Regular Expressions

Reading: Chapter 3

Operations on Languages

- Let $\mathrm{L}, \mathrm{L}_{1}, \mathrm{~L}_{2}$ be subsets of Σ^{*}
- Concatenation: $L_{1} L_{2}=\left\{x y \mid x\right.$ is in L_{1} and y is in $\left.L_{2}\right\}$
- Concatenating a language with itself:

$$
\begin{aligned}
& \mathrm{L}^{0}=\{\varepsilon\} \\
& \mathrm{L}^{\mathrm{i}}=\mathrm{LL}^{\mathrm{i}-1}, \text { for all } \mathrm{i}>=1
\end{aligned}
$$

- Kleene Closure:

$$
\mathrm{L}^{*}=\bigcup_{i=0}^{\infty} \mathrm{L}^{\mathrm{i}}=\mathrm{L}^{0} \mathrm{U}^{1} \mathrm{U}^{2} \mathrm{U} \ldots
$$

- Positive Closure:

$$
\mathrm{L}^{+}=\bigcup_{i=1}^{\infty} \mathrm{L}^{\mathrm{i}}=\mathrm{L}^{1} \mathrm{UL}^{2} \mathrm{U} \ldots
$$

- Question: Does L^{+}contain ε ?

Regular Expressions

A regular expression is:

- a finite length sequence of symbols
- used to specify a language
- very precise, intuitive, and useful in a lot of contexts
- easy to convert to an NFA- ε, algorithmically; and consequently to an NFA, a DFA, and a corresponding program

Definition of a Regular Expression

- If r is a regular expression, then $\mathrm{L}(\mathrm{r})$ is used to denote the corresponding language.
- Σ be an alphabet. The regular expressions over Σ are:

\emptyset	Represents the empty set $\}$
ε	Represents the set $\{\varepsilon\}$
a	Represents the set $\{\mathrm{a}\}$, for any symbol a in Σ

Let r and s be regular expressions.

$\mathrm{r}+\mathrm{s}$	Represents the set $\mathrm{L}(\mathrm{r}) \mathrm{U} \mathrm{L}(\mathrm{s})$
rs	Represents the set $\mathrm{L}(\mathrm{r}) \mathrm{L}(\mathrm{s})$
r^{*}	Represents the set $\mathrm{L}(\mathrm{r})^{*}$
$\mathrm{r})$	Represents the set $\mathrm{L}(\mathrm{r})$

- Note that the operators are listed in increasing precedence.
- Examples: Let $\Sigma=\{0,1\}$

$(0+1)^{*}$	All strings of 0's and 1's
$0(0+1)^{*}$	All strings of 0 's and 1's, beginning with a 0
$(0+1) * 1$	All strings of 0's and 1's, ending with a 1
$(0+1) * 0(0+1) *$	All strings of 0's and 1's containing at least one 0
$(0+1) * 0(0+1) * 0(0+1) *$	All strings of 0's and 1's containing at least two 0's
$(0+1) * 01 * 01^{*}$	All strings of 0's and 1's containing at least two 0's
$1 *(01 * 01 *)^{*}$	All strings of 0's and 1's containing an even number of 0's
$(1 * 01 * 0) * 1^{*}$	All strings of 0's and 1's containing an even number of 0's
$(1+01 * 0)^{*}$	All strings of 0 's and 1's containing an even number of 0 's

- Question: Is there a unique minimum regular expression for a given language?
- How do the above regular expressions "parse" based on the formal definition?
- Other examples:

$$
011
$$

$$
010+1100+\varepsilon
$$

$$
010+1100+\emptyset
$$

$$
\varepsilon(0+1)^{*}
$$

$$
\varepsilon 0(0+1)^{*}
$$

$$
(0+1+\varepsilon)^{*} 1
$$

$$
\emptyset(0+1)^{*}
$$

$$
(\varnothing+1)^{*}
$$

$$
\emptyset(0+\varepsilon)^{*}+\varepsilon^{*} \emptyset^{*}
$$

- An almost completely useless program...
- Generating a Random String for a Regular Expression (Example):

```
1*(01*01*)*
// generate something from 1*
int n = random(0,inf);
for (int i=0; i<=n-1; i++) {
    print('1');
}
// generate something from (01*01*)*
int m = random(0,inf);
for (int i=0; i<=m-1; i++) {
    // generate a single 0
    print('0');
    // generate something from 1*
    int k = random(0,inf);
    for (int i=0; i<=k-1; i++) {
        print('1');
    }
    // generate a single 0
    print('0');
    // generate something from 1*
    int k = random(0,inf);
    for (int i=0; i<=k-1; i++) {
        print('1');
    }
}
```

- Algebraic Laws for Regular Expressions:

1.	$\mathrm{u}+\mathrm{v}=\mathrm{v}+\mathrm{u}$	commutativity
2.	$(\mathrm{u}+\mathrm{v})+\mathrm{w}=\mathrm{u}+(\mathrm{v}+\mathrm{w})$	associativity
3.	(uv)w $=\mathrm{u}(\mathrm{vw})$	associativity
4.	$\emptyset+\mathrm{u}=\mathrm{u}+\emptyset=\mathrm{u}$	identity
5.	$\varepsilon \mathrm{u}=\mathrm{u} \varepsilon=\mathrm{u}$	identity
6.	$\emptyset u=u \emptyset=\emptyset$	annihilator
7.	$u(v+w)=u v+u w$	distributive
8.	$(u+v) w=u w+v w$	distributive
9.	$\mathrm{u}+\mathrm{u}=\mathrm{u}$	idempotent
10.	$\left(\mathrm{u}^{*}\right)^{*}=\mathrm{u}^{*}$	
11.	$\emptyset^{*}=\varepsilon$	$=L^{0} \mathrm{UL} \mathrm{L}^{1} \mathrm{U}$ L
12.	$\varepsilon^{*}=\varepsilon$	

- Such laws can be used to prove equivalences between regular expressions:

$$
\begin{aligned}
& \varepsilon+1^{*}=1^{*} \\
& 0+01^{*}=\left(\varepsilon+1^{*}\right) 0 \\
& (0+1)^{*}=\left(0^{*}+10^{*}\right)^{*}
\end{aligned}
$$

- Other Laws:

$$
\begin{aligned}
& \text { 1. (uv) } \mathrm{u}_{\mathrm{u}}=\mathrm{u}(\mathrm{vu})^{*} \\
& \text { 2. }(u+v)^{*}=\left(u^{*}+v\right)^{*} \\
& =u^{*}(u+v)^{*} \\
& =\left(u+v u^{*}\right)^{*} \\
& =\left(u^{*} v^{*}\right)^{*} \\
& \left.=\mathrm{u}^{*}(\mathrm{vu})^{*}\right)^{*} \\
& =\left(u^{*} \mathrm{v}\right) * \mathrm{u}^{*} \\
& \text { 3. } \mathrm{L}^{+}=\mathrm{LL}^{*}=\mathrm{L}^{*} \mathrm{~L} \\
& \text { 4. } L^{*}=L^{+}+\varepsilon
\end{aligned}
$$

Equivalence of Regular Expressions and NFA-\&s

- Note:

Throughout the following, keep in mind the definition of string acceptance for an NFA- $\varepsilon .$. what is it?

Lemma 1: Let r be a regular expression. Then there exists an NFA- εM such that $L(M)=L(r)$. Furthermore, M has exactly one final state with no transitions out of it.

Proof: (by induction on the number of operators, denoted by $\mathrm{OP}(\mathrm{r})$, in r).

Basis: $\mathrm{OP}(\mathrm{r})=0$

Then r is either \emptyset, ε, or \mathbf{a}, for some symbol \mathbf{a} in Σ

For Ø:

For ε :

For a:

Inductive Hypothesis: Suppose there exists a $\mathrm{k}>=0$ such that for any regular expression r where $0<=O P(r)<=k$, there exists an NFA- ε such that $L(M)=L(r)$. Furthermore, suppose M has exactly one final state with no transitions out of it.

Inductive Step: Let r be a regular expression with $\mathrm{k}+1$ operators $(\mathrm{OP}(\mathrm{r})=\mathrm{k}+1)$. Since $\mathrm{k}>=0$, it follows that $\mathrm{k}+1>=1$, and therefore r has at least one operator.

Case 1) $r=r_{1}+r_{2}$
Since $\mathrm{OP}(\mathrm{r})=\mathrm{k}+1$, it follows that $0<=\mathrm{OP}\left(\mathrm{r}_{1}\right)<=\mathrm{k}$ and $0<=\mathrm{OP}\left(\mathrm{r}_{2}\right)<=\mathrm{k}$. By the inductive hypothesis there exist NFA- ε machines M_{1} and M_{2} such that $\mathrm{L}\left(\mathrm{M}_{1}\right)=$ $L\left(r_{1}\right)$ and $L\left(M_{2}\right)=L\left(r_{2}\right)$. Furthermore, both M_{1} and M_{2} have one final state.

Construct M as:

Case 2) $\quad r=r_{1} r_{2}$

Since $\mathrm{OP}(\mathrm{r})=\mathrm{k}+1$, it follows that $0<=\mathrm{OP}\left(\mathrm{r}_{1}\right)<=\mathrm{k}$ and $0<=\mathrm{OP}\left(\mathrm{r}_{2}\right)<=\mathrm{k}$. By the inductive hypothesis there exist NFA- ε machines M_{1} and M_{2} such that $L\left(M_{1}\right)=L\left(r_{1}\right)$ and $L\left(M_{2}\right)=$ $L\left(r_{2}\right)$. Furthermore, both M_{1} and M_{2} have exactly one final state.

Construct M as:

Case 3) $\quad \mathrm{r}=\mathrm{r}_{1}$ *

Since $\mathrm{OP}(\mathrm{r})=\mathrm{k}+1$, it follows that $0<=\mathrm{OP}\left(\mathrm{r}_{1}\right)<=\mathrm{k}$. By the inductive hypothesis there exists an NFA- ε machine M_{1} such that $L\left(M_{1}\right)=L\left(r_{1}\right)$. Furthermore, M_{1} has exactly one final state.

ε

- Note that the previous proof is "constructive" in that it shows us how to construct the NFA- ε from the regular expression.
- Given a regular expression, first decompose it based on the recursive definition:

$$
\begin{aligned}
& r=0(0+1)^{*} \\
& r=r_{1} r_{2} \\
& r_{1}=0 \\
& r_{2}=(0+1)^{*} \\
& r_{2}=r_{3} * \\
& r_{3}=0+1 \\
& r_{3}=r_{4}+r_{5} \\
& r_{4}=0 \\
& r_{5}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}=0(0+1)^{*} \\
& \mathrm{r}=\mathrm{r}_{1} \mathrm{r}_{2} \\
& \mathrm{r}_{1}=0 \\
& \mathrm{r}_{2}=(0+1)^{*} \\
& \mathrm{r}_{2}=\mathrm{r}_{3} * \\
& \mathrm{r}_{3}=0+1 \\
& \mathrm{r}_{3}=\mathrm{r}_{4}+\mathrm{r}_{5} \\
& \mathrm{r}_{4}=0 \\
& \mathbf{r}_{5}=\mathbf{1}
\end{aligned}
$$

$$
\begin{aligned}
& r=0(0+1)^{*} \\
& r=r_{1} r_{2} \\
& r_{1}=0 \\
& r_{2}=(0+1)^{*} \\
& r_{2}=r_{3} * \\
& r_{3}=0+1 \\
& r_{3}=r_{4}+r_{5} \\
& \mathbf{r}_{4}=\mathbf{0} \\
& r_{5}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}=0(0+1)^{*} \\
& \mathrm{r}=\mathrm{r}_{1} \mathrm{r}_{2} \\
& \mathrm{r}_{1}=0 \\
& \mathrm{r}_{2}=(0+1)^{*} \\
& \mathrm{r}_{2}=\mathrm{r}_{3}^{*} \\
& \mathrm{r}_{3}=0+1 \\
& \mathbf{r}_{3}=\mathrm{r}_{4}+\mathrm{r}_{5} \\
& \mathrm{r}_{4}=0 \\
& \mathrm{r}_{5}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}=0(0+1)^{*} \\
& \mathrm{r}=\mathrm{r}_{1} \mathrm{r}_{2} \\
& \mathrm{r}_{1}=0 \\
& \mathrm{r}_{2}=(0+1)^{*} \\
& \mathbf{r}_{2}=\mathbf{r}_{3}^{*} \\
& \mathrm{r}_{3}=0+1 \\
& \mathrm{r}_{3}=\mathrm{r}_{4}+\mathrm{r}_{5} \\
& \mathrm{r}_{4}=0 \\
& \mathrm{r}_{5}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}=0(0+1)^{*} \\
& \mathrm{r}=\mathrm{r}_{1} \mathrm{r}_{2} \\
& \mathrm{r}_{2}=(0 \mathrm{O}
\end{aligned}
$$

Definitions Required to Convert a DFA to a Regular Expression

- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{1}, F\right)$ be a DFA with state set $\mathrm{Q}=\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{n}}\right\}$, and define:

$$
\mathrm{R}_{\mathrm{i}, \mathrm{j}}=\left\{\mathrm{x} \mid \mathrm{x} \text { is in } \Sigma^{*} \text { and } \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{x}\right)=\mathrm{q}_{\mathrm{j}}\right\} \quad \text { for any } \mathrm{i}, \mathrm{j}, \text { where } 1<=\mathrm{i}, \mathrm{j}<=\mathrm{n}
$$

$R_{i, j}$ is the set of all strings that define a path in M from q_{i} to q_{j}.

- Note that states have been numbered starting at 1 !
- This has been done simply for convenience, and it is "without loss of generality."
- Example:

$$
\begin{aligned}
& \mathrm{R}_{2,3}=\{0,001,00101,011, \ldots\} \\
& \mathrm{R}_{1,4}=\{01,00101, \ldots\} \\
& \mathrm{R}_{3,3}=\{11,100, \ldots\}
\end{aligned}
$$

- Another definition:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{i}, \mathrm{j}}=\left\{\mathrm{x} \mid \mathrm{x} \text { is in } \Sigma^{*} \text { and } \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{x}\right)=\mathrm{q}_{\mathrm{j}}, \text { and for no } \mathrm{u} \text { where } 1<=|\mathrm{u}|<|\mathrm{x}|\right. \text { and } \\
\left.\mathrm{x}=\mathrm{uv} \text { is it the case that } \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{u}\right)=\mathrm{q}_{\mathrm{p}} \text { where } \mathrm{p}>\mathrm{k}\right\}
\end{gathered}
$$

$$
\text { for any } \mathrm{i}, \mathrm{j}, \mathrm{k} \text {, where } 1<=\mathrm{i}, \mathrm{j}<=\mathrm{n} \text { and } 0<=\mathrm{k}<=\mathrm{n}
$$

- In other words, $R_{i, j}{ }_{i, j}$ is the set of all strings that define a path in M from q_{i} to q_{j} but that pass through no state numbered greater than k .
- Here, the phrase pass through a state q means that the machine enters the state q at some point, and then (subsequently) leaves that state q.
- Consequently it may be the case that $\mathrm{i}>\mathrm{k}$ or $\mathrm{j}>\mathrm{k}$ for $\mathrm{R}_{\mathrm{i}, \mathrm{j}}$.
- Example:

$\mathrm{R}^{4}{ }_{2,3}=\{0,1000,011, \ldots\}$
111 is not in $\mathrm{R}_{2,3}^{4}$

$$
\mathrm{R}_{1,5}^{2}=\{ \}
$$

$\mathrm{R}^{1}{ }_{2,3}=\{0\}$
111 is not in $\mathrm{R}^{1}{ }_{2,3}$
101 is not in $\mathrm{R}^{1}{ }_{2,3}$

$$
\mathrm{R}_{2,3}^{5}=\mathrm{R}_{2,3}
$$

- Observations:

1) $R_{i, j}^{n}=R_{i, j}$
-- More generally, $\mathrm{R}_{\mathrm{i}, \mathrm{j}}=\mathrm{R}_{\mathrm{i}, \mathrm{j}}$ for any $\mathrm{k}>=\mathrm{n}$.
2) $R^{k-1}{ }_{i, j}$ is a subset of $R_{i, j}^{k}$
3) $\mathrm{L}(\mathrm{M})=\bigcup_{q \in F} \mathrm{R}_{1, \mathrm{q}}$
4) $\mathrm{R}_{\mathrm{i}, \mathrm{j}}^{0}=\left\{\begin{array}{ll}\left\{a \mid \delta\left(q_{i}, a\right)=q_{j}\right\} \\ \left\{a \mid \delta\left(q_{i}, a\right)=q_{j}\right\} \backslash\{\varepsilon\} & i \neq j\end{array} \quad \begin{array}{l}i=j\end{array} \quad\right.$-- Easily computed from the DFA!
5) $\mathrm{R}_{\mathrm{i}, \mathrm{j}}^{\mathrm{j}}=\mathrm{R}_{\mathrm{k}-1, \mathrm{k}}^{\mathrm{k}}\left(\mathrm{R}_{\mathrm{k}, \mathrm{k}}^{\mathrm{k}-1}\right)$ R $_{\mathrm{k}, \mathrm{j}}^{\mathrm{k}-1} \mathrm{U} \mathrm{R} \mathrm{R}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}-1} \quad$ For $\mathrm{k}>=1$

- Explanation of 5:

5) $R_{i, j}^{k}=R_{i, k}^{k-1}\left(R_{k, k}^{k-1}\right)^{*} R^{k-1}{ }_{k, j} U R^{k-1}{ }_{i, j}$

- Consider paths represented by the strings in $\mathrm{R}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}}$:

- If x is a string in $\mathrm{R}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}}$ then no state numbered $>\mathrm{k}$ is passed through when processing x .
- Any state numbered $<=k$, on the other hand, may or may not appear on the path while processing x; this includes, in particular, state q_{k}
- So there are two cases:
- q_{k} is not passed through, i.e., x is in $R_{i, j}^{k-1}$
- q_{k} is passed through one or more times, i.e., x is in $R_{i, k}^{k-1}\left(R^{k-1}{ }_{k, k}\right)^{*} R^{k-1}{ }_{k, j}$
- Lemma 2: Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{1}, \mathrm{~F}\right)$ be a DFA. Then there exists a regular expression r such that $L(M)=L(r)$.
- Proof:

First we will show (by induction on k) that for all i, j, and k, where $1<=i, j<=n$ and $0<=k<=n$, there exists a regular expression r such that $L(r)=R_{i, j}^{k}$.

Throughout the following, the regular expression representing $\mathrm{R}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}}$ will be denoted by $\mathrm{r}_{\mathrm{i}, \mathrm{j}}$.

Basis: k=0
$R_{i, j}{ }_{i, j}$ contains single symbols, one for each transition from q_{i} to $q_{i j}$, and possibly ε if $i=j$.
case 1) No transitions from q_{i} to q_{j} and $i \neq j$

$$
\mathrm{r}_{\mathrm{i}, \mathrm{j}}^{0}=\varnothing
$$

case 2) At least one ($m>=1$) transition from q_{i} to q_{j} and $i \neq j$

$$
\mathrm{r}_{\mathrm{i}, \mathrm{j}}^{0}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots+\mathrm{a}_{\mathrm{m}}
$$

where $\delta\left(q_{i}, a_{p}\right)=q_{j}$, for all $1<=p<=m$
case 3) No transitions from q_{i} to q_{j} and $i=j$

$$
\mathrm{r}_{\mathrm{i}, \mathrm{j}}^{0}=\varepsilon
$$

case 4) At least one ($m>=1$) transition from q_{i} to q_{j} and $i=j$

$$
\mathrm{r}_{\mathrm{i}, \mathrm{j}}^{0}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots+\mathrm{a}_{\mathrm{m}}+\varepsilon \quad \text { where } \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}_{\mathrm{p}}\right)=\mathrm{q}_{\mathrm{j}}, \text { for all } 1<=\mathrm{p}<=\mathrm{m}
$$

Inductive Hypothesis:

Suppose there exists a $\mathrm{k}>=1$ such that $\mathrm{R}^{\mathrm{k}-1} \mathrm{i}_{\mathrm{i}, \mathrm{j}}$ can be represented by a regular expression, for all $1<=\mathrm{i}, \mathrm{j}<=\mathrm{n}$. Let that regular expression be denoted by $\mathrm{r}^{\mathrm{k}-1}{ }_{\mathrm{i}, \mathrm{j}}$.

Inductive Step:

Consider $\mathrm{R}_{\mathrm{i}, \mathrm{j}}^{\mathrm{j}}=\mathrm{R}_{\mathrm{k}}^{\mathrm{k}-\mathrm{k}}{ }_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{k}, \mathrm{k}}^{\mathrm{k}-1}\right)^{*} \mathrm{R}_{\mathrm{k}, \mathrm{j}}^{\mathrm{k}-1} \mathrm{U} \mathrm{R}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}-1}$.
By the inductive hypothesis $\mathrm{R}^{\mathrm{k}-1}{ }_{\mathrm{i}, \mathrm{k}}$ can be represented by a regular expression, denoted $\mathrm{r}^{\mathrm{k}-1}{ }_{\mathrm{i}, \mathrm{k}}$.

Similarly, $\mathrm{R}^{\mathrm{k}-1}{ }_{\mathrm{k}, \mathrm{k}}, \mathrm{R}^{\mathrm{k}-1}{ }_{\mathrm{k}, \mathrm{j}}$, and $\mathrm{R}^{\mathrm{k}-1}{ }_{\mathrm{i}, \mathrm{j}}$ can all be represented by regular expressions, denoted $r_{k, k}^{k-1}, r_{k, j}^{k-1}$, and $r_{i, j}^{k-1}$, respectively.

Thus, if we let

$$
\mathrm{r}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}}=\mathrm{r}_{\mathrm{i}, \mathrm{k}}^{\mathrm{k}-1}\left(\mathrm{r}^{\mathrm{k}-1} \mathrm{l}_{\mathrm{k}, \mathrm{k}}\right)^{*} \mathrm{r}_{\mathrm{k}, \mathrm{j}}^{\mathrm{k}-1}+\mathrm{r}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}-1}
$$

then $r_{i, j}^{k}$ is a regular expression generating $R_{i, j}^{k}$, i.e., $L\left(r_{i, j}^{k}\right)=R_{i, j}^{k}$.

- Finally, if $F=\left\{q_{j 1}, q_{j 2}, \ldots, q_{j \mathrm{j}}\right\}$, then

$$
\mathrm{r}_{1, \mathrm{j} 1}^{\mathrm{n}}+\mathrm{r}_{1, \mathrm{j} 2}^{\mathrm{n}}+\ldots+\mathrm{r}_{1, \mathrm{jr}}^{\mathrm{n}}
$$

is a regular expression generating $\mathrm{L}(\mathrm{M})$:

- Not only does this prove that the regular expressions generate the regular languages, but it also provides an algorithm for computing it!
- Example:

First table column is computed from the DFA.
$\mathrm{k}=2$

r^{k}	
${ }_{1,1}$	ε
r^{k}	
$\mathrm{r}^{2}, 2$	
$\mathrm{r}_{1,3}$	0
$\mathrm{r}^{\mathrm{k}}{ }_{2,1}$	1
$\mathrm{r}^{\mathrm{r}}{ }_{2,2}$	0
$\mathrm{r}^{\mathrm{k}}{ }_{2,3}$	ε
r^{k}	1
$\mathrm{r}^{\mathrm{k}}{ }_{3,2}$	\emptyset
$\mathrm{r}^{\mathrm{k}}{ }_{3,3}$	$0+1$
	ε

- All remaining columns are computed from the previous column using the formula.

$$
\begin{array}{rlr}
\mathrm{r}_{2,3}^{1} & =\mathrm{r}^{0}{ }_{2,1}\left(\mathrm{r}^{0}{ }_{1,1}\right)^{*} \mathrm{r}^{0}{ }_{1,3}+\mathrm{r}^{0}{ }_{2,3} & \\
& =0(\varepsilon)^{*} 1+1 & \\
& =01+1 & \\
& & \\
& \mathrm{k}=0 \quad \mathrm{k}=1 & \mathrm{k}=2
\end{array}
$$

$\mathrm{r}_{1,1}$	(8)	ε
$\mathrm{r}_{1,2}$	0	0
$\mathrm{r}^{\mathrm{k}}{ }_{1,3}$	(1)	1
$\mathrm{r}^{\mathrm{k}, 1}$	(0)	0
$\mathrm{r}^{\mathrm{k}, 2}$	ε	$\varepsilon+00$
$\mathrm{r}^{\mathrm{k}, 3}$	(1)	$01+1$
$\mathrm{r}^{\mathrm{k}}{ }_{3,1}$	Ø	Ø
r^{k}, 2	$0+1$	$0+1$
$\mathrm{r}^{\mathrm{k}}{ }_{3}{ }^{\text {a }}$	ε	ε

$$
\begin{aligned}
\mathrm{r}_{1,3}^{2} & =\mathrm{r}_{1,2}^{1}\left(\mathrm{r}^{1}{ }_{2,2}\right)^{*} \mathrm{r}_{2,3}^{1}+\mathrm{r}_{1,3}^{1} \\
& =0(\varepsilon+00)^{*}(1+01)+1 \\
& =0^{*} 1
\end{aligned}
$$

$$
\mathrm{k}=0
$$

$$
\mathrm{k}=1
$$

$$
\mathrm{k}=2
$$

$\mathrm{r}_{1,1}$	ε	ε	(00)*
$\mathrm{r}^{\mathrm{k}}{ }_{1,2}$	0	(0)	$0(00)^{*}$
r^{k} 1,3	1	(1)	$0 * 1$
$\mathrm{r}^{\mathrm{k}, 1}$	0	0	0(00)*
$\mathrm{r}^{\mathrm{k}, 2}$	ε	$\varepsilon+00$	(00)*
$\mathrm{r}^{\mathrm{k}}{ }_{2,3}$	1	$1+01$	0*1
$\mathrm{r}^{\mathrm{k}}{ }_{3,1}$	\emptyset	Ø	$(0+1)(00) * 0$
$\mathrm{r}^{\mathrm{k}}{ }^{2}$	$0+1$	$0+1$	$(0+1)(00)^{*}$
$\mathrm{r}^{\mathrm{k}}{ }_{3,3}$	ε	ε	$\varepsilon+(0+1) 0^{*} 1$

- To complete the regular expression, we compute:
$r^{3}{ }_{1,2}+r^{3}{ }_{1,3}$

$$
\mathrm{k}=0
$$

$$
\mathrm{k}=1
$$

$\mathrm{k}=2$

$\mathrm{r}_{1,1}$	ε	ε	$(00)^{*}$
$\mathrm{r}_{1,2}$	0	0	$0(00)^{*}$
$\mathrm{r}^{\mathrm{k}}{ }_{1,3}$	1	1	$0 * 1$
$\mathrm{r}_{2,1}^{\mathrm{k}}$	0	0	$0(00)^{*}$
$\mathrm{r}_{2,2}^{\mathrm{k}}$	ε	$\varepsilon+00$	$(00)^{*}$
$\mathrm{r}_{2,3}^{\mathrm{k}}$	1	$1+01$	$0 * 1$
$\mathrm{r}_{3,1}^{\mathrm{k}}$	\emptyset	\emptyset	$(0+1)(00)^{*} 0$
$\mathrm{r}_{3,2}^{\mathrm{k}}$	$0+1$	$0+1$	$(0+1)(00)^{*}$
$\mathrm{r}_{3,3}^{\mathrm{k}}$	ε	ε	$\varepsilon+(0+1)^{*} 1$

- Theorem: Let L be a language. Then there exists an a regular expression r such that $L=L(r)$ if and only if there exits a DFA M such that $L=L(M)$.
- Proof:
(if) Suppose there exists a DFA M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$. Then by Lemma 2 there exists a regular expression r such that $L=L(r)$.
(only if) Suppose there exists a regular expression r such that $L=L(r)$. Then by Lemma 1 there exists a DFA M such that $L=L(M)$.•
- Corollary: The regular expressions define the regular languages.
- Note: With the completion of Lemma 1, the conversion from a regular expression to a DFA and a program accepting $\mathrm{L}(\mathrm{r})$ is now complete, and fully automated!

