Context-Free Grammars and Languages Reading: Chapter 5

Context-Free Languages

- The class of context-free languages generalizes the class of regular languages, i.e., every regular language is a context-free language.
- The reverse of this is not true, i.e., every context-free language is not necessarily regular. For example, as we will see $\{0^k1^k | k \ge 0\}$ is context-free but not regular.

Context-Free Languages

• Many issues and questions we asked for regular languages will be the same for context-free languages:

Machine model – PDA (Push-Down Automata) Descriptor – CFG (Context-Free Grammar) Pumping lemma for context-free languages Closure of context-free languages with respect to various operations Algorithms and conditions for finiteness or emptiness

• Some analogies don't hold, e.g., non-determinism in a PDA makes a difference and, in particular, deterministic PDAs define a subset of the context-free languages.

- Informally a *Context-Free Language* (CFL) is a language generated by a *Context-Free Grammar* (CFG).
- What is a CFG?
- Informally, a CFG is a set of rules for deriving (or generating) strings (or sentences) in a language.

• Example CFG:

<sentence> -> <noun-phrase> <verb-phrase></verb-phrase></noun-phrase></sentence>	(1)
<noun-phrase> -> <proper-noun></proper-noun></noun-phrase>	(2)
<noun-phrase> -> <determiner> <common-noun></common-noun></determiner></noun-phrase>	(3)
<proper-noun> -> John</proper-noun>	(4)
<proper-noun> -> Jill</proper-noun>	(5)
<common-noun> -> car</common-noun>	(6)
<common-noun> -> hamburger</common-noun>	(7)
<determiner> -> a</determiner>	(8)
<determiner> -> the</determiner>	(9)
<verb-phrase> -> <verb> <adverb></adverb></verb></verb-phrase>	(10)
<verb-phrase> -> <verb></verb></verb-phrase>	(11)
<verb> -> drives</verb>	(12)
<verb> -> eats</verb>	(13)
<adverb> -> slowly</adverb>	(14)
<adverb> -> frequently</adverb>	(15)

• Example Derivation:

<sentence></sentence>	=> <noun-phrase> <verb-phrase></verb-phrase></noun-phrase>	by (1)
	=> <proper-noun> <verb-phrase></verb-phrase></proper-noun>	by (2)
	=> Jill <verb-phrase></verb-phrase>	by (5)
	=> Jill <verb> <adverb></adverb></verb>	by (10)
	=> Jill drives <adverb></adverb>	by (12)
	=> Jill drives frequently	by (15)

- Informally a CFG consists of:
 - A set of replacement rules.
 - Each will have a Left-Hand Side (LHS) and a Right-Hand Side (RHS).
 - Two types of symbols; *variables* and *terminals*.
 - LHS of each rule is a single variable (no terminals).
 - RHS of each rule consists of zero or more variables and terminals.
 - A "string" consists of only terminals.

Formal Definition of Context-Free Grammar

• A <u>Context-Free Grammar</u> (CFG) is a 4-tuple:

 $\mathbf{G} = (\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$

- V A finite set of variables or *non-terminals*
- T A finite set of *terminals* (V and T do not intersect)
- P A finite set of *productions*, each of the form A $\rightarrow \alpha$, where A is in V and α is in (V U T)* // Note that α may be ε
- S A starting non-terminal (S is in V)

• Example CFG #1:

 $G = ({A, B, C, S}, {a, b, c}, P, S)$

P:

(1)	$S \rightarrow ABC$	
(2)	$A \rightarrow aA$	$A \rightarrow aA \mid \epsilon$
(3)	$A \rightarrow \epsilon$	
(4)	$B \rightarrow bB$	$B \mathop{{{\rm \rightarrow}}}\nolimits bB \mid \epsilon$
(5)	$B \rightarrow \epsilon$	
(6)	$C \rightarrow cC$	$C \rightarrow cC \mid \epsilon$
(7)	C -> ε	

• Example Derivations:

S => ABC	(1)	$S \Rightarrow ABC$	(1)
----------	-----	---------------------	-----

- => BC (3) => aABC (2)=> C (5) => aaABC (2)
- $=> \varepsilon$ (7) => aaBC (3)
 - \Rightarrow aabBC (4)
 - \Rightarrow aabC (5)
 - \Rightarrow aabcC (6)
 - \Rightarrow aabc (7)
- Note that G generates the language $a^*b^*c^*$

• Example CFG #2:

 $G = ({S}, {0, 1}, P, S)$

P:

- (1) $S \rightarrow 0S1$ or just simply $S \rightarrow 0S1 | \epsilon$ (2) $S \rightarrow \epsilon$
- Example Derivations:

 $S \implies 0S1 (1) S \implies \varepsilon (2)$ => 01 (2) $S \implies 0S1 (1) => 00S11 (1) => 000S111 (1) => 000S111 (1) => 000111 (2)$

• Note that G "generates" the language $\{0^k1^k | k \ge 0\}$

Formal Definitions for CFLs

- Let G = (V, T, P, S) be a CFG.
- **Definition:** Let X be in V, Y be in $(V \cup T)^*$, X -> Y be in P, and let α and β be in $(V \cup T)^*$. Then:

$$\alpha X\beta \Longrightarrow \alpha Y\beta$$

In words, $\alpha X\beta$ <u>directly derives</u> $\alpha Y\beta$, or rather $\alpha Y\beta$ follows from $\alpha X\beta$ by the application of exactly one production from P.

• **Example:** (for grammar #1)

 $aaabBccC \Rightarrow aaabbBccC$ $aAb \Rightarrow ab$ $aAb \Rightarrow aaAb$ $aaAbBcccC \Rightarrow aaAbBccc$ $S \Rightarrow ABC$

$$\begin{array}{ll} aAbBcC \Longrightarrow abAbBcC \\ aAbbbC \Longrightarrow aAbbbCB \\ S \Longrightarrow aaabbbc \\ \end{array} \qquad \begin{array}{ll} S \rightarrowtail ABC \\ A \longrightarrow aA \mid \epsilon \\ B \longrightarrow bB \mid \epsilon \\ C \longrightarrow cC \mid \epsilon \end{array}$$

• **Definition:** Suppose that $\alpha_1, \alpha_2, \dots, \alpha_m$ are in (V U T)*, m>=1, and

$$\alpha_1 \Longrightarrow \alpha_2$$
$$\alpha_2 \Longrightarrow \alpha_3$$
$$\vdots$$
$$\alpha_{m-1} \Longrightarrow \alpha_m$$

Then $\alpha_1 => * \alpha_m$

In words, α_1 *derives* α_m , or rather, α_m follows from α_1 by the application of zero or more productions. Note that: $\alpha =>* \alpha$.

- Example: (for grammar #1) aAbBcC =>* aaabbccccC aAbBcC =>* abBc S =>* aabbc S =>* CaAB S =>* CaAB S =>* CaAB S =>* CaAB S =>* CaAB
- **Definition:** Let α be in (V U T)*. Then α is a *sentential form* if and only if S =>* α .

• **Definition:** Let G = (V, T, P, S) be a context-free grammar. Then the *language generated* by G, denoted L(G), is the set:

 $\{w \mid w \text{ is in } T^* \text{ and } S = >^* w\}$

- **Definition:** Let L be a language. Then L is a *context-free language* if and only if there exists a context-free grammar G such that L = L(G).
- **Definition:** Let G_1 and G_2 be context-free grammars. Then G_1 and G_2 are *equivalent* if and only if $L(G_1) = L(G_2)$.
- **Observations:** (we won't use these, but food for thought...)

 \rightarrow forms a relation on V and (V U T)*

 \Rightarrow forms a relation on (V U T)* and (V U T)*.

=>* forms a relation on (V U T)* and (V U T)*.

- **Exercise:** Give a CFG that generates the set of all strings of 0's and 1's that contain the substring 010.
- **Exercise:** Give a CFG that generates the set of all strings of *a*'s, *b*'s and *c*'s where every *a* is immediately followed by a *b*.
- **Exercise:** Give a CFG that generates the set of all strings of 0's and 1's that contain an even number of 0's.
- Note as with the states in a DFA, non-terminals in a CFG have "assertions" associated with them.
- **Question:** Is the following a valid CFG?

S -> 0A A -> 1B B -> 0S1

- Keep in mind the smaller, "toolkit" grammers:
- Sometimes it's helpful to start with a simpler language, and then modify the grammar:

 $0^i1^j,\ j\ge i\ge 0$

So what is the relationship between the regular and context-free languages?

- **Theorem:** Let L be a regular language. Then L is a context-free language.
- **Proof:** (by induction)

We will prove that if r is a regular expression then there exists a CFG G such that L(r) = L(G). The proof will be by induction on the number of operators in r.

• **Basis:** Op(r) = 0

Then r is either \emptyset , ε , or **a**, for some symbol **a** in Σ .

For Ø: Let $G = (\{S\}, \{\}, P, S)$ where $P = \{\}$

For ε:

Let
$$G = (\{S\}, \{\}, P, S)$$
 where $P = \{S \rightarrow \varepsilon\}$

For **a**:

Let $G = (\{S\}, \{a\}, P, S)$ where $P = \{S \rightarrow a\}$

Inductive Hypothesis:

Suppose there exists a $k \ge 0$ such that for any regular expression r, where $0 \le op(r) \le k$, that there exists a CFG G such that L(r) = L(G).

Inductive Step:

Let r be a regular expression with op(r)=k+1. Since k>=0, it follows that k+1>=1, i.e., r has at least one operator. Therefore $r = r_1 + r_2$, $r = r_1r_2$ or $r = r_1^*$.

Case 1) $r = r_1 + r_2$

Since r has k+1 operators, one of which is +, it follows that $0 \le op(r_1) \le k$ and $0 \le op(r_2) \le k$.

From the inductive hypothesis it follows that there exist CFGs $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$ such that $L(r_1) = L(G_1)$ and $L(r_2) = L(G_2)$.

Assume without loss of generality that V_1 and V_2 have no non-terminals in common, and construct a grammar G = (V, T, P, S) where:

 $V = V_1 U V_2 U \{S\}$ $T = T_1 U T_2$ $P = P_1 U P_2 U \{S \rightarrow S_1, S \rightarrow S_2\}$

Clearly, L(r) = L(G).

Case 2) $r = r_1 r_2$

Let $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$ be as in Case 1, and construct a grammar G = (V, T, P, S) where:

$$V = V_1 U V_2 U \{S\}$$

$$T = T_1 U T_2$$

$$P = P_1 U P_2 U \{S \rightarrow S_1 S_2\}$$

Clearly, L(r) = L(G).

Case 3) $r = (r_1)^*$

Let $G_1 = (V_1, T_1, P_1, S_1)$ be a CFG such that $L(r_1) = L(G_1)$ and construct a grammar G = (V, T, P, S) where:

$$V = V_1 U \{S\}$$

T = T₁
P = P₁ U {S -> S₁S, S -> ε}

Clearly, L(r) = L(G).•

- The preceding theorem is constructive, in the sense that it shows how to construct a CFG from a given regular expression.
- Example #1:

 $r = a^*b^*$ $r = r_1r_2$ $r_1 = r_3^*$ $r_3 = a$ $r_2 = r_4^*$ $r_4 = b$

• **Example #1:** a*b*

$$r_{4} = b \qquad S_{1} \rightarrow b$$

$$r_{3} = a \qquad S_{2} \rightarrow a$$

$$r_{2} = r_{4}^{*} \qquad S_{3} \rightarrow S_{1}S_{3}$$

$$S_{3} \rightarrow \epsilon$$

$$r_{1} = r_{3}^{*} \qquad S_{4} \rightarrow S_{2}S_{4}$$

$$S_{4} \rightarrow \epsilon$$

$$r = r_{1}r_{2} \qquad S_{5} \rightarrow S_{4}S_{3}$$

20

• Example #2:

r = (0+1)*01

 $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$

 $r_1 = r_3^*$

 $r_3 = (r_4 + r_5)$

$$r_4 = 0$$

r₅ = 1

 $r_2 = r_6 r_7$

$$r_6 = 0$$

 $r_7 = 1$

• Example #2: (0+1)*01

$$\begin{array}{ll} r_7 = 1 & S_1 \longrightarrow 1 \\ r_6 = 0 & S_2 \longrightarrow 0 \\ r_2 = r_6 r_7 & S_3 \longrightarrow S_2 S_1 \\ r_5 = 1 & S_4 \longrightarrow 1 \\ r_4 = 0 & S_5 \longrightarrow 0 \\ r_3 = (r_4 + r_5) & S_6 \longrightarrow S_4, \ S_6 \longrightarrow S_5 \\ r_1 = r_3 * & S_7 \longrightarrow S_6 S_7 \\ S_7 \longrightarrow \epsilon \end{array}$$

 $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2 \qquad \qquad \mathbf{S}_8 \longrightarrow \mathbf{S}_7 \mathbf{S}_3$

• Note: Although every regular language is a CFL, the reverse is not true. In other words, there exist CFLs that are not regular languages, i.e., $\{0^n1^n \mid n \ge 0\}$.

=> Therefore the regular languages form a proper subset of the CFLs.

• By the way, note that it is usually very easy to construct a CFG for a given regular expression, even without using the previous technique.

• Examples:

- 1(0+01)*0
- (0+1)*0(0+1)*0(0+1)*

• **Definition:** A CFG is a <u>regular grammar</u> if each rule is of the following form:

—	A -> a	<non-terminal> -> terminal-symbol</non-terminal>
—	$A \rightarrow aB$	<non-terminal> -> terminal-symbol <non-terminal></non-terminal></non-terminal>
_	Α -> ε	<non-terminal> -> epsilon</non-terminal>

where A and B are in V, and a is in T

• Regular Grammar:

$$S \rightarrow aS | \varepsilon$$
$$S \rightarrow aB$$
$$B \rightarrow bB$$
$$B \rightarrow b$$

• Non-Regular Grammar:

$$S \rightarrow 0S1 \mid \epsilon$$

- **Theorem:** A language L is a regular language iff there exists a regular grammar G such that L = L(G).
- **Proof:** Exercise.•
- **Observation:** A language may have several CFGs, some regular, some not
 - Recall that $S \rightarrow 0S1 | \epsilon$ is not a regular grammar.
 - The fact that this grammar is not regular does not in and of itself prove that 0ⁿ1ⁿ is not a regular language.
 - Similarly S -> S0 | ε is not a regular grammar.

Derivation Trees

- **Definition:** Let G = (V, T, P, S) be a CFG. A tree is a <u>derivation (or parse) tree</u> if:
 - Every vertex has a label from V U T U $\{\epsilon\}$
 - The label of the root is S
 - If a vertex with label A has children with labels $X_1, X_2, ..., X_n$, from left to right, then

$$A \to X_1, X_2, ..., X_n$$

must be a production in P

- If a vertex has label from T, then that vertex is a leaf
- If a vertex has label ε , then that vertex is a leaf and the only child of its' parent
- More Generally, a derivation tree can be defined with any non-terminal as the root.

- A derivation tree is basically another way of conveying a (part of a) derivation.
- Example:

• However:

- Root can be any non-terminal
- Leaf nodes can be terminals or non-terminals
- A derivation tree with root S shows the productions used to obtain a sentential form

• **Observation:** Every derivation corresponds to <u>one</u> derivation tree.

• **Observation:** Every derivation tree corresponds to <u>one or more</u> derivations.

S	\Rightarrow AB	$S \implies AB$	$S \Rightarrow AB$
	=> aAAB	=>Ab	=> Ab
	=> aaAB	=> aAAb	=> aAAb
	=> aaaB	=>aAab	=> aaAb
	=> aaab	=> aaab	=> aaab

- **Definition:** A derivation is *leftmost (rightmost)* if at each step in the derivation a production is applied to the leftmost (rightmost) non-terminal in the sentential form.
 - The first derivation above is leftmost, second is rightmost, the third is neither.

• **Observation:** Every derivation tree for a string x in L(G) corresponds to <u>exactly one</u> leftmost (and rightmost) derivation.

• **Observation:** Let G be a CFG. Then there <u>may</u> exist a string x in L(G) that has more than 1 leftmost (or rightmost) derivation. Such a string will also have more than 1 derivation tree.

• **Example:** Consider the string aaab and the preceding grammar.

• The string has two left-most derivations, and therefore has two distinct parse trees.

- **Definition:** Let G be a CFG. Then G is said to be <u>ambiguous</u> if there exists an x in L(G) with >1 leftmost derivations.
- Equivalently, G is ambiguous if there exists an x in L(G) with >1 rightmost derivations.
- Equivalently, G is ambiguous if there exists an x in L(G) with >1 parse trees.

"So," the rabbit asked the frog, "why is ambiguity such a bad thing?"

• Consider the following CFG, and the string 3+4*5:

E -> E + E E -> E * E E -> (E) E -> number

- A parsing algorithm is based on a grammar.
- The parse tree generated by a parsing algorithm determines how the algorithm interprets the string.
- If the grammar allows the algorithm to parse a string in more than one way, then that string could be interpreted in more than one way...not good!
- * In other words, the grammar should be designed so that it dictates exactly one way to parse a given string.

"Oh, now I understand," said the rabbit...

- And there is some good news!
- **Observation:** Given a CFL L, there may be more than one CFG G with L = L(G). Some ambiguous and some not.
- For example, a non-ambiguous version of the previous grammar:

 $E \rightarrow T \mid E+T$ $T \rightarrow F \mid T^*F$ $F \rightarrow (E) \mid number$

• Note that 3+4*5 has exactly one leftmost derivation, and hence, parse tree.

"So from this day forward, I will only write non-ambiguous CFGs," said the rabbit...

"But there is just one more problem," said the frog...

- **Definition:** Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is <u>inherently ambiguous</u>.
- And yes, there do exist inherently ambiguous languages...

 $\{a^{n}b^{n}c^{m}d^{m} | n \ge 1, m \ge 1\} \cup \{a^{n}b^{m}c^{m}d^{n} | n \ge 1, m \ge 1\}$

"Oh, s@#t!, " said the rabbit...

"Don't worry," said the frog...

"Inherently ambiguous CFLs hide deep in the forest, so you won't see them very often."

• Exercise – try writing a grammar for the above language, and see how any string of the form aⁿbⁿcⁿdⁿ has more than one leftmost derivation.

- Many, potential algorithmic problems exist for context-free grammars.
- Imagine developing algorithms for each of the following problems:
 - Is L(G) empty?
 - Is L(G) finite?
 - Is L(G) infinite?
 - Is $L(G) = T^*$
 - Is $L(G_1) = L(G_2)$?
 - Is G ambiguous?
 - Is L(G) inherently ambiguous?
 - Given ambiguous G, construct unambiguous G' such that L(G) = L(G')
 - Given G, is G "minimal?"
- Most of the above problems are "undecidable," i.e., there is no algorithm, or they are computation difficult, i.e. NP-hard or PSPACE-hard.
 - S -> A A -> S B -> b