Regular Expressions

Reading: Chapter 3

Operations on Languages

LetL, L,, L, be subsets of ¥*
Concatenation: L,L, ={xy|xisinL;andyisinL,}

Concatenating a language with itself: L0= {¢}
L'=LL", foralli>=1

1
(-t

Il
o

Kleene Closure: L* LI=LULlUL2U...

LI=L1UL?U...

1
s

Il
LN

Positive Closure: Lt

Question: Does L* contain €?

Regular Expressions

A regular expression is:

a finite length sequence of symbols
used to specify a language
very precise, intuitive, and useful in a lot of contexts

easy to convert to an NFA-¢, algorithmically; and consequently to an NFA, a DFA,
and a corresponding program

Definition of a Regular Expression

If r is a regular expression, then L(r) is used to denote the corresponding language.
Y be an alphabet. The regular expressions over X are:

1) Represents the empty set { }

€ Represents the set {&}

Represents the set {a}, for any symbol a in X

Let r and s be regular expressions.

r+s Represents the set L(r) U L(s)
s Represents the set L(r)L(s)

re Represents the set L(r)*

(n Represents the set L(r)

Note that the operators are listed in increasing precedence.

« Examples: LetZ= {0, 1}
(0+1)*
0(0 + 1)*
(0+1)*1
(0 + 1)*0(0 + 1)*
(0 + 1)*0(0 + 1)*0(0 + 1)*
(0 + 1)*01*01*
1*(01*01%)*
(1*01*0)*1*

(1 + 01*0)*

All strings of 0’s and 1°s

All strings of 0’s and 1°s, beginning with a 0

All strings of 0’s and 1’s, ending with a 1

All strings of 0’s and 1’s containing at least one 0

All strings of 0’s and 1°s containing at least two 0’s

All strings of 0’s and 1°s containing at least two 0’s

All strings of 0’s and 1°s containing an even number of 0’s
All strings of 0’s and 1°s containing an even number of 0’s

All strings of 0’s and 1°s containing an even number of 0’s

« Question: Is there a unique minimum regular expression for a given language?

* How do the above regular expressions “parse’” based on the formal definition? 5

e Other examples:
011
010 + 1100 + ¢
010+ 1100+ @
e(0+1)*
e0(0 + 1)*
0+1+¢)*1
@0+ 1)*
@+ 1)*

D0 + g)* + e*@*

An almost completely useless program...
Generating a Random String for a Regular Expression (Example):
1*(01*01*)*

// generate something from 1*
int n = random (0, inf) ;
for (int i=0; i<=n-1; i++) {
print (‘17);
}
// generate something from (01*01*)*
int m = random(0,inf) ;
for (int i=0; i<=m-1; 1i++) {
// generate a single 0
print (}0’);
// generate something from 1%
int k = random(0,inf) ;
for (int i=0; i<=k-1; i++) {
print (Y17);
}
// generate a single 0
print (}0’);
// generate something from 1%
int k = random(0,inf);
for (int i=0; i<=k-1; 1i++) {
print (Y17);

« Algebraic Laws for Regular Expressions:

1. u+v=v+u commutativity
2. (uU+v)+w=u+(Vv+w) associativity
3. (uv)w = u(vw) associativity
4, d+u=u+@=u identity

5. eu=ue=Uu identity

6. Qu =ugd=0¢ annihilator

7. u(v+w) = uv+uw distributive

8. (U+v)w = uw+vw distributive

Q. u+u=u idempotent
10. ()" =u"

11. @ =c¢ L*= |J Li=LouLtuL?u...

12. &' =¢

« Such laws can be used to prove equivalences between regular expressions:

g+ 1% = 1
0+01* = (g + 1%)0
(0 + 1)* = (0* + 10%)*

e Other Laws:

1. (uv)*u = u(vu)*

2. (u+v)* = (U*+v)*
= u*(u+v)*
= (u+vu*)*
- (u*v*)*
- u*(vu*)*
= (u*v)*u*

3. L*=LL"=L"L

4, L*=L*+¢

Equivalence of Regular Expressions
and NFA-¢s

Note:

Throughout the following, keep in mind the definition of string acceptance for
an NFA-¢...what is it?

Lemma 1: Letr be a regular expression. Then there exists an NFA-& M such
that L(M) = L(r). Furthermore, M has exactly one final state with no
transitions out of it.

Proof: (by induction on the number of operators, denoted by OP(r), inr).

10

Basis: OP(r) =0
Then r is either 9, €, or a, for some symbol ain X

For @:

11

Inductive Hypothesis: Suppose there exists a k >= 0 such that for any regular
expression r where 0 <= OP(r) <=k, there exists an NFA-¢ such that L(M) = L(r).
Furthermore, suppose M has exactly one final state with no transitions out of it.

Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1).
Since k>=0, it follows that k + 1 >= 1, and therefore r has at least one operator.

Casel) r=ry +r,

Since OP(r) = k +1, it follows that 0 <= OP(r,;) <=k and 0 <= OP(r,) <= k. By the
inductive hypothesis there exist NFA-¢ machines M; and M, such that L(M,) =
L(r,) and L(M,) = L(r,). Furthermore, both M; and M, have one final state.

Construct M as:

12

Case2) r=ry,

Since OP(r) = k+1, it follows that 0 <= OP(r,) <=k and 0 <= OP(r,) <= k. By the inductive
hypothesis there exist NFA-g machines M, and M, such that L(M,) = L(r,) and L(M,) =
L(r,). Furthermore, both M; and M, have exactly one final state.

Construct M as:

Case3) r=r*

Since OP(r) = k+1, it follows that 0 <= OP(r,) <= k. By the inductive hypothesis there exists
an NFA-g machine M, such that L(M,) = L(r,). Furthermore, M, has exactly one final state.

Construct M as:

13

Note that the previous proof is “constructive” in that it shows us how to
construct the NFA-¢ from the regular expression.

Given a regular expression, first decompose it based on the recursive definition:
r=0(0+1)*

r=n,

rn=0

r, = (0+1)*

14

r=r,
rh,=0

r, = (0+1)*
Iy =rg*

r; = 0+1
=1, +1r¢
r,=0
r-=1

15

rh,=0

r, = (0+1)*
Iy =rg*

r, =0+1
rg="r,+rg
r,=0
=1

16

r=r,
rh,=0

r, = (0+1)*
Iy =rg*

r; = 0+1
ra=r,+r;
r,=0
=1

17

18

19

20

Definitions Required to Convert a DFA
to a Regular Expression

Let M =(Q, %, 5, q, F) be a DFA with state set Q = {q,, d,, ..., q,,}, and define:
Ri; = { x| xis in £* and 8(q;,X) = 0} forany i,j, where 1 <=1i,j<=n

R;; is the set of all strings that define a path in M from g; to g;.

Note that states have been numbered starting at 1!

This has been done simply for convenience, and it is “without loss of generality.”

21

Example:

R, 5= {0,001, 00101, 011, ...}
R, 4= {01,00101, ...}
Rys= {11,100, ...}

22

Another definition:

R¥ ;= { x| xis in Z* and 8(q;,X) = g;, and for no u where 1 <= |u| < || and
x = uv is it the case that 5(q;,u) = g, where p>k}

forany i,j,k, where 1 <=ij<=nand 0 <=k <=n

In other words, RkLj is the set of all strings that define a path in M from g; to g
but that pass through no state numbered greater than k.

Here, the phrase pass through a state q means that the machine enters the state
g at some point, and then (subsequently) leaves that state g.

Consequently it may be the case that i>k or j>k for Rki,j.

23

Example:

R4, 5= {0, 1000, 011, ...}
111 is notin R4, ,

RY3={0}
111isnotin R,
101 is not in R,

R52,3 =Ry;3

24

Observations:

DRY; =R;;

2) RL; is a subset of R¥;;

3)L(M)=1J R,

geF

0. — [alé(a.a)=a;} i~ |
4) R 1) {{a|5(qi,a):qj}U{g} i = |

-- More generally, RkLj = R;;forany k>=n.

-- Easily computed from the DFA!

5) Rki,j — Rk-li,k (Rk‘lk,k)* Rk‘lk,j U Rk_li,j For k>=1

25

Explanation of 5:
5) Rki,j =R (RN)T Rk_lk,j U Rk_li,j

Consider paths represented by the strings in Rkid— ;

If X is a string in RkLj then no state numbered > k is passed through when processing x.

Any state numbered <= k, on the other hand, may or may not appear on the path while
processing X; this includes, in particular, state g,

So there are two cases:
— g is not passed through, i.e., x is in R¥%;;
— 0 is passed through one or more times, i.e., x is in R (Rk4,)" Rk, |

26

Lemma 2: Let M = (Q, %, 6, q;, F) be a DFA. Then there exists a regular expression r such
that L(M) = L(r).

Proof:
First we will show (by induction on K) that for all i,j, and k, where 1<=i,j<=n and 0<=k<=n,
there exists a regular expression r such that L(r) = RkLj :

Throughout the following, the regular expression representing R"i,j will be denoted by rki,j.

27

Basis: k=0
RY; ; contains single symbols, one for each transition from g; to g;, and possibly & if i=j.
case 1) No transitions from g; to g; and i # |
;=9
case 2) At least one (m>=1) transition from ¢; to g; and i # j
. =a +a,+a;+... ta, where 8(q;, a,) = g,

ij =
for all 1<=p<=m
case 3) No transitions from g; to g; andi=j

roi,j =&
case 4) At least one (m>=1) transition from q;to g;and i = j

i=a tay+a;+...+a,+e whered(q; a,) = g, for all 1<=p<=m

28

Inductive Hypothesis:

Suppose there exists a k>=1 such that Rk, j can be represented by a regular
expression, for all 1<=1i,j <=n. Let that regular expression be denoted by r« L

Inductive Step:
Consider Rki,j — Rk-li,k (Rk_lk,k)* Rk_lk,j U Rk_li,j .

By the inductive hypothesis R, can be represented by a regular expression,
denoted r<?, .

Similarly, R*%, , R, . j»and Rk-L. ; can all be represented by regular expressions,
denoted r<t, , r<t, and r<-L . i respectlvely

Thus, if we let

K =kl (rkl Y pk-l k-1
TR DD (L I e b

then r¥; ; is a regular expression generating R¥; ; ,i.e., L(r;;) = R¥;;

29

Finally, if F = {q;;, 0, --., q;.}, then
rnld'l + rnldz + e +

n
I 1,jr

IS a regular expression generating L(M)=

Not only does this prove that the regular expressions generate the regular
languages, but it also provides an algorithm for computing it!

30

Example:

First table column is
computed from the
DFA.

K

[
N

" oQQPFr " OFr OoOn

31

All remaining columns are computed from the previous column using the
formula.

rl2,3 = I'02,1 (r01,1)* r01,3 + ro2,3

=0(e)*1+1
=01+1
k=0 k=1 k=2

rkl,l @ €
r,, 0 0
rk1,3 @ 1
r (:) 0
I’kz,z € e+ 00
s @D
s, %) %]
ﬂw 0+1 0+1
r; 5 g £

32

ST CPY (P Il ST S
=0 (e + 00)* (1 +01)+ 1
=0*1

k=0 k=1 k=2
. e g (00)*
P 0 ©) 0(00)*
™13 1 @,
5, 0 0 0(00)*
k. £ (00)*
', 5 1 0*1
s,] @ (0 + 1)(00)*0
I’k3'2 0+1 0+1 (0 + 1)(00)*
r; 5 g g g+ (0+ 1)0*1

To complete the regular expression, we compute:

Pt s
k=0 k=1 k=2
<, € € (00)*
o 0 0 0(00)*
s 1 1 0*1
, . 0 0 0(00)
r, , 3 g+ 00 (00)*
%, 5 1 1+01 0*1
s % % (0 + 1)(00)*0
s 0+1 0+1 (0 + 1)(00)*
r; 5 € 3 g+ (0+1)0*1

34

Theorem: Let L be a language. Then there exists an a regular expression r
such that L = L(r) if and only if there exits a DFA M such that L = L(M).

Proof:

(if) Suppose there exists a DFA M such that L = L(M). Then by Lemma 2
there exists a regular expression r such that L = L(r).

(only if) Suppose there exists a regular expression r such that L = L(r). Then
by Lemma 1 there exists a DFA M such that L = L(M).=

Corollary: The regular expressions define the regular languages.

Note: With the completion of Lemma 1, the conversion from a regular
expression to a DFA and a program accepting L(r) is now complete, and fully
automated!

35

