
Regular Expressions

Reading: Chapter 3
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Operations on Languages

• Let L, L1, L2 be subsets of Σ*

• Concatenation: L1L2 = {xy | x is in L1 and y is in L2}

• Concatenating a language with itself: L0 = {ε}

Li = LLi-1, for all i >= 1

• Kleene Closure: L* =        Li = L0 U L1 U L2 U…

• Positive Closure: L+ =        Li = L1 U L2 U…

• Question: Does L+ contain ε?




=0i




=1i
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Regular Expressions

A regular expression is:

• a finite length sequence of symbols

• used to specify a language

• very precise, intuitive, and useful in a lot of contexts

• easy to convert to an NFA-ε, algorithmically; and consequently to an NFA, a DFA, 

and a corresponding program
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Definition of a Regular Expression

• If r is a regular expression, then L(r) is used to denote the corresponding language. 

• Σ be an alphabet. The regular expressions over Σ are:

Ø Represents the empty set { }

ε Represents the set {ε}

a Represents the set {a}, for any symbol a in Σ

Let r and s be regular expressions.

r+s Represents the set L(r) U L(s)

rs Represents the set L(r)L(s)

r* Represents the set L(r)*

(r) Represents the set L(r)

• Note that the operators are listed in increasing precedence.
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• Examples: Let Σ = {0, 1}

(0 + 1)*

0(0 + 1)*

(0 + 1)*1

(0 + 1)*0(0 + 1)*

(0 + 1)*0(0 + 1)*0(0 + 1)*

(0 + 1)*01*01*

1*(01*01*)*

(1*01*0)*1*

(1 + 01*0)*

• Question: Is there a unique minimum regular expression for a given language?

• How do the above regular expressions “parse” based on the formal definition?

All strings of 0’s and 1’s

All strings of 0’s and 1’s, beginning with a 0

All strings of 0’s and 1’s, ending with a 1

All strings of 0’s and 1’s containing at least one 0

All strings of 0’s and 1’s containing at least two 0’s

All strings of 0’s and 1’s containing at least two 0’s

All strings of 0’s and 1’s containing an even number of 0’s

All strings of 0’s and 1’s containing an even number of 0’s

All strings of 0’s and 1’s containing an even number of 0’s
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• Other examples:

011

010 + 1100 + ε

010 + 1100 + Ø

ε(0 + 1)*

ε0(0 + 1)*

(0 + 1 + ε)*1

Ø(0 + 1)*

(Ø + 1)*

Ø(0 + ε)* + ε*Ø*



7

• An almost completely useless program…

• Generating a Random String for a Regular Expression (Example):

1*(01*01*)*

// generate something from 1*

int n = random(0,inf);

for (int i=0; i<=n-1; i++) {

print(‘1’);

}

// generate something from (01*01*)*

int m = random(0,inf);

for (int i=0; i<=m-1; i++) {

// generate a single 0

print(‘0’);

// generate something from 1*

int k = random(0,inf);

for (int i=0; i<=k-1; i++) {

print(‘1’);

}

// generate a single 0

print(‘0’);

// generate something from 1*

int k = random(0,inf);

for (int i=0; i<=k-1; i++) {

print(‘1’);

}

}
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• Algebraic Laws for Regular Expressions:

1. u + v = v + u commutativity

2. (u + v) + w = u + (v + w) associativity

3. (uv)w = u(vw) associativity

4. Ø + u = u + Ø = u identity

5. εu = uε = u identity

6. Øu =  uØ = Ø annihilator

7. u(v+w) = uv+uw distributive

8. (u+v)w = uw+vw distributive

9. u + u = u idempotent

10. (u*)* = u*

11. Ø* = ε L* =        Li = L0 U L1 U L2 U…

12. ε* = ε

• Such laws can be used to prove equivalences between regular expressions:

ε + 1* = 1*

0 + 01* = (ε + 1*)0

(0 + 1)* = (0* + 10*)*




=0i
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• Other Laws:

1. (uv)*u = u(vu)*

2. (u+v)* = (u*+v)*

= u*(u+v)*

= (u+vu*)*

= (u*v*)*

= u*(vu*)*

= (u*v)*u*

3. L+ = LL* = L*L

4. L* = L+ + ε
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Equivalence of Regular Expressions

and NFA-εs

• Note:

Throughout the following, keep in mind the definition of string acceptance for 

an NFA-ε…what is it?

Lemma 1: Let r be a regular expression. Then there exists an NFA-ε M such 

that L(M) = L(r). Furthermore, M has exactly one final state with no 

transitions out of it.

Proof: (by induction on the number of operators, denoted by OP(r), in r).
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Basis: OP(r) = 0

Then r is either Ø, ε, or a, for some symbol a in Σ 

For Ø:

For ε:

For a:

qfq0

qf

qfq0

a
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Inductive Hypothesis: Suppose there exists a k >= 0 such that for any regular 

expression r where 0 <= OP(r) <= k, there exists an NFA-ε such that L(M) = L(r). 

Furthermore, suppose M has exactly one final state with no transitions out of it.

Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1). 

Since k>=0, it follows that k + 1 >= 1, and therefore r has at least one operator.

Case 1) r = r1 + r2

Since OP(r) = k +1, it follows that 0 <= OP(r1) <= k and 0 <= OP(r2) <= k. By the 

inductive hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = 

L(r1) and L(M2) = L(r2). Furthermore, both M1 and M2 have one final state.

Construct M as:

q1 M1

q2 M2

qf
q0

ε

ε

ε

ε

f1

f2
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Case 2) r = r1r2

Since OP(r) = k+1, it follows that 0  <= OP(r1) <= k and 0 <= OP(r2) <= k. By the inductive 

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and L(M2) = 

L(r2). Furthermore, both M1 and M2 have exactly one final state.

Construct M as:

Case 3) r = r1*

Since OP(r) = k+1, it follows that 0 <= OP(r1) <= k. By the inductive hypothesis there exists 

an NFA-ε machine M1 such that L(M1) = L(r1). Furthermore, M1 has exactly one final state.

Construct M as:

f1q1 M1 f2q2 M2

ε

f1q1 qfq0
ε ε

ε

M1

ε
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• Note that the previous proof is “constructive” in that it shows us how to 
construct the NFA-ε from the regular expression.

• Given a regular expression, first decompose it based on the recursive definition:

r = 0(0+1)*

r = r1r2

r1 = 0

r2 = (0+1)*

r2 = r3*

r3 = 0+1

r3 = r4 + r5

r4 = 0

r5 = 1
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r = 0(0+1)*

r = r1r2

r1 = 0

r2 = (0+1)*

r2 = r3*

r3 = 0+1

r3 = r4 + r5

r4 = 0

r5 = 1

q0
1

q1
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r = 0(0+1)*

r = r1r2

r1 = 0

r2 = (0+1)*

r2 = r3*

r3 = 0+1

r3 = r4 + r5

r4 = 0

r5 = 1

q0
1

q2
0

q1

q3
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r = 0(0+1)*

r = r1r2

r1 = 0

r2 = (0+1)*

r2 = r3*

r3 = 0+1

r3 = r4 + r5

r4 = 0

r5 = 1

q4

q0 q1
1

q2 q3
0ε

ε ε

ε

q5
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r = 0(0+1)*

r = r1r2

r1 = 0

r2 = (0+1)*

r2 = r3*

r3 = 0+1

r3 = r4 + r5

r4 = 0

r5 = 1

q6 q5q4

q0 q1
1

q2 q3
0ε

ε ε

ε

ε

qf

ε

ε ε
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r = 0(0+1)*

r = r1r2

r1 = 0

r2 = (0+1)*

r2 = r3*

r3 = 0+1

r3 = r4 + r5

r4 = 0

r5 = 1

q8 q9

q6 q5q4

q0 q1
1

q2 q3
0ε

ε ε

ε

ε

qf

ε

ε ε

0
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r = 0(0+1)*

r = r1r2

r1 = 0

r2 = (0+1)*

r2 = r3*

r3 = 0+1

r3 = r4 + r5

r4 = 0

r5 = 1

q8 q9

q6 q5q4

q0 q1
1

q2 q3
0ε

ε ε

ε

ε

qf

ε

ε ε

0

ε
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Definitions Required to Convert a DFA

to a Regular Expression

• Let M = (Q, Σ, δ, q1, F) be a DFA with state set Q = {q1, q2, …, qn}, and define:

Ri,j = { x | x is in Σ* and δ(qi,x) = qj} for any i,j, where 1 <= i,j <= n

Ri,j is the set of all strings that define a path in M from qi to qj.

• Note that states have been numbered starting at 1!

• This has been done simply for convenience, and it is “without loss of generality.”
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• Example:

R2,3 = {0, 001, 00101, 011, …}

R1,4 = {01, 00101, …}

R3,3 = {11, 100, …}

0

q3

q1

0

q2

1

q5

q4

0

0

0

1

1

1

1
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• Another definition:

Rk
i,j = { x | x is in Σ* and δ(qi,x) = qj, and for no u where 1 <= |u| < |x| and

x = uv is it the case that δ(qi,u) = qp where p>k}

for any i,j,k, where 1 <= i,j <= n and 0 <= k <= n

• In other words, Rk
i,j is the set of all strings that define a path in M from qi to qj

but that pass through no state numbered greater than k.

• Here, the phrase pass through a state q means that the machine enters the state 

q at some point, and then (subsequently) leaves that state q.

• Consequently it may be the case that i>k or j>k for Rk
i,j.
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• Example:

R4
2,3 = {0, 1000, 011, …}

111 is not in R4
2,3

R2
1,5 = ?

R1
2,3 = {0}

111 is not in R1
2,3

101 is not in R1
2,3

R5
2,3 = R2,3

q3

q1

0

q2

1

q5

q4

0

0

0

1

1

1

1

{}
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• Observations:

1) Rn
i,j = Ri,j -- More generally, Rk

i,j = Ri,j for any k>= n.

2) Rk-1
i,j is a subset of Rk

i,j

3) L(M) =      Rn
1,q 

4) R0
i,j = -- Easily computed from the DFA!

5) Rk
i,j = Rk-1

i,k (Rk-1
k,k)* Rk-1

k,j U Rk-1
i,j For k>=1


Fq





=



=

=

ji

ji

qaqa

qaqa

ji

ji

 }{}),(|{

}),(|{




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• Explanation of 5:

5) Rk
i,j = Rk-1

i,k (Rk-1
k,k)

* Rk-1
k,j U Rk-1

i,j

• Consider paths represented by the strings in Rk
i,j :

:

• If x is a string in Rk
i,j then no state numbered > k is passed through when processing x.

• Any state numbered <= k, on the other hand, may or may not appear on the path while 
processing x; this includes, in particular, state qk

• So there are two cases:

– qk is not passed through, i.e., x is in Rk-1
i,j

– qk is passed through one or more times, i.e., x is in Rk-1
i,k (Rk-1

k,k)
* Rk-1

k,j

qi qj
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• Lemma 2: Let M = (Q, Σ, δ, q1, F) be a DFA.  Then there exists a regular expression r such 

that L(M) = L(r).

• Proof:

First we will show (by induction on k) that for all i,j, and k, where 1<=i,j<=n and 0<=k<=n, 

there exists a regular expression r such that L(r) = Rk
i,j .

Throughout the following, the regular expression representing Rk
i,j will be denoted by rk

i,j. 
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Basis: k=0

R0
i,j contains single symbols, one for each transition from qi to qj, and possibly ε if i=j.

case 1) No transitions from qi to qj and i ≠ j

r0
i,j = Ø

case 2) At least one (m>=1) transition from qi to qj and i ≠ j

r0
i,j = a1 + a2 + a3 + … + am where δ(qi, ap) = qj,

for all 1<=p<=m

case 3) No transitions from qi to qj and i = j

r0
i,j = ε

case 4) At least one (m>=1) transition from qi to qj and i = j

r0
i,j = a1 + a2 + a3 + … + am + ε where δ(qi, ap) = qj, for all 1<=p<=m
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Inductive Hypothesis:

Suppose there exists a k>=1 such that Rk-1
i,j can be represented by a regular 

expression, for all 1<= i,j <=n. Let that regular expression be denoted by rk-1
i,j.

Inductive Step:

Consider Rk
i,j = Rk-1

i,k (Rk-1
k,k)

* Rk-1
k,j U Rk-1

i,j .

By the inductive hypothesis Rk-1
i,k can be represented by a regular expression, 

denoted rk-1
i,k.

Similarly, Rk-1
k,k , Rk-1

k,j , and Rk-1
i,j can all be represented by regular expressions, 

denoted  rk-1
k,k , rk-1

k,j , and rk-1
i,j, respectively.

Thus, if we let

rk
i,j = rk-1

i,k (rk-1
k,k)

* rk-1
k,j + rk-1

i,j

then rk
i,j is a regular expression generating Rk

i,j ,i.e., L(rk
i,j) = Rk

i,j .
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• Finally, if F = {qj1, qj2, …, qjr}, then

rn
1,j1 + rn

1,j2 + … + rn
1,jr

is a regular expression generating L(M).•

• Not only does this prove that the regular expressions generate the regular 

languages, but it also provides an algorithm for computing it!



31

• Example:

First table column is 

computed from the 

DFA.

k = 0 k = 1 k = 2

rk
1,1 ε

rk
1,2 0

rk
1,3 1

rk
2,1 0

rk
2,2 ε

rk
2,3 1

rk
3,1 Ø

rk
3,2 0 + 1

rk
3,3 ε

q1
0

q2 q3

1

1

0 0,1
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• All remaining columns are computed from the previous column using the 
formula.

r1
2,3 = r0

2,1 (r0
1,1 )* r0

1,3 + r0
2,3

= 0 (ε)* 1 + 1

= 01 + 1

k = 0 k = 1 k = 2

rk
1,1 ε ε

rk
1,2 0 0

rk
1,3 1 1

rk
2,1 0 0

rk
2,2 ε ε + 00

rk
2,3 1 01 + 1

rk
3,1 Ø Ø

rk
3,2 0 + 1 0 + 1

rk
3,3 ε ε
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r2
1,3 = r1

1,2 (r1
2,2 )* r1

2,3 + r1
1,3

= 0 (ε + 00)* (1 + 01) + 1

= 0*1

k = 0 k = 1 k = 2

rk
1,1 ε ε (00)*

rk
1,2 0 0 0(00)*

rk
1,3 1 1 0*1

rk
2,1 0 0 0(00)*

rk
2,2 ε ε + 00 (00)*

rk
2,3 1 1 + 01 0*1

rk
3,1 Ø Ø (0 + 1)(00)*0

rk
3,2 0 + 1 0 + 1 (0 + 1)(00)*

rk
3,3 ε ε ε + (0 + 1)0*1
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• To complete the regular expression, we compute:

r3
1,2 + r3

1,3 

k = 0 k = 1 k = 2

rk
1,1 ε ε (00)*

rk
1,2 0 0 0(00)*

rk
1,3 1 1 0*1

rk
2,1 0 0 0(00)*

rk
2,2 ε ε + 00 (00)*

rk
2,3 1 1 + 01 0*1

rk
3,1 Ø Ø (0 + 1)(00)*0

rk
3,2 0 + 1 0 + 1 (0 + 1)(00)*

rk
3,3 ε ε ε + (0 + 1)0*1
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• Theorem: Let L be a language. Then there exists an a regular expression r 

such that L = L(r) if and only if there exits a DFA M such that L = L(M).

• Proof:

(if) Suppose there exists a DFA M such that L = L(M).  Then by Lemma 2 

there exists a regular expression r such that L = L(r).

(only if) Suppose there exists a regular expression r such that L = L(r).  Then 

by Lemma 1 there exists a DFA M such that L = L(M). •

• Corollary: The regular expressions define the regular languages.

• Note: With the completion of Lemma 1, the conversion from a regular 

expression to a DFA and a program accepting L(r) is now complete, and fully 

automated!


