Finite Automata

Reading: Chapter 2

Deterministic Finite State Automata (DFA)

- One-way, infinite tape, broken into cells
- One-way, read-only tape head.
- Finite control, i.e., a program, containing the position of the read head, current symbol being scanned, and the current "state."
- A string is placed on the tape, read head is positioned at the left end, and the DFA will read the string one symbol at a time until all symbols have been read. The DFA will then either accept or reject.
- The finite control can be described by a transition diagram:
- Example \#1:

- One state is final/accepting, the other is rejecting.
- What strings does this DFA accept?
- Example \#2:

- What strings does this DFA accept?
- Note that every state in a DFA has an implicit "assertion"

Formal Definition of a DFA

- A DFA is a five-tuple:
$\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

Q A finite set of states
$\Sigma \quad$ A finite input alphabet
$\mathrm{q}_{0} \quad$ The initial/starting state, q_{0} is in Q
F A set of (zero or more) final/accepting states, which is a subset of Q
$\delta \quad$ A transition function, which is a total function from $\mathrm{Q} \times \Sigma$ to Q
$\delta:(\mathrm{Q} \times \Sigma) \rightarrow \mathrm{Q} \quad \delta$ is defined for any q in Q and s in Σ, and $\delta(q, s)=q^{\prime}$ is equal to another state q^{\prime} in Q .

Intuitively, $\delta(\mathrm{q}, \mathrm{s})$ is the state entered by M after reading symbol s while in state q.

- For example \#1:

- For example \#2:
$\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
Start state is q_{0}
$\mathrm{F}=\left\{\mathrm{q}_{2}\right\}$

$\delta:$

- Since δ is a total function, it is defined for every state q and symbol s.
- In other words, at each step M has exactly one option.
- It follows that for a given string, there is exactly one computation.
- Give a DFA that accepts the strings in the set:
$\{x \mid x$ is a string of (zero or more) a's, b's and c's such that x contains the substring $a a\}$

- Give a DFA M such that:
$L(M)=\{x \mid x$ is a string of (zero or more) a's, b's and c's such that x does not contain the substring $a a\}$

- Give a DFA M such that:
$L(M)=\{x \mid x$ is a string of a's, b's and c's such that x
contains the substring $a b a\}$

- Give a DFA M such that:
$L(M)=\{x \mid x$ is a string of 0 's and 1 's such that x contains an even number of 0 's and an even number of 1 's $\}$

- Questions:
- Which of the following are "valid" DFAs?
- No final state
- Unreachable state
- Missing transition
- Disconnected components
- Single state
- How difficult would it be to simulate a specific DFA?
- How difficult would it be to automatically generate DFA simulators, i.e., Lex?
// variables; for the DFA that accepted all strings with the substring aba
n int $=4$;
ch char;
cs int $=0$;
FS int set $=\{0\}$;
$T M$ array[0..n-1,' $\left.a^{\prime} \ldots C^{\prime}\right]$ of int $=\{\{1,0,0\},\{1,2,0\},\{3,0,0\},\{3,3,3\}\}$;
// prompt for and process input string
print("Enter String:");
read(ch);
while (ch <> EOL) \{
$\mathrm{CS}=\mathrm{TM}[\mathrm{cs}, \mathrm{ch}]$;
read (ch)
$\}$
//see if terminating state is a final state
if (cs is in F) print("accept");
Else
print("reject");

Extension of δ to Strings

$\delta^{\wedge}:\left(\mathrm{Q} x \Sigma^{*}\right) \rightarrow \mathrm{Q}$
$\delta^{\wedge}(\mathrm{q}, \mathrm{x})$ - The state entered after reading string x having started in state q .

Formally - given any string x in Σ^{*}, where $|\mathrm{x}|>=0$:

1) $\delta^{\wedge}(q, \varepsilon)=q$, and

$$
\begin{aligned}
& \text { if }|x|=0, \text { i.e., } x=\varepsilon \\
& \text { if }|x|>=1, \text { i.e., } x=w a
\end{aligned}
$$

2) For all w in Σ^{*} and a in Σ

$$
\delta^{\wedge}(\mathrm{q}, \mathrm{wa})=\delta\left(\delta^{\wedge}(\mathrm{q}, \mathrm{w}), \mathrm{a}\right)
$$

$$
\begin{aligned}
& \text { 2) For all } w \text { in } \Sigma^{*} \text { and a in } \Sigma \\
& \delta^{\wedge}(q, w a)=\delta\left(\delta^{\wedge}(q, w), a\right)
\end{aligned}
$$

- Recall Example \#1:

- What is $\delta^{\wedge}\left(q_{0}, 011\right)$? Informally, it is the state entered by M after processing 011 having started in state q_{0}.
- Formally:

$$
\begin{aligned}
\delta^{\wedge}\left(\mathrm{q}_{0}, 011\right) & & & \text { by rule } \# 2 \\
& =\delta\left(\delta^{\wedge}\left(\mathrm{q}_{0}, 01\right), 1\right) & & \text { by rule } \# 2 \\
& =\delta\left(\delta\left(\delta^{\wedge}\left(\mathrm{q}_{0}, 0\right), 1\right), 1\right) & & \text { by rule } \# 2 \\
& =\delta\left(\delta\left(\delta\left(\delta^{\wedge}\left(\mathrm{q}_{0}, \varepsilon\right), 0\right), 1\right), 1\right) & & \text { by rule } \# 1 \\
& =\delta\left(\delta\left(\delta\left(\mathrm{q}_{0}, 0\right), 1\right), 1\right) & & \text { by definition of } \delta \\
& =\delta\left(\delta\left(\mathrm{q}_{1}, 1\right), 1\right) & & \text { by definition of } \delta \\
& =\delta\left(\mathrm{q}_{1}, 1\right) & & \text { by definition of } \delta
\end{aligned}
$$

- Is 011 accepted? No, since $\delta^{\wedge}\left(q_{0}, 011\right)=q_{1}$ is not a final state.
- Note that:

$$
\begin{aligned}
\delta^{\wedge}(\mathrm{q}, \mathrm{a}) & =\delta\left(\delta^{\wedge}(\mathrm{q}, \varepsilon), \mathrm{a}\right) & & \text { by rule \#2 } \\
& =\delta(\mathrm{q}, \mathrm{a}) & & \text { by rule \#1 }
\end{aligned}
$$

- More generally, it is obvious from the definition of δ^{\wedge} that:

$$
\delta^{\wedge}\left(\mathrm{q}, \mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}\right)=\delta\left(\delta\left(\ldots \delta\left(\delta\left(\mathrm{q}, \mathrm{a}_{1}\right), \mathrm{a}_{2}\right) \ldots\right), \mathrm{a}_{\mathrm{n}}\right)
$$

- Hence, we can (informally) use δ in place of δ^{\wedge} :

$$
\delta^{\wedge}\left(q, a_{1} a_{2} \ldots a_{n}\right)=\delta\left(q, a_{1} a_{2} \ldots a_{n}\right)
$$

- In other words, δ^{\wedge} doesn’t really add anything to δ.
- Consider the following DFA:

- What is $\delta\left(\mathrm{q}_{0}, 011\right)$? Informally, it is the state entered by M after processing 011 having started in state q_{0}.
- Formally:

$$
\begin{aligned}
\delta\left(\mathrm{q}_{0}, 011\right) & =\delta\left(\delta\left(\mathrm{q}_{0}, 01\right), 1\right) \\
& =\delta\left(\delta\left(\delta\left(\mathrm{q}_{0}, 0\right), 1\right), 1\right) \\
& =\delta\left(\delta\left(\mathrm{q}_{1}, 1\right), 1\right) \\
& =\delta\left(\mathrm{q}_{1}, 1\right) \\
& =\mathrm{q}_{1}
\end{aligned}
$$

by rule \#2
by rule \#2
by definition of δ
by definition of δ
by definition of δ

- Is 011 accepted? No, since $\delta\left(\mathrm{q}_{0}, 011\right)=\mathrm{q}_{1}$ is not a final state.
- Recall Example \#2:

- What is $\delta\left(\mathrm{q}_{1}, 10\right)$?

$$
\begin{aligned}
\delta\left(\mathrm{q}_{1}, 10\right) & =\delta\left(\delta\left(\mathrm{q}_{1}, 1\right), 0\right) \\
& =\delta\left(\mathrm{q}_{1}, 0\right) \\
& =\mathrm{q}_{2}
\end{aligned}
$$

by rule \#2
by definition of δ
by definition of δ

- Based on the above, can we conclude that 10 is accepted?
- No, since $\delta\left(\mathrm{q}_{0}, 10\right)=\mathrm{q}_{1}$ is not a final state. The fact that $\delta\left(\mathrm{q}_{1}, 10\right)=\mathrm{q}_{2}$ is irrelevant!

Definitions for DFAs

- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be a DFA and let w be in Σ^{*}. Then w is accepted by M if $\delta\left(\mathrm{q}_{0}, \mathrm{w}\right)=\mathrm{p}$ for some state p in F , i.e., $\delta\left(\mathrm{q}_{0}, \mathrm{w}\right) \in \mathrm{F}$.
- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be a DFA. Then the language accepted by M , denoted $\mathrm{L}(\mathrm{M})$, is:

$$
\left\{\mathrm{w} \mid \mathrm{w} \text { is in } \Sigma^{*} \text { and } \delta\left(\mathrm{q}_{0}, \mathrm{w}\right) \in \mathrm{F}\right\}
$$

- Other, equivalent, less formal definitions for $\mathrm{L}(\mathrm{M})$:
$\left\{\mathrm{w} \mid \mathrm{w}\right.$ is in Σ^{*} and $\delta\left(\mathrm{q}_{0}, \mathrm{w}\right)$ is in F$\}$
$\left\{\mathrm{w} \mid \mathrm{w}\right.$ is in Σ^{*} and w is accepted by M$\}$

Definitions for DFAs

- Let L be a language. Then L is a regular language iff there exists a DFA M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$.
- Let $\mathrm{M}_{1}=\left(\mathrm{Q}_{1}, \Sigma_{1}, \delta_{1}, \mathrm{q}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{M}_{2}=\left(\mathrm{Q}_{2}, \Sigma_{2}, \delta_{2}, \mathrm{p}_{0}, \mathrm{~F}_{2}\right)$ be DFAs. Then M_{1} and M_{2} are equivalent iff $\mathrm{L}\left(\mathrm{M}_{1}\right)=\mathrm{L}\left(\mathrm{M}_{2}\right)$.
- Notes:
- A DFA $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$ partitions the set Σ^{*} into two sets: $L(M)$ and $\Sigma^{*}-L(M)$.
- In the definition of a regular language, "=" means exactly equals.
- If $L=L(M)$ then L is a subset of $L(M)$, and $L(M)$ is a subset of L.
- Similarly, if $L\left(M_{1}\right)=L\left(M_{2}\right)$ then $L\left(M_{1}\right)$ is a subset of $L\left(M_{2}\right)$, and $L\left(M_{2}\right)$ is a subset of $L\left(M_{1}\right)$.
- Some languages are regular, others are not. For example, if
$L_{1}=\{x \mid x$ is a string of 0 's and 1 's containing an even number of 1 's $\}$ and

$$
L_{2}=\left\{x \mid x=0^{n} 1^{n} \text { for some } n>=0\right\}
$$

then L_{1} is regular but L_{2} is not.

- Questions:
- How do we determine whether or not a given language is regular?
- Give a DFA M such that:
$\mathrm{L}(\mathrm{M})=\{\mathrm{x} \mid \mathrm{x}$ is a string of a's and b's such that x
contains both $a a$ and $b b\}$

- Let $\Sigma=\{0,1\}$. Give DFAs for $\left\},\{\varepsilon\}, \Sigma^{*}\right.$, and Σ^{+}.

For \{ \}:

For $\{\varepsilon\}$:

For Σ^{*} :

For Σ^{+}:

Nondeterministic Finite State Automata (NFA)

- An NFA is a five-tuple:
$\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

Q A finite set of states
$\Sigma \quad$ A finite input alphabet
$\mathrm{q}_{0} \quad$ The initial/starting state, q_{0} is in Q
F A set of final/accepting states, which is a subset of Q
$\delta \quad$ A transition function, which is a total function from $\mathrm{Q} \times \Sigma$ to 2^{Q}
$\delta:(\mathrm{Q} \times \Sigma) \rightarrow 2^{\mathrm{Q}} \quad-2^{\mathrm{Q}}$ is the power set of Q , the set of all subsets of Q $\delta(\mathrm{q}, \mathrm{s}) \quad$ The set of all states p such that there is a transition labeled s from q to p
$\delta(\mathrm{q}, \mathrm{s})$ is a function from $\mathrm{Q} \times \Sigma$ to 2^{Q} (but not to Q)

- Example \#1:

- How is a string such as 011 processed?
- For a given string there may be multiple paths; in fact, there are three types of paths.
- Example \#1:

$$
\begin{aligned}
& \mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\} \\
& \Sigma=\{0,1\}
\end{aligned}
$$

Start state is q_{0}

$\mathrm{F}=\left\{\mathrm{q}_{2}\right\}$
$\delta:$

	0	1
q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\}$
	q_{1}	$\}$
q_{2}	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	
	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$

- A string is said to be accepted if there exists a path to some state in F that uses all the symbols in the string (try $011,000,01110,1010,0011$).
- The language accepted by an NFA is the set of all accepted strings.
- The above NFA accepts the set of all strings of 0's and 1's that start with one or more 0 's, followed by one or more 1 's, followed by any sequence of 0 's and 1 's.
- Example \#2:

- Notes:
- $\delta(\mathrm{q}, \mathrm{s})$ may not be defined for some q and s (why?).
- Could the previous two languages be accepted by a DFAs (exercise)?
- Question: How does an NFA find the correct/accepting path for a given string?
- Doesn't really matter
- NFAs are a non-intuitive computing model.
- Designing NFAs is not a typical task.
- Regardless, the notions of string and language acceptance are well-defined.
- We are primarily interested in NFAs as language defining devices, i.e., do NFAs accept languages that DFAs do not?
- Other questions are secondary, e.g., whether or not there is an algorithm for finding an accepting path through an NFA for a given string.
- All that having been said...

- Yes, determining if a given NFA (example \#2) accepts a given string (001) can be done algorithmically:

- Each level will have at most n states
- Another example (010):

not accepted
- All paths have been explored, and none lead to an accepting state.
- How difficult would it be to simulate an NFA?
- Would the DFA simulation algorithm work?
// variables; for NFA example \#2
n int = 5;
ch char;
cs int set $=\{0\}$;
new-cs int set;
FS int set $=\{2,4\}$;
$\operatorname{TM} \operatorname{array}[0 . . n-1,0 \ldots 1]$ of $\operatorname{int} \operatorname{set}=\{\{\{0,3\},\{0,1\}\},\{\{0\},\{ \}\},\{\{2\},\{2\}\},\{\{4\},\{0\}\},\{\{4\},\{4\}\}\} ;$
// prompt for and process input string
print("Enter String:");
read(ch);
while (ch <> EOL) \{
new-cs = \{\};
for each s in cs \{
new-cs = new-cs U TM[s,ch];
\}
cs = new-cs;
read (ch)
\}
//see if terminating state is a final state
if (any state in cs is in F)
print("accept");
Else
print("reject");
- Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Give an NFA M that accepts:
$\mathrm{L}=\left\{\mathrm{x} \mid \mathrm{x}\right.$ is in $\mathrm{\Sigma}^{*}$ and x contains ab$\}$

Is L a subset of $L(M)$?
Is $L(M)$ a subset of L ?

- Is an NFA necessary? Could a DFA accept L? Try and give an equivalent DFA as an exercise.
- Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Give an NFA M that accepts:

$$
\mathrm{L}=\left\{\mathrm{x} \mid \mathrm{x} \text { is in } \Sigma^{*} \text { and the third to the last symbol in } \mathrm{x} \text { is } \mathrm{b}\right\}
$$

Is L a subset of $L(M)$?
Is $L(M)$ a subset of L ?

- What if q_{3} had a transition to itself on a or b ?
- Give an equivalent DFA as an exercise.

Extension of δ to Strings

What we currently have: $\delta:(\mathrm{Q} \times \Sigma) \rightarrow 2^{\mathrm{Q}}$
What we want (why?): $\quad \delta^{\wedge}:\left(\mathrm{Q} \times \Sigma^{*}\right) \rightarrow 2^{\mathrm{Q}}$
$\delta^{\wedge}(\mathrm{q}, \mathrm{x})$ - The set of states the NFA could be in after reading string x having started in state q.

Formally - given any string x in Σ^{*}, where $|\mathrm{x}|>=0$:

1) $\delta^{\wedge}(q, \varepsilon)=\{q\}$, and
2) For all w in Σ^{*} and a in Σ,

$$
\text { if }|x|=0
$$

$$
\text { if } \delta^{\wedge}(\mathrm{q}, \mathrm{w})=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}\right\} \text {, and }
$$

$$
\bigcup_{i=1}^{k} \delta\left(\mathrm{p}_{\mathrm{i}}, \mathrm{a}\right)=\left\{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{m}}\right\} \text { then } \delta^{\wedge}(\mathrm{q}, \mathrm{wa})=\left\{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{m}}\right\}
$$

- Example:

What is $\delta^{\wedge}\left(\mathrm{q}_{0}, 01\right)$?
Informally: The set of states the NFA could be in after processing 01, i.e., $\left\{q_{2}, q_{3}\right\}$

Formally: (bottom up)
a) $\delta^{\wedge}\left(\mathrm{q}_{0}, \varepsilon\right)=\left\{\mathrm{q}_{0}\right\}$
b) $\delta^{\wedge}\left(\mathrm{q}_{0}, 0\right)=\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
c) $\delta^{\wedge}\left(\mathrm{q}_{0}, 01\right)=\delta\left(\mathrm{q}_{1}, 1\right) \mathrm{U} \delta\left(\mathrm{q}_{2}, 1\right) \mathrm{U} \delta\left(\mathrm{q}_{3}, 1\right)$
$=\left\{q_{2}, q_{3}\right\} U\left\{q_{3}\right\} U\{ \}$
$=\left\{q_{2}, q_{3}\right\}$
def of δ^{\wedge}, line \#1
def of δ^{\wedge}, line \#2, δ, and a)
def of δ^{\wedge}, line \#2, δ, and b) def of δ

Is 01 accepted? Yes! (see the book for a longer example)

- Note that just like with DFAs, δ^{\wedge} is a direct extension of δ, and doesn't really add anything.
- Consequently we can use δ in place of δ^{\wedge}, i.e.,

$$
\delta^{\wedge}\left(\mathrm{q}, \mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}\right)=\delta\left(\mathrm{q}, \mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}\right)
$$

- $\delta\left(\mathrm{q}, \mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}\right)$ is the set of states the NFA could be in after processing $a_{1} a_{2} \ldots a_{n}$ having started in state q.

Definitions for NFAs

- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be an NFA and let w be in Σ^{*}. Then w is accepted by M iff $\delta\left(q_{0}, w\right)$ contains at least one state in F, i.e., $\delta\left(q_{0}, w\right) \cap F \neq \varnothing$.
- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be an NFA. Then the language accepted by M is the set:

$$
\mathrm{L}(\mathrm{M})=\left\{\mathrm{w} \mid \mathrm{w} \text { is in } \Sigma^{*} \text { and } \delta\left(\mathrm{q}_{0}, \mathrm{w}\right) \cap \mathrm{F} \neq \emptyset\right\}
$$

- Other, equivalent, less formal definitions:

$$
\begin{aligned}
& L(M)=\left\{w \mid w \text { is in } \Sigma^{*} \text { and } \delta\left(q_{0}, w\right) \text { contains at least one state in } F\right\} \\
& L(M)=\left\{w \mid w \text { is in } \Sigma^{*} \text { and } w \text { is accepted by } M\right\}
\end{aligned}
$$

Equivalence of DFAs and NFAs

- Do DFAs and NFAs accept the same class of languages?
- Do they accept different classes of languages?
- Is there a language L that is accepted by a DFA, but not by any NFA?
- Is there a language L that is accepted by an NFA, but not by any DFA?
- Perhaps they accept overlapping classes of languages.
- In other words, is one of these two machine models more "powerful" than the other?
- Observation: Every DFA is an NFA.
- Consider the following DFA:
$\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
Start state is q_{0}
$\mathrm{F}=\left\{\mathrm{q}_{2}\right\}$

$\delta:$

- An Equivalent NFA:
$\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
Start state is q_{0}
$\mathrm{F}=\left\{\mathrm{q}_{2}\right\}$
$\delta:$

	a	b	c
q_{0}	$\left\{\mathrm{q}_{0}\right\}$	$\left\{\mathrm{q}_{0}\right\}$	$\left\{\mathrm{q}_{1}\right\}$
q_{1}	$\left\{\mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{1}\right\}$	$\left\{q_{2}\right\}$
q_{2}	$\left\{q_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$	$\left\{q_{2}\right\}$

- Therefore, if L is a regular language then there exists an NFA M such that $\mathrm{L}=$ L(M).
- Thus, NFAs accept all regular languages, i.e., NFAs are at least as "powerful" as DFAs.
- Stated formally:

Lemma 1: Let M be an DFA. Then there exists a NFA M' such that $L(M)=$ L(M').

Proof: Every DFA is an NFA. Hence, if we let M' = M, then it follows that $L\left(M^{\prime}\right)=L(M)$.

- So NFAs accept the regular languages, but do they accept more?

Lemma 2: Let M be an NFA. Then there exists a DFA M' such that $L(M)=$ L(M').

Proof: (sketch)
Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$.
Define a DFA M' $=\left(\mathrm{Q}^{\prime}, \Sigma, \delta^{\prime}, \mathrm{q}^{\prime}{ }_{0}, \mathrm{~F}^{\prime}\right)$ as:

$$
\begin{aligned}
Q^{\prime} & =2^{Q} & & \text { Each state in M' corresponds to a } \\
& =\left\{Q_{0}, Q_{1}, \ldots,\right\} & & \text { subset of states from } M
\end{aligned}
$$

where $Q_{u}=\left\{q_{i 0}, q_{i 1}, \ldots q_{i j}\right\}$

$$
\begin{aligned}
& \mathrm{F}^{\prime}=\left\{\mathrm{Q}_{\mathrm{u}} \mid \mathrm{Q}_{\mathrm{u}} \text { contains at least one state in } \mathrm{F}\right\} \\
& \mathrm{q}_{0}^{\prime}=\left\{\mathrm{q}_{0}\right\} \\
& \delta^{\prime}\left(\mathrm{Q}_{\mathrm{u}}, \mathrm{a}\right)=\bigcup_{p \in Q_{u}} \delta(\mathrm{p}, \mathrm{a})
\end{aligned}
$$

- Example:

$$
\begin{aligned}
& \mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \\
& \Sigma=\{0,1\}
\end{aligned}
$$

Start state is q_{0}

$\mathrm{F}=\left\{\mathrm{q}_{0}\right\}$
δ :

	0	1
q_{0}	$\left\{\mathrm{q}_{1}\right\}$	$\}$
q_{1}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{1}\right\}$

- Construct DFA M' as follows:

$$
\begin{array}{lll}
\delta\left(q_{0}, 0\right) \cup \delta\left(q_{1}, 0\right)=\left\{q_{0}, q_{1}\right\} & \Rightarrow & \delta^{\prime}\left(\left\{q_{0}, q_{1}\right\}, 0\right)=\left\{q_{0}, q_{1}\right\} \\
\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right)=\left\{q_{1}\right\} & \Rightarrow & \delta^{\prime}\left(\left\{q_{0}, q_{1}\right\}, 1\right)=\left\{q_{1}\right\} \\
\delta\left(q_{0}, 0\right)=\left\{q_{1}\right\} & \Rightarrow & \delta^{\prime}\left(\left\{q_{0}\right\}, 0\right)=\left\{q_{1}\right\} \\
\delta\left(q_{0}, 1\right)=\{ \} & \Rightarrow & \delta^{\prime}\left(\left\{q_{0}\right\}, 1\right)=\{ \} \\
\delta\left(q_{1}, 0\right)=\left\{q_{0}, q_{1}\right\} & \Rightarrow & \delta^{\prime}\left(\left\{q_{1}\right\}, 0\right)=\left\{q_{0}, q_{1}\right\} \\
\delta\left(q_{1}, 1\right)=\left\{q_{1}\right\} & \Rightarrow & \delta^{\prime}\left(\left\{q_{1}\right\}, 1\right)=\left\{q_{1}\right\}
\end{array}
$$

- Lastly, for the state corresponding to the empty set...
- Suppose R = \{ $\}$

$$
\begin{aligned}
\delta^{\prime}(\mathrm{R}, 0) & =\bigcup_{\text {qan }} \delta(\mathrm{q}, 0) & & \text { From the construction } \\
& =\{ \} & & \text { Since } \mathrm{R}=\{ \}
\end{aligned}
$$

- So why does this construction work?
- Consider a simulation of the original NFA on the string 0010
- Consider a simulation of the resulting DFA on the same string
- So does this complete the proof?
- No! Technically, we need to prove that a string x is accepted by the DFA if and only if it is accepted by the NFA.
- Performed by induction on the length of x
- See the book
- Note the constructive nature of the proof, i.e., it shows how to construct the DFA (not all proofs are constructive).
- In fact, the construction could be programmed...
- The construction is not particularly efficient, however, i.e., the resulting DFA is not guaranteed to be minimum.
- Some states in the DFA may not be reachable.
- The book uses "lazy evaluation" to eliminate unreachable states.
- As an exercise, try the construction on some of the NFAs from class.
- Exercise - Convert the following NFA to a DFA:

$$
\begin{aligned}
& \mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\} \\
& \Sigma=\{0,1\} \\
& \text { Start state is } \mathrm{q}_{0} \\
& \mathrm{~F}=\left\{\mathrm{q}_{0}\right\}
\end{aligned}
$$

$\delta: \quad 0 \quad 1$

q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\}$
q_{1}	$\left\{\mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
q_{2}	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$

- Exercise - Convert the following NFA to a DFA:

$$
\quad \mathrm{q}_{0} \begin{array}{|c|c|c|}
\left.\hline \mathrm{q}_{0}, \mathrm{q}_{1}\right\} & \left\{\mathrm{q}_{0}\right\} \\
\cline { 2 - 4 } & \mathrm{q}_{1} & \{ \} \\
\hline & \mathrm{q}_{2} & \{ \} \\
\cline { 2 - 3 } & & \{ \} \\
\cline { 2 - 4 } & & \\
\hline
\end{array}
$$

Theorem: Let L be a language. Then there exists an DFA M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$ iff there exists an NFA M' such that $\mathrm{L}=\mathrm{L}\left(\mathrm{M}^{\prime}\right)$.

Proof:

(if) Suppose there exists an NFA M' such that $\mathrm{L}=\mathrm{L}\left(\mathrm{M}^{\prime}\right)$. Then by
Lemma 2 there exists an DFA M such that $L=L(M)$.
(only if) Suppose there exists an DFA M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$. Then by Lemma 1 there exists an NFA M' such that $L=L\left(M^{\prime}\right)$.

Corollary: The NFAs define the regular languages.

NFAs with ε Moves

- An NFA- ε is a five-tuple:
$\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

Q A finite set of states
$\Sigma \quad$ A finite input alphabet
$\mathrm{q}_{0} \quad$ The initial/starting state, q_{0} is in Q
F A set of final/accepting states, which is a subset of Q
$\delta \quad$ A transition function, which is a total function from $\mathrm{Q} \times(\Sigma \mathrm{U}\{\varepsilon\})$ to 2^{Q}
$\delta:(\mathrm{Qx}(\Sigma \mathrm{U}\{\varepsilon\})) \rightarrow 2^{\mathrm{Q}}$
$\delta(\mathrm{q}, \mathrm{s})$
-The set of all states p such that there is a transition labeled a from q to p , where a is in $\Sigma \mathrm{U}\{\varepsilon\}$

- Sometimes referred to as an NFA- ε other times, simply as an NFA.
- Example \#1:

- Example \#2:

- What language does the above NFA- ε accept?
- What does an equivalent DFA look like?
- Example \#3:

- What language does the above NFA- ε accept?
- What does an equivalent DFA look like?

Informal Definitions

- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be an NFA- ε.
- A String w in Σ^{*} is accepted by M iff there exists a path in M from q_{0} to a state in F labeled by w and zero or more ε transitions.
- The language accepted by M is the set of all strings from Σ^{*} that are accepted by M.
- Formalizing these concepts is a bit more tricky than it was for DFAs and NFAs...

ε-closure

- Define ε-closure (q) to denote the set of all states reachable from q by zero or more ε transitions.
- Examples: (for example \#1)

$$
\begin{array}{ll}
\varepsilon \text {-closure }\left(q_{0}\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\} & \varepsilon \text {-closure }\left(\mathrm{q}_{2}\right)=\left\{\mathrm{q}_{2}\right\} \\
\varepsilon \text {-closure }\left(\mathrm{q}_{1}\right)=\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\} & \varepsilon \text {-closure }\left(\mathrm{q}_{3}\right)=\left\{\mathrm{q}_{3}\right\}
\end{array}
$$

ε-closure

- Formal (recursive) Definition:

For any state q

1) $q \in \varepsilon$-closure(q)
2) if $\mathrm{p} \in \varepsilon$-closure(q$)$ and $\mathrm{r} \in \delta(\mathrm{p}, \varepsilon)$ then $\mathrm{r} \in \varepsilon$-closure(q)

Extension of δ to Strings

What we currently have: $\delta:(\mathrm{Q} \times(\Sigma \mathrm{U}\{\varepsilon\})) \rightarrow 2^{\mathrm{Q}}$
What we want (why?): $\quad \delta^{\wedge}:\left(\mathrm{Q} \times \Sigma^{*}\right) \rightarrow 2^{\mathrm{Q}}$
$\delta^{\wedge}(\mathrm{q}, \mathrm{w})$ - The set of states the NFA- ε could be in after reading string w having started in state q .

Formally - given any string x in Σ^{*}, where $|\mathrm{x}|>=0$:

1) $\delta^{\wedge}(\mathrm{q}, \varepsilon)=\varepsilon$-closure (q), and
2) For all w in Σ^{*} and a in Σ,

$$
\begin{aligned}
& \text { r all } \mathrm{w} \text { in } \Sigma^{*} \text { and a in } \Sigma, \quad \quad \text { if }|\mathrm{x}|>=1 \text {, i.e., } \mathrm{x}=\mathrm{wa} \\
& \text { if } \delta^{\wedge}(\mathrm{q}, \mathrm{w})=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}\right\} \text {, and } \bigcup_{i=1}^{k} \delta\left(\mathrm{p}_{\mathrm{i}}, \mathrm{a}\right)=\left\{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{m}}\right\} \\
& \text { then } \delta^{\wedge}(\mathrm{q}, \mathrm{wa})=\bigcup_{i=1}^{m} \varepsilon \text {-closure }\left(\mathrm{r}_{\mathrm{i}}\right)
\end{aligned}
$$

- Note the difference between:

So, unlike with DFAs and NFAs, we can't substitute δ for δ^{\wedge}.

- See the book for a sample derivation.

Definitions for NFA- ε Machines

- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be an NFA- ε and let w be in Σ^{*}. Then w is accepted by M iff $\delta^{\wedge}\left(\mathrm{q}_{0}, \mathrm{w}\right)$ contains at least one state in F , i.e., $\delta^{\wedge}\left(q_{0}, w\right) \cap F \neq \varnothing$.
- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be an NFA- ε. Then the language accepted by M is the set:
$L(M)=\left\{w \mid w\right.$ is in Σ^{*} and $\left.\delta^{\wedge}\left(q_{0}, w\right) \cap F \neq \varnothing\right\}$
- Other equivalent, less formal, definitions:
$L(M)=\left\{\mathrm{w} \mid \mathrm{w}\right.$ is in Σ^{*} and $\delta^{\wedge}\left(\mathrm{q}_{0}, \mathrm{w}\right)$ contains at least one state in F$\}$
$L(M)=\left\{w \mid w\right.$ is in Σ^{*} and w is accepted by $\left.M\right\}$

Equivalence of NFAs and NFA- ε s

- Do NFAs and NFA- ε machines accept the same class of languages?
- Do they accept different classes of languages?
- Is there a language L that is accepted by a NFA, but not by any NFA-ع?
- Is there a language L that is accepted by an NFA- ε, but not by any NFA?
- Perhaps they accept overlapping classes of languages.
- In other words, is one of these two machine models more "powerful" than the other?
- Observation: Every NFA is an NFA- ε.
- Therefore, if L is a regular language then there exists an NFA- $\varepsilon \mathrm{M}$ such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$.
- It follows that NFA- ε machines accept all regular languages.
- Stated formally:

Lemma 1: Let M be an NFA. Then there exists a NFA- ε M' such that $L(M)=L\left(M^{\prime}\right)$.

Proof: Every NFA is an NFA- ε. Hence, if we let M' $=\mathrm{M}$, then it follows that $\mathrm{L}\left(\mathrm{M}^{\prime}\right)=\mathrm{L}(\mathrm{M})$.

- But do NFA- ε machines accept more?
- Example: (NFA)

$$
\begin{aligned}
& \mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \\
& \Sigma=\{0,1\}
\end{aligned}
$$

Start state is q_{0}

$\mathrm{F}=\left\{\mathrm{q}_{0}\right\}$
$\delta:$

	0	1
q_{0}	$\left\{\mathrm{q}_{1}\right\}$	$\}$
q_{1}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{1}\right\}$

- Example: NFA- ε

$$
\begin{aligned}
& \mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \\
& \Sigma=\{0,1\}
\end{aligned}
$$

Start state is q_{0}

$\mathrm{F}=\left\{\mathrm{q}_{0}\right\}$
$\delta:$

	0	1	ε
q_{0}	$\left\{\mathrm{q}_{1}\right\}$	$\}$	$\}$
q_{1}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{1}\right\}$	$\}$

Lemma 2: Let M be an NFA- ε. Then there exists a NFA M' such that $L(M)=L\left(M^{\prime}\right)$.

Proof: (sketch)

Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be an NFA- ε.
Define an NFA M' $=\left(\mathrm{Q}, \Sigma, \delta^{\prime}, \mathrm{q}_{0}, \mathrm{~F}^{\prime}\right)$ as:

$$
\begin{aligned}
& \mathrm{F}^{\prime}=\mathrm{F} \mathrm{U}\left\{\mathrm{q}_{0}\right\} \text { if } \varepsilon \text {-closure }\left(\mathrm{q}_{0}\right) \text { contains at least one state from } \mathrm{F} \\
& \mathrm{~F}^{\prime}=\mathrm{F} \text { otherwise } \\
& \delta^{\prime}(\mathrm{q}, \mathrm{a})=\delta^{\wedge}(\mathrm{q}, \mathrm{a})
\end{aligned} \quad \text { - for all } \mathrm{q} \text { in } \mathrm{Q} \text { and a in } \Sigma \$ 又 又
$$

- Notes:
$-\delta^{\prime}:(\mathrm{Q} \times \Sigma) \rightarrow 2^{\mathrm{Q}}$ is a function
- M' has the same state set, the same alphabet, and the same start state as M
- M' has no ε transitions
- Example:

- Step \#1:
- Same state set as M
$-\mathrm{q}_{0}$ is the starting state

- Example:

- Step \#2:
- q_{0} becomes a final state

- Example:

- Step \#3:

- Example:

- Step \#4:

- Example:

- Step \#5:

- Example:

- Step \#6:

- Example:

- Step \#7:

- Example:

- Step \#8:
- Done!

Theorem: Let L be a language. Then there exists an NFA M such that $L=L(M)$ iff there exists an NFA- εM^{\prime} such that $L=L\left(M^{\prime}\right)$.

Proof:
(if) Suppose there exists an NFA- $\varepsilon \mathrm{M}^{\prime}$ such that $\mathrm{L}=\mathrm{L}\left(\mathrm{M}^{\prime}\right)$. Then by Lemma 2 there exists an NFA M such that $L=L(M)$.
(only if) Suppose there exists an NFA M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$. Then by Lemma 1 there exists an NFA- $\varepsilon \mathrm{M}^{\prime}$ such that $\mathrm{L}=\mathrm{L}\left(\mathrm{M}^{\prime}\right)$.

Corollary: The NFA- ε machines define the regular languages.

- Finally, once again note the constructive nature of the proof, i.e., it shows how to construct the NFA.
- In fact, the construction could also be programmed...
- Give a DFA M such that:
$L(M)=\{x \mid x$ is a string of 0 's and 1 's and $|x|>=2\}$

