
Finite Automata

Reading: Chapter 2
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Deterministic Finite State Automata (DFA)

……..

• One-way, infinite tape, broken into cells

• One-way, read-only tape head.

• Finite control, i.e., a program, containing the position of the read head, 
current symbol being scanned, and the current “state.”

• A string is placed on the tape, read head is positioned at the left end, 
and the DFA will read the string one symbol at a time until all symbols 
have been read. The DFA will then either accept or reject.

Finite

Control

0 1 1 0 0
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• The finite control can be described by a transition diagram:

• Example #1:

1 0 0 1 1

q0 q0 q1 q0 q0 q0

• One state is final/accepting, the other is rejecting.

• What strings does this DFA accept?

q0
q1

0

0

1

1
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• Example #2:

a c c c b accepted

q0 q0 q1 q2 q2 q2

a a c rejected

q0 q0 q0 q1             

• What strings does this DFA accept?

• Note that every state in a DFA has an implicit “assertion”

q1q0
q2

a

b

a

b

c c

a,b,c
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Formal Definition of a DFA

• A DFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of (zero or more) final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to Q

δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ, and 

δ(q,s) = q’ is equal to another state q’ in Q.

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in 
state q.
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• For example #1:

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ:

0 1

q0 q1 q0

q1 q0 q1

q0
q1

0

0

1

1
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• For example #2:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

• Since δ is a total function, it is defined for every state q and symbol s.

• In other words, at each step M has exactly one option.

• It follows that for a given string, there is exactly one computation.

q1q0
q2

a

b

a

b

c c

a,b,c
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• Give a DFA that accepts the strings in the set:

{x | x is a string of (zero or more) a’s, b’s and c’s such 

that x contains the substring aa}

a

a,b,c

a
q1

b,c

b,c

q0
q2
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• Give a DFA M such that:

L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s such 

that x does not contain the substring aa}

q2q0

a

a,b,c

a
q1

b,c

b,c
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• Give a DFA M such that:

L(M) = {x | x is a string of a’s, b’s and c’s such that x 

contains the substring aba}

q3q2q0

a

a,b,c

b
q1

c

b,c a

b,c

a



• Give a DFA M such that:

L(M) = {x | x is a string of 0’s and 1’s such that x contains

an even number of 0’s and an even number of 1’s}

1

q1
1

q2

1

q3
1

0

0

0

0

q0
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• Questions:

– Which of the following are “valid” DFAs?

• No final state

• Unreachable state

• Missing transition

• Disconnected components

• Single state

– How difficult would it be to simulate a specific DFA?

– How difficult would it be to automatically generate DFA 

simulators, i.e., Lex?
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// variables; for the DFA that accepted all strings with the substring aba

n int = 4;

ch char;

cs int = 0;

FS int set = {0};

TM array[0..n-1,’a’..’c’] of int = { {1,0,0}, {1,2,0}, {3,0,0}, {3,3,3} };

// prompt for and process input string

print(“Enter String:”);

read(ch);

while (ch <> EOL) {

cs = TM[cs,ch];

read(ch)

}

//see if terminating state is a final state

if (cs is in F)

print(“accept”);

Else

print(“reject”); 
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Extension of δ to Strings

δ^ : (Q x Σ*) –> Q

δ^(q,x) – The state entered after reading string x having started in state q.

Formally - given any string x in Σ*, where |x|>=0 :

1) δ^(q, ε) = q, and if |x|=0, i.e., x= ε

2) For all w in Σ* and a in Σ if |x|>=1, i.e., x=wa

δ^(q,wa) = δ (δ^(q,w), a)
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• Recall Example #1:

• What is δ^(q0, 011)? Informally, it is the state entered by M after processing 011 having 
started in state q0.

• Formally:

δ^(q0, 011) = δ (δ^(q0,01), 1) by rule #2

= δ (δ ( δ^(q0,0), 1), 1) by rule #2

= δ (δ (δ (δ^(q0, ε), 0), 1), 1) by rule #2

= δ (δ (δ(q0,0), 1), 1) by rule #1

= δ (δ (q1, 1), 1) by definition of δ

= δ (q1, 1) by definition of δ

= q1 by definition of δ

• Is 011 accepted? No, since δ^(q0, 011) = q1 is not a final state.

q0
q1

0

0

1

1

1) δ^(q, ε) = q, and if |x|=0, i.e., x= ε

2) For all w in Σ* and a in Σ if |x|>=1, i.e., x=wa

δ^(q,wa) = δ (δ^(q,w), a)
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• Note that:

δ^ (q,a) = δ(δ^(q, ε), a) by rule #2

= δ(q, a) by rule #1

• More generally, it is obvious from the definition of δ^ that:

δ^ (q, a1a2…an) = δ(δ(…δ(δ(q, a1), a2)…), an)

• Hence, we can (informally) use δ in place of δ^:

δ^(q, a1a2…an) = δ(q, a1a2…an)

• In other words, δ^ doesn’t really add anything to δ.
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• Consider the following DFA:

• What is δ(q0, 011)? Informally, it is the state entered by M after 

processing 011 having started in state q0.

• Formally:

δ(q0, 011) = δ (δ(q0,01), 1) by rule #2

= δ (δ (δ(q0,0), 1), 1) by rule #2

= δ (δ (q1, 1), 1) by definition of δ

= δ (q1, 1) by definition of δ

= q1 by definition of δ

• Is 011 accepted? No, since δ(q0, 011) = q1 is not a final state.

q1q0
q2

1 1

0
0

1

0
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• Recall Example #2:

• What is δ(q1, 10)?

δ(q1, 10) = δ (δ(q1,1), 0) by rule #2

= δ (q1, 0) by definition of δ

= q2 by definition of δ

• Based on the above, can we conclude that 10 is accepted?

• No, since δ(q0, 10) = q1 is not a final state. The fact that δ(q1, 10) = q2 

is irrelevant!

0

q1q0
q2

1 1

0

1

0



• Let M = (Q, Σ, δ,q0,F) be a DFA and let w be in Σ*.  Then w is accepted by  M  if 
δ(q0,w) = p  for some state p in F, i.e., δ(q0,w)     F. 

• Let  M = (Q, Σ, δ,q0,F)  be a DFA. Then the language accepted by M, denoted L(M), is:

{w | w is in Σ* and δ(q0,w)     F} 

• Other, equivalent, less formal definitions for L(M):

{w | w is in Σ* and δ(q0,w) is in F}

{w | w is in Σ* and w is accepted by M}

19

Definitions for DFAs







• Let  L  be a language. Then  L  is a regular language iff there exists a DFA  M  such that 
L = L(M).

• Let  M1 = (Q1, Σ1, δ1, q0, F1)  and M2 = (Q2, Σ2, δ2, p0, F2)  be DFAs. Then M1 and M2

are equivalent iff  L(M1) = L(M2).

20

Definitions for DFAs
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• Notes:

– A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and  Σ* - L(M). 

– In the definition of a regular language, “=’’ means exactly equals.

– If L = L(M) then L is a subset of L(M), and L(M) is a subset of L.

– Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2), and L(M2) is a subset 
of L(M1). 

– Some languages are regular, others are not. For example, if

L1 = {x | x is a string of 0's and 1's containing an even 
number of 1's} and 

L2 = {x | x = 0n1n for some n >= 0} 

then L1 is regular but L2 is not.

• Questions:

– How do we determine whether or not a given language is regular?
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• Give a DFA M such that:

L(M) = {x | x is a string of a’s and b’s such that x 

contains both aa and bb}

q0

b

q7

q5q4 q6

b

b

b

a

q2q1 q3

a

a

a

b

a,bb

a

a

a b
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• Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+.

For {}: For {ε}:

For Σ*: For Σ+:

0,1

q0

0,1

q0

q1q0

0,1

0,1

0,1
q0 q1

0,1
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Nondeterministic Finite State

Automata (NFA)

• An NFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to 2Q

δ: (Q x Σ) –> 2Q -2Q is the power set of Q, the set of all subsets of Q 
δ(q,s) -The set of all states p such that there is a transition

labeled s from q to p

δ(q,s) is a function from Q x Σ to 2Q (but not to Q)
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• Example #1:

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q2}

δ: 0 1

q0

q1

q2

• How is a string such as 011 processed?

• For a given string there may be multiple paths; in fact, there are three types of paths.

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1q0
q2

0 1

0 1

0,1
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• Example #1:

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q2}

δ: 0 1

q0

q1

q2

• A string is said to be accepted if there exists a path to some state in F that uses all the 

symbols in the string (try 011, 000, 01110, 1010, 0011).

• The language accepted by an NFA is the set of all accepted strings.

– The above NFA accepts the set of all strings of 0’s and 1’s that start with one or more 0’s, followed by one or 

more 1’s, followed by any sequence of 0’s and 1’s.

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1q0
q2

0 1

0 1

0,1
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• Example #2:

Q = {q0, q1, q2 , q3 , q4}

Σ = {0, 1}

Start state is q0

F = {q2, q4}

δ: 0 1

q0

q1

q2

q3

q4

{q0, q3} {q0, q1}

{} {q2}

{q2} {q2}

{q4} {}

{q4} {q4}

q0

0,1

0 0
q3

q4

0,1

q1
q2

0,11

1
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• Notes:

– δ(q,s) may not be defined for some q and s (why?).

– Could the previous two languages be accepted by a DFAs (exercise)?

• Question: How does an NFA find the correct/accepting path for a 

given string?

– Doesn’t really matter

– NFAs are a non-intuitive computing model.

• Designing NFAs is not a typical task.

• Regardless, the notions of string and language acceptance are well-defined. 

– We are primarily interested in NFAs as language defining devices, i.e., do 

NFAs accept languages that DFAs do not?

– Other questions are secondary, e.g., whether or not there is an algorithm 

for finding an accepting path through an NFA for a given string.
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• All that having been said…

• Yes, determining if a given NFA (example #2) accepts a given string 

(001) can be done algorithmically:

q0 q0 q0 q0

q3 q3 q1

q4 q4 accepted

• Each level will have at most n states

0 0 1

q0

0,1

0 0
q3

q4

0,1

q1
q2

0,11

1
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• Another example (010):

q0 q0 q0 q0

q3 q1 q3

not accepted

• All paths have been explored, and none lead to an accepting state.

0 1 0

q0

0,1

0 0
q3

q4

0,1

q1
q2

0,11

1
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• How difficult would it be to simulate an NFA?

• Would the DFA simulation algorithm work?
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// variables; for NFA example #2

n int = 5;

ch char;

cs int set = {0};

new-cs int set;

FS int set = {2,4};

TM array[0..n-1,0..1] of int set = { {{0,3},{0,1}}, {{0},{}}, {{2},{2}}, {{4},{0}}, {{4},{4}} };

// prompt for and process input string

print(“Enter String:”);

read(ch);

while (ch <> EOL) {

new-cs = {};

for each s in cs {

new-cs = new-cs U TM[s,ch];

}

cs = new-cs;

read(ch)

}

//see if terminating state is a final state

if (any state in cs is in F)

print(“accept”);

Else

print(“reject”); 
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• Let Σ = {a, b, c}. Give an NFA M that accepts:

L = {x | x is in Σ* and x contains ab}

Is L a subset of L(M)?

Is L(M) a subset of L?

• Is an NFA necessary? Could a DFA accept L? Try and give an 

equivalent DFA as an exercise.

q1q0
q2

a

a,b,c

b

a,b,c
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• Let Σ = {a, b}. Give an NFA M that accepts:

L = {x | x is in Σ* and the third to the last symbol in x is b}

Is L a subset of L(M)?

Is L(M) a subset of L?

• What if q3 had a transition to itself on a or b?

• Give an equivalent DFA as an exercise.

q1q0

b q3
a,b

a,b

q2

a,b



35

Extension of δ to Strings

What we currently have: δ : (Q x Σ) –> 2Q

What we want (why?): δ^ : (Q x Σ*) –> 2Q

δ^(q,x) – The set of states the NFA could be in after reading string x
having started in state q.

Formally - given any string x in Σ*, where |x|>=0 :

1) δ^(q, ε) = {q}, and if |x|=0

2) For all w in Σ* and a in Σ, if |x|>=1, i.e., x=wa

if δ^(q, w) = {p1, p2,…, pk}, and

δ(pi, a) = {r1, r2,…, rm} then δ^(q,wa) = {r1, r2,…, rm}
k

i 1=
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• Example:

What is δ^(q0, 01)?

Informally: The set of states the NFA could be in after processing 01, i.e., {q2, q3} 

Formally: (bottom up)

a) δ^ (q0, ε) = {q0} def of δ^, line #1

b) δ^ (q0, 0) = δ(q0, 0) = {q1, q2, q3} def of δ^, line #2, δ, and a)

c) δ^ (q0, 01) = δ(q1, 1) U δ(q2, 1) U δ(q3, 1) def of δ^, line #2, δ, and b)

= {q2, q3} U {q3} U {} def of δ

= {q2, q3} 

Is 01 accepted? Yes! (see the book for a longer example)

q0

0 1
q1

q3

0 1

q2

1

1 0
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• Note that just like with DFAs, δ^ is a direct extension of δ, and doesn’t 

really add anything.

• Consequently we can use δ in place of δ^, i.e.,

δ^(q, a1a2…an) = δ(q, a1a2…an)

• δ(q, a1a2…an) is the set of states the NFA could be in after processing 

a1a2…an having started in state q.
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Definitions for NFAs

• Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*.  Then w is accepted by 

M iff δ(q0, w) contains at least one state in F, i.e., δ(q0,w) ∩ F ≠ Ø. 

• Let  M = (Q, Σ, δ,q0,F)  be an NFA. Then the language accepted by M is the 

set:

L(M) = {w | w is in Σ* and δ(q0,w) ∩ F ≠ Ø} 

• Other, equivalent, less formal definitions:

L(M) = {w | w is in Σ* and δ(q0,w) contains at least one state in F}

L(M) = {w | w is in Σ* and w is accepted by M}
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Equivalence of DFAs and NFAs

• Do DFAs and NFAs accept the same class of languages?

• Do they accept different classes of languages?

– Is there a language L that is accepted by a DFA, but not by any NFA?

– Is there a language L that is accepted by an NFA, but not by any DFA?

• Perhaps they accept overlapping classes of languages.

• In other words, is one of these two machine models more “powerful” than the 
other?
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• Observation: Every DFA is an NFA.

• Consider the following DFA:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

q1q0
q2

a

b

a

b

c c

a,b,c
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• An Equivalent NFA:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 {q0} {q0} {q1}

q1 {q1} {q1} {q2}

q2 {q2} {q2} {q2}

q1q0
q2

a

b

a

b

c c

a,b,c
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• Therefore, if L is a regular language then there exists an NFA M such that L = 
L(M).

• Thus, NFAs accept all regular languages, i.e., NFAs are at least as “powerful” 
as DFAs.

• Stated formally:

Lemma 1: Let M be an DFA.  Then there exists a NFA M’ such that L(M) = 

L(M’).

Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows that 

L(M’) = L(M).

• So NFAs accept the regular languages, but do they accept more?
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Lemma 2: Let M be an NFA.  Then there exists a DFA M’ such that L(M) = 
L(M’).

Proof: (sketch)

Let M = (Q, Σ, δ,q0,F).

Define a DFA M’ = (Q’, Σ, δ’,q’
0,F’) as:

Q’ = 2Q Each state in M’ corresponds to a

= {Q0, Q1,…,} subset of states from M

where Qu = {qi0, qi1,…qij}

F’ = {Qu | Qu contains at least one state in F}

q’
0 = {q0}

δ’(Qu, a) =       δ(p, a) 
uQp
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• Example:

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ: 0 1

q0

q1

{q1} {}

{q0, q1} {q1}

q1q0

0

0,1

0
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• Construct DFA M’ as follows:

δ(q0, 0) U δ(q1, 0) = {q0, q1} => δ’({q0, q1}, 0) = {q0, q1}

δ(q0, 1) U δ(q1, 1) = {q1} => δ’({q0, q1}, 1) = {q1}

δ(q0, 0) = {q1} => δ’({q0}, 0) = {q1}

δ(q0, 1) = {} => δ’({q0}, 1) = {}

δ(q1, 0) = {q0, q1} => δ’({q1}, 0) = {q0, q1}

δ(q1, 1) = {q1} => δ’({q1}, 1) = {q1}

{}
1 0

{q0, q1}

1

{q1}

0

0,1

{q0}

1

0

q1q0

0

0,1

0
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• Lastly, for the state corresponding to the empty set…

• Suppose R = {}

δ’(R, 0) =     δ(q, 0) From the construction

= {} Since R = {}


Rq
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• So why does this construction work?

• Consider a simulation of the original NFA on the string 0010

• Consider a simulation of the resulting DFA on the same string

• So does this complete the proof?

• No! Technically, we need to prove that a string x is accepted by the DFA if 

and only if it is accepted by the NFA.

– Performed by induction on the length of x

– See the book
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• Note the constructive nature of the proof, i.e., it shows how to construct the 

DFA (not all proofs are constructive).

• In fact, the construction could be programmed…

• The construction is not particularly efficient, however, i.e., the resulting DFA 

is not guaranteed to be minimum.

– Some states in the DFA may not be reachable.

– The book uses “lazy evaluation” to eliminate unreachable states.

• As an exercise, try the construction on some of the NFAs from class. 
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• Exercise - Convert the following NFA to a DFA:

Q = {q0, q1, q2} δ: 0 1

Σ = {0, 1} 

Start state is q0 q0

F = {q0}

q1

q2

{q0, q1} { }

{q1} {q2}

{q2} {q2}
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• Exercise - Convert the following NFA to a DFA:

Q = {q0, q1, q2} δ: 0 1

Σ = {0, 1} 

Start state is q0 q0

F = {q0}

q1

q2

{q0, q1} {q0}

{} {q2}

{} {}
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Theorem: Let L be a language.  Then there exists an DFA M  such 

that L = L(M) iff there exists an NFA M’ such that L = L(M’).

Proof:

(if) Suppose there exists an NFA M’ such that L = L(M’).  Then by 

Lemma 2 there exists an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M).  Then by 

Lemma 1 there exists an NFA M’ such that L = L(M’).

Corollary: The NFAs define the regular languages.
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NFAs with ε Moves

• An NFA-ε is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x (Σ U {ε}) to 2Q

δ: (Q x (Σ U {ε})) –> 2Q

δ(q,s) -The set of all states p such that there is a 

transition labeled a from q to p, where a 

is in Σ U {ε}

• Sometimes referred to as an NFA-ε other times, simply as an NFA.
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• Example #1:

δ: 0 1 ε

q0 - A string w = w1w2…wn is processed

as w = ε*w1ε
*w2ε

* … ε*wnε
*

q1 - Example: all computations on 00:

0    ε   0

q2 q0 q0 q1 q2

:

q3

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

{q0} { } {q1}

{q1, q2} {q0, q3} {q2}

{q2} {q2} { }

{ } { } { }
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• Example #2:

• What language does the above NFA-ε accept?

• What does an equivalent DFA look like?

q0

q1

0

q2

1

q3

1

q4

0
q5

ε

ε

ε

ε

ε

ε
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• Example #3:

• What language does the above NFA-ε accept?

• What does an equivalent DFA look like?

q1q0
q2

1
0

1

ε

ε
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Informal Definitions

• Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

• A String w in Σ* is accepted by M iff there exists a path in M from q0 to a state 

in F labeled by w and zero or more ε transitions.

• The language accepted by M is the set of all strings from Σ* that are accepted 

by M.

• Formalizing these concepts is a bit more tricky than it was for DFAs and 

NFAs…
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ε-closure

• Define ε-closure(q) to denote the set of all states reachable from q by 
zero or more ε transitions.

• Examples: (for example #1)

ε-closure(q0) = {q0, q1, q2} ε-closure(q2) = {q2}

ε-closure(q1) = {q1, q2} ε-closure(q3) = {q3}

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1
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ε-closure

• Formal (recursive) Definition:

For any state q

1) q  ε-closure(q)

2) if p  ε-closure(q) and r  δ(p, ε) then r  ε-closure(q)
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Extension of δ to Strings

What we currently have: δ : (Q x (Σ U {ε})) –> 2Q

What we want (why?): δ^ : (Q x Σ*) –> 2Q

δ^(q,w) – The set of states the NFA-ε could be in after reading string w 
having started in state q.

Formally - given any string x in Σ*, where |x|>=0 :

1) δ^(q, ε) = ε-closure(q), and if |x| = 0

2) For all w in Σ* and a in Σ, if |x| >= 1, i.e., x=wa

if δ^(q, w) = {p1, p2,…, pk}, and      δ(pi, a) = {r1, r2,…, rm}

then δ^(q,wa) =       ε-closure(ri)


k

i 1=


m

i 1=
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• Note the difference between:

δ(q0, 0) = q0

δ^(q0, 0) = {q0, q1, q2}

So, unlike with DFAs and NFAs, we can’t substitute δ for δ^.

• See the book for a sample derivation.

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1
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Definitions for NFA-ε Machines

• Let M = (Q, Σ, δ,q0,F) be an NFA-ε and let w be in Σ*.  Then w is 

accepted by M iff δ^(q0, w) contains at least one state in F, i.e.,

δ^ (q0,w) ∩ F ≠ Ø. 

• Let  M = (Q, Σ, δ,q0,F)  be an NFA-ε. Then the language accepted by 

M is the set:

L(M) = {w | w is in Σ* and δ^ (q0,w) ∩ F ≠ Ø}

• Other equivalent, less formal, definitions:

L(M) = {w | w is in Σ* and δ^(q0,w) contains at least one state in F} 

L(M) = {w | w is in Σ* and w is accepted by M}
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Equivalence of NFAs and NFA-εs

• Do NFAs and NFA-ε machines accept the same class of languages?

• Do they accept different classes of languages?

– Is there a language L that is accepted by a NFA, but not by any NFA-ε?

– Is there a language L that is accepted by an NFA-ε, but not by any NFA?

• Perhaps they accept overlapping classes of languages.

• In other words, is one of these two machine models more “powerful” 

than the other?
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• Observation: Every NFA is an NFA-ε.

• Therefore, if L is a regular language then there exists an NFA-ε M 

such that L = L(M).

• It follows that NFA-ε machines accept all regular languages.

• Stated formally:

Lemma 1: Let M be an NFA.  Then there exists a NFA-ε M’ such 

that L(M) = L(M’).

Proof: Every NFA is an NFA-ε. Hence, if we let M’ = M, then it 

follows that L(M’) = L(M).

• But do NFA-ε machines accept more?
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• Example: (NFA)

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ: 0 1

q0

q1

{q1} {}

{q0, q1} {q1}

q1q0

0

0,1

0
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• Example: NFA-ε

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ: 0 1 ε

q0

q1

{q1} {} {}

{q0, q1} {q1} {}

q1q0

0

0,1

0
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Lemma 2: Let M be an NFA-ε.  Then there exists a NFA M’ such 
that L(M) = L(M’).

Proof: (sketch)

Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

Define an NFA M’ = (Q, Σ, δ’,q0,F’) as:

F’ = F U {q0} if ε-closure(q0) contains at least one state from F

F’ = F otherwise

δ’(q, a) = δ^(q, a) - for all q in Q and a in Σ

• Notes:
– δ’: (Q x Σ) –> 2Q is a function

– M’ has the same state set, the same alphabet, and the same start state as M

– M’ has no ε transitions
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• Example:

• Step #1:

– Same state set as M

– q0 is the starting state

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0
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• Example:

• Step #2:

– q0 becomes a final state

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0
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• Example:

• Step #3:

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0

0

0
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• Example:

• Step #4:

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0,1

0,1

0,1

1
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• Example:

• Step #5:

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0,1

0,1

0,1

1

0

0
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• Example:

• Step #6:

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0,1

0,1

0,1

1

0,1

0,1

1

1



74

• Example:

• Step #7:

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0,1

0,1

0,1

1

0,1

0,1

1

1 0
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• Example:

• Step #8:

– Done!

q0

ε

0,1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0,1

0,1

0,1

1

0,1

0,1

1

1 0,1
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Theorem: Let L be a language.  Then there exists an NFA M  such 

that L= L(M) iff there exists an NFA-ε M’ such that L = L(M’).

Proof:

(if) Suppose there exists an NFA-ε M’ such that L = L(M’).  Then by 

Lemma 2 there exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M).  Then by 

Lemma 1 there exists an NFA-ε M’ such that L = L(M’).

Corollary: The NFA-ε machines define the regular languages.
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• Finally, once again note the constructive nature of the proof, i.e., it 

shows how to construct the NFA.

• In fact, the construction could also be programmed… 
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• Give a DFA M such that:

L(M) = {x | x is a string of 0’s and 1’s and |x| >= 2}

q1q0
q2

0,1

0,1

0,1


