1= r3* S4 –> S2S4

S4 –> ε

r = r1r2 S5 –> S4S3
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• Example #2:

r = (0+1)*01

r = r1r2

r1= r3*

r3 = (r4+r5)

r4 = 0

r5 = 1

r2= r6r7

r6 = 0

r7 = 1
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• Example #2: (0+1)*01

r7 = 1 S1 –> 1

r6 = 0 S2 –> 0

r2= r6r7 S3 –> S2S1

r5 = 1 S4 –> 1

r4 = 0 S5 –> 0

r3 = (r4+r5) S6 –> S4, S6 –> S5

r1= r3* S7 –> S6S7

S7 –> ε

r = r1r2 S8 –> S7S3



23

• Note: Although every regular language is a CFL, the reverse is not true. In other words, 

there exist CFLs that are not regular languages, i.e., {0n1n | n>=0}.

=> Therefore the regular languages form a proper subset of the CFLs.

Context-Free Languages

Regular Languages

{0k1k | k>=0}
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• By the way, note that it is usually very easy to construct a CFG for a given regular 

expression, even without using the previous technique.

• Examples:

– 1(0+01)*0

– (0+1)*0(0+1)*0(0+1)* 
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• Definition: A CFG is a regular grammar if each rule is of the following form:

– A –> a <non-terminal> -> terminal-symbol

– A –> aB <non-terminal> -> terminal-symbol <non-terminal>

– A –> ε <non-terminal> -> epsilon

where A and B are in V, and a is in T

• Regular Grammar:

S –> aS | ε

S –> aB

B –> bB

B –> b

• Non-Regular Grammar:

S –> 0S1 | ε
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• Theorem: A language L is a regular language iff there exists a regular grammar G such 

that L = L(G).

• Proof: Exercise. •

• Observation: A language may have several CFGs, some regular, some not

– Recall that S –> 0S1 | ε is not a regular grammar.

– The fact that this grammar is not regular does not in and of itself prove that 0n1n is not a regular 

language.

– Similarly S -> S0 | ε is not a regular grammar.
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Derivation Trees

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if:

– Every vertex has a label from V U T U {ε}

– The label of the root is S

– If a vertex with label A has children with labels X1, X2,…, Xn, from left to right, then

A –> X1, X2,…, Xn

must be a production in P

– If a vertex has label from T, then that vertex is a leaf

– If a vertex has label ε, then that vertex is a leaf and the only child of its’ parent

• More Generally, a derivation tree can be defined with any non-terminal as the root.
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• A derivation tree is basically another way of conveying a (part of a) derivation.

• Example:

S –> AB S S A

A –> aAA

A –> aA A B A B                      a           A

A –> a

B –> bB a A A b a A A b                           a   A  A

B –> b

a a a

yield = aaab yield = aAab yield = aaAA

• However:

– Root can be any non-terminal

– Leaf nodes can be terminals or non-terminals

– A derivation tree with root S shows the productions used to obtain a sentential form
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• Observation: Every derivation corresponds to one derivation tree.

S => AB S

=> aAAB

=> aaAB A B

=> aaaB

=> aaab a A A b

a a

• Observation: Every derivation tree corresponds to one or more derivations.

S => AB S => AB S => AB

=> aAAB => Ab => Ab

=> aaAB => aAAb => aAAb

=> aaaB =>aAab => aaAb

=> aaab => aaab => aaab

• Definition: A derivation is leftmost (rightmost) if at each step in the derivation a 

production is applied to the leftmost (rightmost) non-terminal in the sentential form.

– The first derivation above is leftmost, second is rightmost, the third is neither.
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• Observation: Every derivation tree for a string x in L(G) corresponds to 

exactly one leftmost (and rightmost) derivation. 

S S => AB

=> aAAB

A B => aaAB

=> aaaB

a A A b => aaab

a a

• Observation: Let G be a CFG. Then there may exist a string x in L(G) that 

has more than 1 leftmost (or rightmost) derivation. Such a string will also have 

more than 1 derivation tree.
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• Example: Consider the string aaab and the preceding grammar.

S –> AB S => AB S

A –> aAA => aAAB

A –> aA => aaAB A B

A –> a => aaaB

B –> bB => aaab a A A             b

B –> b

a a

S => AB S

=> aAB

=> aaAB A B

=> aaaB

=> aaab a A             b

a A

a

• The string has two left-most derivations, and therefore has two distinct parse trees.
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• Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an 

x in L(G) with >1 leftmost derivations.

• Equivalently, G is ambiguous if there exists an x in L(G) with >1 rightmost 

derivations.

• Equivalently, G is ambiguous if there exists an x in L(G) with >1 parse trees.

“So,” the rabbit asked the frog, “why is ambiguity such a bad thing?”

• Consider the following CFG, and the string 3+4*5:

E -> E + E

E -> E * E

E -> (E)

E -> number
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• A parsing algorithm is based on a grammar.

• The parse tree generated by a parsing algorithm determines how the algorithm  

interprets the string.

• If the grammar allows the algorithm to parse a string in more than one way, 

then that string could be interpreted in more than one way…not good!

* In other words, the grammar should be designed so that it dictates exactly one 

way to parse a given string.

“Oh, now I understand,” said the rabbit…
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• And there is some good news!

• Observation: Given a CFL L, there may be more than one CFG G with L = 

L(G). Some ambiguous and some not.

• For example, a non-ambiguous version of the previous grammar:

E -> T | E+T

T -> F | T*F

F -> (E) | number

• Note that 3+4*5 has exactly one leftmost derivation, and hence, parse tree.

“So from this day forward, I will only write non-ambiguous CFGs,”

said the rabbit…

“But there is just one more problem,” said the frog…
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• Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then 

L is inherently ambiguous.

• And yes, there do exist inherently ambiguous languages…

{anbncmdm | n>=1, m>=1} ∪ {anbmcmdn | n>=1, m>=1}

“Oh, s@#t!,” said the rabbit…

“Don’t worry,” said the frog…

“Inherently ambiguous CFLs hide deep in the forest, so you won’t see them 

very often.”

• Exercise – try writing a grammar for the above language, and see how any 

string of the form anbncndn has more than one leftmost derivation.
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• Many, potential algorithmic problems exist for context-free grammars.

• Imagine developing algorithms for each of the following problems:

– Is L(G) empty?

– Is L(G) finite?

– Is L(G) infinite?

– Is L(G) = T*

– Is L(G1) = L(G2)?

– Is G ambiguous?

– Is L(G) inherently ambiguous?

– Given ambiguous G, construct unambiguous G’ such that L(G) = L(G’)

– Given G, is G “minimal?”

• Most of the above problems are “undecidable,” i.e., there is no algorithm, or 

they are computation difficult, i.e. NP-hard or PSPACE-hard.

S -> A

A -> S

B -> b


