Regular Expressions

Reading: Chapter 3

Operations on Languages

- Let L, L₁, L₂ be subsets of Σ^*
- Concatenation: $L_1L_2 = \{xy \mid x \text{ is in } L_1 \text{ and } y \text{ is in } L_2\}$
- Concatenating a language with itself: $L^0 = \{\epsilon\}$ $L^i = LL^{i-1}$, for all $i \ge 1$
- Kleene Closure: $L^* = \bigcup_{i=0}^{\infty} L^i = L^0 U L^1 U L^2 U...$ • Positive Closure: $L^+ = \bigcup_{i=1}^{\infty} L^i = L^1 U L^2 U...$
- Question: Does L^+ contain ϵ ?

Regular Expressions

A regular expression is:

- a finite length sequence of symbols
- used to specify a language
- very precise, intuitive, and useful in a lot of contexts
- easy to convert to an NFA-ε, algorithmically; and consequently to an NFA, a DFA, and a corresponding program

Definition of a Regular Expression

- If r is a regular expression, then L(r) is used to denote the corresponding language.
- Σ be an alphabet. The regular expressions over Σ are:

Ø	Represents the empty set { }
3	Represents the set $\{\epsilon\}$
a	Represents the set $\{a\}$, for any symbol a in Σ

Let r and s be regular expressions.

r+s	Represents the set $L(r) U L(s)$
rs	Represents the set L(r)L(s)
\mathbf{r}^*	Represents the set $L(r)^*$
(r)	Represents the set L(r)

• Note that the operators are listed in increasing precedence.

• **Examples:** Let $\Sigma = \{0, 1\}$

$(0+1)^*$	All strings of 0's and 1's
$0(0+1)^*$	All strings of 0's and 1's, beginning with a 0
(0+1)*1	All strings of 0's and 1's, ending with a 1
(0+1)*0(0+1)*	All strings of 0's and 1's containing at least one 0
(0+1)*0(0+1)*0(0+1)*	All strings of 0's and 1's containing at least two 0's
(0+1)*01*01*	All strings of 0's and 1's containing at least two 0's
1*(01*01*)*	All strings of 0's and 1's containing an even number of 0's
(1*01*0)*1*	All strings of 0's and 1's containing an even number of 0's
(1+01*0)*	All strings of 0's and 1's containing an even number of 0's

- Question: Is there a unique minimum regular expression for a given language?
- How do the above regular expressions "parse" based on the formal definition?

• Other examples:

011

 $010+1100+\epsilon$

010 + 1100 + Ø

 $\epsilon(0 + 1)^{*}$

 $\epsilon 0(0+1)^*$

 $(0+1+\epsilon)^*1$

 $\emptyset(0+1)^*$

 $(\emptyset + 1)^*$

• An almost completely useless program...

1*(01*01*)*

• Generating a Random String for a Regular Expression (Example):

```
// generate something from 1*
int n = random(0, inf);
for (int i=0; i<=n-1; i++) {</pre>
    print('1');
}
// generate something from (01*01*)*
int m = random(0, inf);
for (int i=0; i<=m-1; i++) {</pre>
    // generate a single 0
    print(`0');
    // generate something from 1*
    int k = random(0, inf);
    for (int i=0; i<=k-1; i++) {</pre>
        print('1');
    }
    // generate a single 0
    print('0');
    // generate something from 1*
    int k = random(0, inf);
    for (int i=0; i<=k-1; i++) {</pre>
       print('1');
    }
}
```

• Algebraic Laws for Regular Expressions:

1.	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	commutativity
2.	$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	associativity
3.	(uv)w = u(vw)	associativity
4.	$\emptyset + u = u + \emptyset = u$	identity
5.	$\varepsilon u = u\varepsilon = u$	identity
6.	$\emptyset u = u\emptyset = \emptyset$	annihilator
7.	u(v+w) = uv+uw	distributive
8.	(u+v)w = uw+vw	distributive
9.	u + u = u	idempotent
10.	$(u^*)^* = u^*$	œ
11.	$Ø^* = \varepsilon$	$\mathbf{L}^* = \bigcup \ \mathbf{L}^i = \mathbf{L}^0 \ \mathbf{U} \ \mathbf{L}^1 \ \mathbf{U} \ \mathbf{L}^2 \ \mathbf{U}$
12.	$\epsilon^* = \epsilon$	<i>i</i> =0

• Such laws can be used to prove equivalences between regular expressions:

 $\begin{aligned} \epsilon + 1^* &= 1^* \\ 0 + 01^* &= (\epsilon + 1^*)0 \\ (0 + 1)^* &= (0^* + 10^*)^* \end{aligned}$

• Other Laws:

1. $(uv)^*u = u(vu)^*$

2.
$$(u+v)^* = (u^*+v)^*$$

= $u^*(u+v)^*$
= $(u+vu^*)^*$
= $(u^*v^*)^*$
= $u^*(vu^*)^*$
= $(u^*v)^*u^*$
3. $L^+ = LL^* = L^*L$

4.
$$L^* = L^+ + \varepsilon$$

Equivalence of Regular Expressions and NFA-εs

• Note:

Throughout the following, keep in mind the definition of *string acceptance* for an NFA- ε ...what is it?

Lemma 1: Let r be a regular expression. Then there exists an NFA- ε M such that L(M) = L(r). Furthermore, M has exactly one final state with no transitions out of it.

Proof: (by induction on the number of operators, denoted by OP(r), in r).

Basis: OP(r) = 0

Then r is either \emptyset , ε , or **a**, for some symbol **a** in Σ

For Ø:

For ε:

For **a**:

Inductive Hypothesis: Suppose there exists a $k \ge 0$ such that for any regular expression r where $0 \le OP(r) \le k$, there exists an NFA- ϵ such that L(M) = L(r). Furthermore, suppose M has exactly one final state with no transitions out of it.

Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1). Since $k \ge 0$, it follows that $k + 1 \ge 1$, and therefore r has at least one operator.

Case 1) $r = r_1 + r_2$

Since OP(r) = k + 1, it follows that $0 \le OP(r_1) \le k$ and $0 \le OP(r_2) \le k$. By the inductive hypothesis there exist NFA- ε machines M_1 and M_2 such that $L(M_1) = L(r_1)$ and $L(M_2) = L(r_2)$. Furthermore, both M_1 and M_2 have one final state.

Construct M as:

Case 2) $r = r_1 r_2$

Since OP(r) = k+1, it follows that $0 \le OP(r_1) \le k$ and $0 \le OP(r_2) \le k$. By the inductive hypothesis there exist NFA- ε machines M_1 and M_2 such that $L(M_1) = L(r_1)$ and $L(M_2) = L(r_2)$. Furthermore, both M_1 and M_2 have exactly one final state.

Construct M as:

Case 3) $r = r_1^*$

Since OP(r) = k+1, it follows that $0 \le OP(r_1) \le k$. By the inductive hypothesis there exists an NFA- ε machine M_1 such that $L(M_1) = L(r_1)$. Furthermore, M_1 has exactly one final state.

- Note that the previous proof is "constructive" in that it shows us how to construct the NFA-ε from the regular expression.
- Given a regular expression, first decompose it based on the recursive definition:

r = 0(0+1)* $r = r_1 r_2$ $r_1 = 0$ $r_2 = (0+1)^*$ $r_2 = r_3^*$ $r_3 = 0 + 1$ $r_3 = r_4 + r_5$ $r_4 = 0$

 $r_{5} = 1$

$$r = 0(0+1)^{*}$$

$$r = r_{1}r_{2}$$

$$r_{1} = 0$$

$$r_{2} = (0+1)^{*}$$

$$r_{2} = r_{3}^{*}$$

$$r_{3} = 0+1$$

$$r_{3} = r_{4} + r_{5}$$

$$r_{4} = 0$$

$$r_{5} = 1$$

$$r = 0(0+1)^{*}$$

$$r = r_{1}r_{2}$$

$$r_{1} = 0$$

$$r_{2} = (0+1)^{*}$$

$$r_{2} = r_{3}^{*}$$

$$r_{3} = 0+1$$

$$r_{3} = r_{4} + r_{5}$$

$$r_{4} = 0$$

$$r_{5} = 1$$

$$r = 0(0+1)^{*}$$

$$r = r_{1}r_{2}$$

$$r_{1} = 0$$

$$r_{2} = (0+1)^{*}$$

$$r_{3} = 0+1$$

$$r_{3} = r_{4} + r_{5}$$

$$r_{4} = 0$$

$$r_{5} = 1$$

$$r = r_{1}r_{2}$$

$$r_{1} = 0$$

$$r_{2} = (0+1)^{*}$$

$$r_{2} = r_{3}^{*}$$

$$r_{3} = 0+1$$

$$r_{3} = r_{4} + r_{5}$$

$$r_{4} = 0$$

$$r_{5} = 1$$

$$\epsilon$$

$$r_{1} = 0$$

$$\epsilon$$

r = 0(0+1)*

$$r = 0(0+1)*$$

 $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$ $\mathbf{r}_1 = \mathbf{0}$ $\mathbf{q}_8 \qquad \mathbf{q}_9$

 $r_2 = (0+1)^*$

$$\mathbf{r} = \mathbf{0}(0+1)^*$$

$$\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$$

$$\mathbf{r}_1 = 0$$

$$\mathbf{r}_2 = (0+1)^*$$

$$\mathbf{r}_2 = \mathbf{r}_3^*$$

$$\mathbf{r}_3 = 0+1$$

$$\mathbf{r}_3 = \mathbf{r}_4 + \mathbf{r}_5$$

$$\mathbf{r}_4 = 0$$

$$\mathbf{r}_5 = 1$$

$$\mathbf{r}_4 = 0$$

$$\mathbf{r}_5 = 1$$

Definitions Required to Convert a DFA to a Regular Expression

• Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA with state set $Q = \{q_1, q_2, ..., q_n\}$, and define:

 $R_{i,j} = \{ x \mid x \text{ is in } \Sigma^* \text{ and } \delta(q_i, x) = q_j \}$ for any i,j, where $1 \le i,j \le n$

 $R_{i,i}$ is the set of all strings that define a path in M from q_i to q_i .

- Note that states have been numbered starting at 1!
- This has been done simply for convenience, and it is "without loss of generality."

• Example:

 $R_{2,3} = \{0, 001, 00101, 011, \ldots\}$ $R_{1,4} = \{01, 00101, \ldots\}$ $R_{3,3} = \{11, 100, \ldots\}$

• Another definition:

```
R_{i,j}^{k} = \{ x \mid x \text{ is in } \Sigma^{*} \text{ and } \delta(q_{i},x) = q_{j}, \text{ and for no } u \text{ where } 1 \leq |u| < |x| \text{ and } x = uv \text{ is it the case that } \delta(q_{i},u) = q_{p} \text{ where } p > k \}
```

for any i,j,k, where $1 \le i,j \le n$ and $0 \le k \le n$

- In other words, $R_{i,j}^k$ is the set of all strings that define a path in M from q_i to q_j but that pass through no state numbered greater than k.
- Here, the phrase *pass through a state q* means that the machine enters the state *q* at some point, and then (subsequently) leaves that state *q*.
- Consequently it may be the case that i > k or j > k for $R^{k}_{i,j}$.

 $R_{2,3}^4 = \{0, 1000, 011, ...\}$ 111 is not in $R_{2,3}^4$

 $R^{2}_{1,5} = \{\}$

 $R_{2,3}^{1} = \{0\}$ 111 is not in $R_{2,3}^{1}$ 101 is not in $R_{2,3}^{1}$

$$R_{2,3}^5 = R_{2,3}$$

• Observations:

1)
$$R_{i,j}^n = R_{i,j}$$
 -- More generally, $R_{i,j}^k = R_{i,j}$ for any $k \ge n$.

2)
$$R^{k-1}_{i,j}$$
 is a subset of $R^{k}_{i,j}$

3)
$$L(M) = \bigcup_{q \in F} R^n_{1,q}$$

4)
$$\mathbf{R}^{0}_{i,j} = \begin{cases} \{a \mid \delta(q_i, a) = q_j\} & i \neq j \\ \{a \mid \delta(q_i, a) = q_j\} \bigcup \{\varepsilon\} & i = j \end{cases}$$
 -- Easily computed from the DFA!

5)
$$R_{i,j}^{k} = R_{i,k}^{k-1} (R_{k,k}^{k-1}) R_{k,j}^{k-1} U R_{i,j}^{k-1}$$
 For k>=1

• Explanation of 5:

5)
$$\mathbf{R}_{i,j}^{k} = \mathbf{R}_{i,k}^{k-1} (\mathbf{R}_{k,k}^{k-1})^{*} \mathbf{R}_{k,j}^{k-1} \mathbf{U} \mathbf{R}_{i,j}^{k-1}$$

• Consider paths represented by the strings in $R_{i,j}^k$:

- If x is a string in $R_{i,j}^k$ then no state numbered > k is passed through when processing x.
- Any state numbered <= k, on the other hand, may or may not appear on the path while processing x; this includes, in particular, state q_k
- So there are two cases:
 - q_k is not passed through, i.e., x is in R^{k-1}_{i,j}
 - q_k is passed through one or more times, i.e., x is in $R^{k-1}_{i,k} (R^{k-1}_{k,k})^* R^{k-1}_{k,j}$

• Lemma 2: Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA. Then there exists a regular expression r such that L(M) = L(r).

• Proof:

First we will show (by induction on k) that for all i,j, and k, where $1 \le i,j \le n$ and $0 \le k \le n$, there exists a regular expression r such that $L(r) = R_{i,j}^k$.

Throughout the following, the regular expression representing $R_{i,j}^k$ will be denoted by $r_{i,j}^k$.

Basis: k=0

 $R^{0}_{i,j}$ contains single symbols, one for each transition from q_i to q_j , and possibly ε if i=j.

case 1) No transitions from q_i to q_j and $i \neq j$

$$r^{0}_{i,j} = Ø$$

case 2) At least one (m>=1) transition from q_i to q_j and $i \neq j$

 $r^{0}_{i,j} = a_1 + a_2 + a_3 + \ldots + a_m \qquad \qquad \text{where } \delta(q_i, a_p) = q_j,$ for all 1<=p<=m

case 3) No transitions from q_i to q_j and i = j

$$r^{0}_{i,j} = \varepsilon$$

case 4) At least one (m>=1) transition from q_i to q_j and i = j

 $r_{i,j}^0 = a_1 + a_2 + a_3 + ... + a_m + \varepsilon$ where $\delta(q_i, a_p) = q_j$, for all 1<=p<=m

Inductive Hypothesis:

Suppose there exists a k>=1 such that $R^{k-1}_{i,j}$ can be represented by a regular expression, for all 1<= i,j <=n. Let that regular expression be denoted by $r^{k-1}_{i,j}$.

Inductive Step:

Consider $R_{i,j}^{k} = R_{i,k}^{k-1} (R_{k,k}^{k-1})^{*} R_{k,j}^{k-1} U R_{i,j}^{k-1}$.

By the inductive hypothesis $R^{k-1}_{i,k}$ can be represented by a regular expression, denoted $r^{k-1}_{i,k}$.

Similarly, $R^{k-1}_{k,k}$, $R^{k-1}_{k,j}$, and $R^{k-1}_{i,j}$ can all be represented by regular expressions, denoted $r^{k-1}_{k,k}$, $r^{k-1}_{k,j}$, and $r^{k-1}_{i,j}$, respectively.

Thus, if we let

$$\mathbf{r}_{i,j}^{k} = \mathbf{r}_{i,k}^{k-1} (\mathbf{r}_{k,k}^{k-1})^{*} \mathbf{r}_{k,j}^{k-1} + \mathbf{r}_{i,j}^{k-1}$$

then $r_{i,j}^k$ is a regular expression generating $R_{i,j}^k$, i.e., $L(r_{i,j}^k) = R_{i,j}^k$.

• Finally, if $F = \{q_{j1}, q_{j2}, ..., q_{jr}\}$, then

 $r^{n}_{1,j1} + r^{n}_{1,j2} + \ldots + r^{n}_{1,jr}$

is a regular expression generating L(M).

• Not only does this prove that the regular expressions generate the regular languages, but it also provides an algorithm for computing it!

• Example:

First table column is computed from the DFA.

 $k = 0 \qquad \qquad k = 1 \qquad \qquad k = 2$

r ^k _{1,1}	3
r ^k _{1,2}	0
r ^k _{1,3}	1
r ^k _{2,1}	0
r ^k _{2,2}	3
r ^k _{2,3}	1
r ^k _{3,1}	Ø
r ^k _{3,2}	0 + 1
r ^k _{3,3}	3

• All remaining columns are computed from the previous column using the formula.

$$r_{2,3}^{1} = r_{2,1}^{0} (r_{1,1}^{0})^{*} r_{1,3}^{0} + r_{2,3}^{0}$$

= 0 (\varepsilon)^{*} 1 + 1
= 01 + 1

 $\mathbf{k} = \mathbf{0}$ **k** = 1 **k** = 2 $r^{k}_{1,1}$ 3 3 $r^k_{1,2}$ 0 $r^k_{1,3}$ $r_{2,1}^k$ 0 $r^{k}_{2,2}$ $\epsilon + 00$ 3 $r^{k}_{2,3}$ 01 + $r^{k}_{3,1}$ Ø Ø $r^k_{3,2}$ 0 + 10 + 1 $r^{k}_{3,3}$ 3 3

$r^{k}_{1,1}$	3	3	(00)*
r ^k _{1,2}	0		0(00)*
r ^k _{1,3}	1		0*1
r ^k _{2,1}	0	0	0(00)*
r ^k _{2,2}	3	$\epsilon + 00$	(00)*
r ^k _{2,3}	1	1 + 01	0*1
r ^k _{3,1}	Ø	Ø	(0+1)(00)*0
r ^k _{3,2}	0 + 1	0 + 1	(0+1)(00)*
r ^k _{3,3}	3	3	$\epsilon + (0+1)0*1$

 $k = 1 \qquad \qquad k = 2$

$$\begin{aligned} r^{2}_{1,3} &= r^{1}_{1,2} \ (r^{1}_{2,2} \)^{*} \ r^{1}_{2,3} + r^{1}_{1,3} \\ &= 0 \ (\epsilon + 00)^{*} \ (1 + 01) + 1 \\ &= 0^{*}1 \end{aligned}$$

 $\mathbf{k} = \mathbf{0}$

• To complete the regular expression, we compute:

 $r^{3}_{1,2} + r^{3}_{1,3}$

	$\mathbf{k} = 0$	k = 1	k = 2
r ^k 1 1	3	3	(00)*
$r^{k}_{1,2}$	0	0	0(00)*
r ^k _{1,3}	1	1	0*1
r ^k _{2,1}	0	0	0(00)*
r ^k _{2,2}	3	$\epsilon + 00$	(00)*
r ^k _{2,3}	1	1 + 01	0*1
r ^k _{3,1}	Ø	Ø	(0+1)(00)*0
r ^k _{3,2}	0 + 1	0 + 1	$(0+1)(00)^*$
r ^k _{3,3}	3	3	$\epsilon + (0+1)0*1$

• **Theorem:** Let L be a language. Then there exists an a regular expression r such that L = L(r) if and only if there exits a DFA M such that L = L(M).

• Proof:

(if) Suppose there exists a DFA M such that L = L(M). Then by Lemma 2 there exists a regular expression r such that L = L(r).

(only if) Suppose there exists a regular expression r such that L = L(r). Then by Lemma 1 there exists a DFA M such that L = L(M).•

- **Corollary:** The regular expressions define the regular languages.
- Note: With the completion of Lemma 1, the conversion from a regular expression to a DFA and a program accepting L(r) is now complete, and fully automated!