Properties of Context-Free Languages

Reading: Chapter 7

Background Information for the Pumping Lemma for Context-Free Languages

• **Definition:** Let G = (V, T, P, S) be a CFG. If every production in P is one of the following two forms:

 $\begin{array}{l} A \longrightarrow BC \\ A \longrightarrow a \end{array}$

where A, B and C are all in V and a is in T, then G is in Chomsky Normal Form (CNF).

• **Example:** (not quite!)

 $S \rightarrow AB \mid BA \mid aSb$ $A \rightarrow a$ $B \rightarrow b$

- **Theorem:** Let L be a CFL. Then $L \{\epsilon\}$ is a CFL.
- **Theorem:** Let L be a CFL not containing $\{\epsilon\}$. Then there exists a CNF grammar G such that L = L(G).

- **Definition:** Let T be a tree. Then the <u>height</u> of T, denoted h(T), is defined as follows:
 - If T consists of a single vertex then h(T) = 0
 - If T consists of a root r and subtrees $T_1, T_2, ..., T_k$, then $h(T) = \max_i \{h(T_i)\} + 1$
- **Lemma:** Let G be a CFG in CNF. In addition, let w be a string of terminals where A = >*w and w has a derivation tree T. If T has height k >= 1, then $|w| <= 2^{k-1}$.
- **Proof:** By induction on h(T) (exercise).
- **Corollary:** Let G be a CFG in CNF, and let w be a string in L(G). If $|w| \ge 2^k$, where $k \ge 0$, then any derivation tree for w using G has height at least k+1.
- **Proof:** Follows from the lemma.

Pumping Lemma for Context-Free Languages

• Lemma:

Let G = (V, T, P, S) be a CFG in CNF, and let $n = 2^{|V|}$. If z is a string in L(G) and $|z| \ge n$, then there exist strings u, v, w, x and y in T* such that z=uvwxy and:

 $- |vx| >= 1 \qquad (i.e., |v| + |x| >= 1)$

 $- |vwx| \le n$

- uv^iwx^iy is in L(G), for all $i \ge 0$

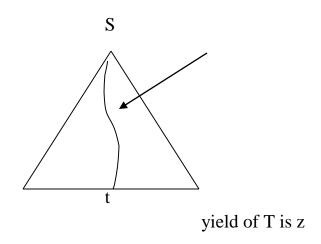
• Proof:

Let G = (V, T, P, S) be a CFG in CNF, let $n = 2^k$, where k = |V|, and let z be a string in L(G) where $|z| \ge n$.

Since $|z| \ge n = 2^k$, it follows from the corollary that any derivation tree for z has height at least k+1.

By definition such a tree contains a path of length at least k+1.

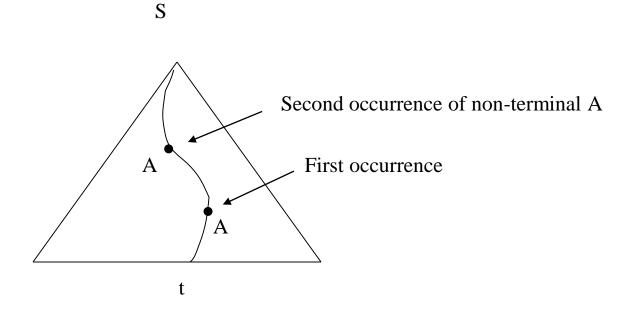
Consider the longest such path in the tree:



Such a path has:

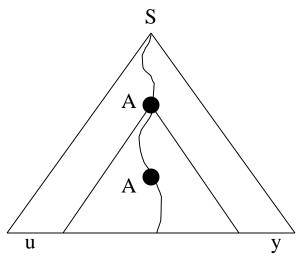
- Length >= k+1 (i.e., number of edges in the path is >= k+1)
- At least k+2 nodes
- 1 terminal
- At least k+1 non-terminals

- Since there are only k non-terminals in the grammar, and since k+1 appear on this path, it follows that some non-terminal (perhaps many) appears at least twice on this path.
- Consider the first non-terminal that is repeated, when traversing the path from the leaf to the root.

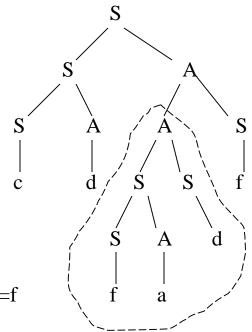


This path, and the non-terminal A will be used to break up the string z.

• Generic Description:



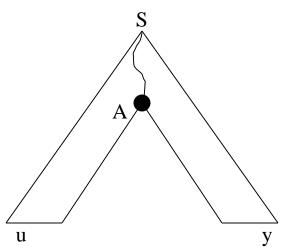
• Example:



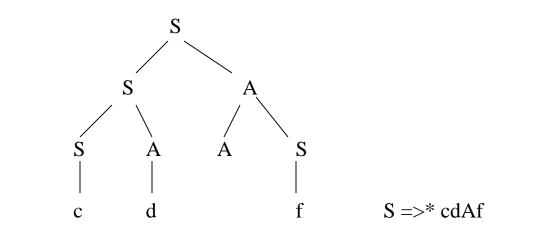
 $\begin{array}{l} S -> SA \\ A -> SS \mid AS \\ S -> c \mid f \mid d \\ A -> d \mid a \end{array}$

In this case u = cd and y = f

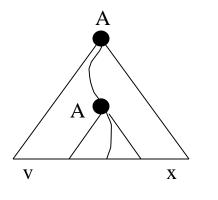
• Cut out the subtree rooted at A:

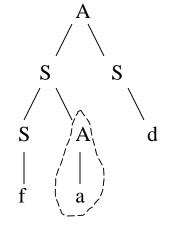


• Example:

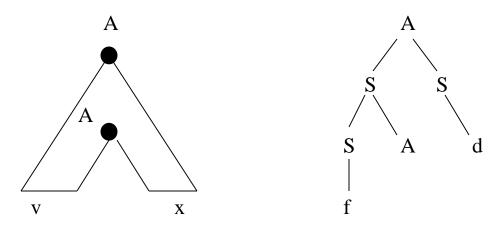


• Consider the subtree rooted at A:



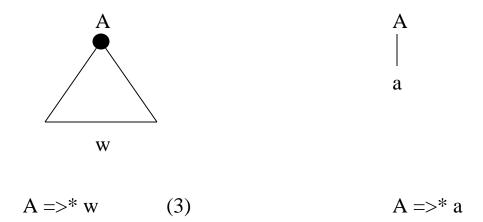


• Cut out the subtree rooted at the first occurrence of A:



 $A \Longrightarrow fAd$

• Consider the smallest subtree rooted at A:



• Collectively (1), (2) and (3) give us:

S => * uAy	(1)
=>* uvAxy	(2)
=>* uvwxy	(3)
=>* z	since z=uvwxy

• In addition, (2) also tells us:

$$S =>^{*} uAy$$
(1)
=>^{*} uvAxy
=>^{*} uv^{2}Ax^{2}y (2)
=>^{*} uv^{2}wx^{2}y
(3)

• More generally:

$S =>* uv^i wx^i y$ for a	all i>=1
---------------------------	----------

• And also:

$$S =>* uAy$$
 (1)
=>* uwy (3)

• Hence:

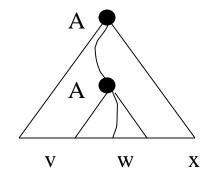
$$S =>* uv^i wx^i y$$
 for all $i \ge 0$

• Consider the statement of the Pumping Lemma:

-What is n?

 $n = 2^k$, where k is the number of non-terminals in the grammar.

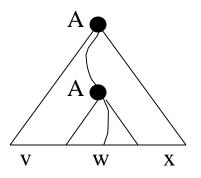
-Why is |v| + |x| > = 1?



Since the height of this subtree is >=2, the first production is A-> V_1V_2 . Since no nonterminal derives the empty string (in CNF), either V_1 or V_2 must derive a non-empty v or x. More specifically, if w is generated by V_1 , then x contains at least one symbol, and if w is generated by V_2 , then v contains at least one symbol. -Why is $|vwx| \le n$?

Observations:

- The repeated variable was the <u>first</u> repeated variable on the path from the bottom, and therefore (by the pigeon-hole principle) the path from the leaf to the second occurrence of the non-terminal has length <u>at most</u> k+1.
- Since the path was the largest in the entire tree, this path is the longest in the subtree rooted at the second occurrence of the non-terminal. Therefore the subtree has height <=k+1. From the lemma, the yield of the subtree has length <=2^k=n.•



- Examples of showing languages are not context-free:
 - http://my.fit.edu/~pbernhar/Teaching/FormalLanguages/nonContextFree1.pdf
 - http://my.fit.edu/~pbernhar/Teaching/FormalLanguages/nonContextFree2.pdf

Closure Properties for Context-Free Languages

- **Theorem:** The CFLs are closed with respect to the union, concatenation and Kleene star operations.
- **Proof:** (details left as an exercise) Let L_1 and L_2 be CFLs. By definition there exist CFGs G_1 and G_2 such that $L_1 = L(G_1)$ and $L_2 = L(G_2)$.
 - For union, show how to construct a grammar G_3 such that $L(G_3) = L(G_1) U L(G_2)$.
 - For concatenation, show how to construct a grammar G_3 such that $L(G_3) = L(G_1)L(G_2)$.
 - For Kleene star, show how to construct a grammar G_3 such that $L(G_3) = L(G_1)^*$.

- **Theorem:** The CFLs are not closed with respect to intersection.
- **Proof:** (counter example) Let

$$L_1 = \{a^i b^i c^j \mid i,j >= 0\}$$

and

$$L_2 = \{a^i b^j c^j \mid i,j >= 0\}$$

Note that both of the above languages are CFLs.

If the CFLs were closed with respect to intersection then

$$L_1 \cap L_2$$

would have to be a CFL.

But this is equal to:

$$\{a^{i}b^{i}c^{i} \mid i \ge 0\}$$

which is not a CFL.•

- Lemma: Let L_1 and L_2 be subsets of Σ^* . Then $L_1 \cup L_2 = L_1 \cap L_2$.
- **Theorem**: The CFLs are not closed with respect to complementation.
- **Proof:** (by contradiction) Suppose that the CFLs were closed with respect to complementation, and let L₁ and L₂ be CFLs. Then:

 $\overline{L_1}$ would be a CFL $\overline{L_2}$ would be a CFL $\overline{L_1} \cup \overline{L_2}$ would be a CFL $\overline{\overline{L_1} \cup \overline{L_2}}$ would be a CFL

But by the lemma:

$$\overline{\overline{L_1} \cup \overline{L_2}} = \overline{\overline{L_1}} \cap \overline{\overline{L_2}} = L_1 \cap L_2 \text{ a contradiction}.$$

- Theorem: Let L be a CFL and let R be a regular language. Then $L \cap R$ is a CFL.
- **Proof:** (exercise sort of)•
- **Question:** Is $L \cap R$ regular?
- Answer: Not always. Let $L = \{a^i b^i | i \ge 0\}$ and $R = \{a^i b^j | i, j \ge 0\}$, then $L \cap R = L$ which is not regular.