
Introduction to Turing Machines

Reading: Chapters 8 & 9
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Turing Machines (TM)

• Generalize the class of CFLs:

• Note that there are non-recursively enumerable languages.

Regular Languages

Context-Free Languages

Recursive Languages

Recursively Enumerable Languages
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• Another Part of the Hierarchy:

Regular Languages - ε

Context-Free Languages - ε

Context-Sensitive Languages

Recursive Languages

Recursively Enumerable Languages
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• Chomsky Hierarchy:

– Recursively enumerable languages are also known as type 0 languages.

– Context-sensitive languages are also known as type 1 languages.

– Context-free languages are also known as type 2 languages.

– Regular languages are also known as type 3 languages.

Regular Languages - ε

Context-Free Languages - ε

Context-Sensitive Languages

Recursively Enumerable Languages
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• Church-Turing Thesis: There is an “effective procedure” for solving a 
problem if and only if there is a TM that halts for all inputs and solves the 
problem.

• Informally, the notion of an “effective procedure” is intended to represent a 
program that a real, general purpose computer could execute:

– Finitely describable

– Well defined, discrete, “mechanical” steps

– Always terminates

• TMs formalize the above notion, i.e., the computing capability of a general 
purpose computer.

• Stated another way, if something can be computed in any reasonable sense at 
all, then it can be computed by a TM.

• By way of contrast, DFAs and PDAs do not model all effective procedures or 
computable functions, but only a subset.
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• There are many other computing models, but all are equivalent to or subsumed
by TMs; for many models, this has been proven.

• The Church-Turing Thesis asserts that there is no more powerful machine 
(technically uproven).
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Deterministic Turing Machine (DTM)

…….. ……..

• Two-way, infinite tape, broken into cells, each containing one symbol.

• Two-way, read/write tape head.

• Finite control, i.e., a program, containing:

– position of the tape head

– current symbol being scanned

– current state

Finite

Control

B B 0 1 1 0 0 B B
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Deterministic Turing Machine (DTM)

…….. ……..

Execution:

• An input string is placed on the tape, padded to the left and right infinitely with blanks

• Tape head is positioned at the left end of input string

• In one move, depending on the current state and symbol being scanned, the TM:

– changes state

– prints a symbol over the cell being scanned, and

– moves its’ tape head one cell left or right.

• Many modifications possible (to be discussed later).

Finite

Control

B B 0 1 1 0 0 B B
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Formal Definition of a DTM

• A DTM is a seven-tuple:

M = (Q, Σ, Γ, δ, q0, B, F)

Q A finite set of states

Γ A finite tape alphabet

B A distinguished blank symbol, which is in Γ

Σ A finite input alphabet, which is a subset of Γ– {B}

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A next-move function, which is a mapping (i.e., may be undefined) from

Q x Γ –> Q x Γ x {L,R}

Intuitively, δ(q,s) specifies the next state, symbol to be written, and the direction of tape 

head movement by M after reading symbol s while in state q.
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• Example #1: {w | w is in {0,1}* and w ends with a 0}

0

00

10

10110

Not ε

Q = {q0, q1, q2}

Γ = {0, 1, B}

Σ = {0, 1}

F = {q2}

δ:

0 1 B

q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, 0, R) - -

q2 - - -

– q0 is the “scan right” state

– q1 is the verify 0 state
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• Example #1: {w | w is in {0,1}* and w ends with a 0}

0 1 B

q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, 0, R) - -

q2 - - -

• Sample Computation: (on 0010)

q00010 |— 0q0010

|— 00q010

|— 001q00

|— 0010q0

|— 001q10

|— 0010q2
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• Example #2: {0n1n | n >= 1}

0 1 X Y B

q0 (q1, X, R) - - (q3, Y, R) -

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

q3 - - - (q3, Y, R) (q4, B, R)

q4 - - - - -

• Sample Computation: (on 0011)

q00011 |— Xq1011

|— X0q111

|— Xq20Y1

|— q2X0Y1

|— Xq00Y1

|— XXq1Y1

|— XXYq11

|— XXq2YY

|— Xq2XYY

|— XXq0YY

|— XXYq3Y

|— XXYYq3

|— XXYYBq4
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• Example #2: {0n1n | n >= 1}

0 1 X Y B

q0 (q1, X, R) - - (q3, Y, R) -

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

q3 - - - (q3, Y, R) (q4, B, R)

q4 - - - - -

– The TM basically matches up 0’s and 1’s

– q0 is the “check off a zero” state

– q1 is the “scan right, find and check off a matching 1” state

– q2 is the “scan left” state

– q3 is the “verify no more  ones” state

– q4 is the final state

• Other Examples:

000111 00

11 001

011 010 110
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• What kinds of things can TMs do?

– Accept languages (as above)

– Simulate DFAs, NFAs and PDAs

– Compute functions and operators (+, *, etc)

– Have subroutines, pass parameters

– Simulate arbitrary computer programs

• Exercises (some from the class website): Construct a DTM for each of the following.

– {w | w is in {0,1}* and w ends in 00}

– {w | w is in {0,1}* and w contains at least 2 0’s}

– {w | w is in {0,1}* and w contains at least one 0 and one 1}

– {w | w is in {0,1}* and w contains at least one occurrence of the substring 00}

– A TM that adds 1 to a given binary number

– Suppose the input to a Turing machine consists of two n-bit binary numbers separated by a # 

character. Give a deterministic Turing machine that will determine if the first binary number is 

larger than the second. Note that the turning machine should output 1 to the right of the second 

number if the answer is yes, and a 0 if the answer is no.
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Be Careful!

• Note that, just like a computer program, a TM can contain an infinite loop:

0 1 B

q0 (q0, 0, R) (q0, 1, R) (q0, B, R)

• This is somewhat equivalent to:

while (true) ;

• As with more general programs, more complicated TM infinite loops can occur.
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Formal Definitions for DTMs

• Let M = (Q, Σ, Г, δ, q0, B, F) be a TM.

• Definition: An instantaneous description (ID) is a triple α1qα2, where:

– q, the current state, is in Q

– α1, which is in Г*, is the tape contents up to the left of the tape head, starting at the leftmost 

non-blank symbol

– α2, which is in Г*, is the tape contents from, and including, the current position of the tape 

head, up to the rightmost non-blank symbol

– The tape head is currently scanning the first symbol of α2

– At the start of a computation α1= ε

– If α2= ε then a blank is being scanned

• Example: (for TM #1)

q00011 Xq1011 X0q111 Xq20Y1 q2X0Y1

Xq00Y1 XXq1Y1 XXYq11 XXq2YY Xq2XYY

XXq0YY XXYq3Y XXYYq3 XXYYBq4
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Next-Move Function

(Informal Definition)

• Definition: Let I and J be instantaneous descriptions. If J follows from I by exactly one 

transition, then I |— J.

q00011 |— Xq1011 (see TM example #2)

Xq20Y1 |— q2X0Y1

XXYYq3 |— XXYYBq4

• Definition: |—* is the reflexive and transitive closure of |—.

– I |—* I for each instantaneous description I

– If I |— J and J |—* K then I |—* K 

• Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J follows 
from I by zero or more transitions. 

q00011 |—* XXYYBq4

XXq1Y1 |—* Xq2XYY
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• Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is 
accepted by M iff

q0w |—* α1pα2

where p is in F and α1 and α2 are in Г*

• Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, 
denoted L(M), is the set

{w | w is in Σ* and w is accepted by M}
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• Note that much like with a DFA or a PDA, a TM might pass through a final state many 
times during a given computation.

• On the other hand, unlike with a DFA or a PDA, in the previous definitions there is no 
requirement that a TM read all its’ input or halt to accept a string; simply arriving at a 
final state gets the string accepted.

• In fact, a TM could even accept a string, and then go into an infinite loop.

– Example: Modify TM #1 to go into an infinite loop upon acceptance.

– But that’s not helpful…in fact, it’s downright weird!

– In technical terms, it’s non-intuitive, we want our algorithms to terminate; you can’t claim your 
algorithm “solves” a problem or “accepts” a language if it doesn’t halt.

Accepting Computations & Halting
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• So is there a way to get a TM to terminate when it accepts?

• Sure is, in fact, it’s simple – don’t allow any transitions out of a final state.

– Henceforth, this will be our assumption.

– Technically, this is a modification of the formal definition of a TM.

• So now, for all accepting computations, all TMs halt.

– This is a good thing, it’s intuitive

– It’s the way algorithms should work

– We like it, the Consumer Products Safety Commission likes it, Walmart complies with 
it…everybody is happy…

Accepting Computations & Halting
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Non-Accepting Computations & Halting

• How about non-accepting computations?

• Obviously, we would like a TM to halt on all inputs.

• However, with the current formal definition the language of a TM:

– If x is not in L(M) then M may halt in a non-final state, or

– M may also go into an infinite loop! (give a modified version of TM #1)

– This also not particularly intuitive or desirable.
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Non-Accepting Computations & Halting

• Can’t we just “outlaw” infinite loops?

• Isn’t there a simple way to do this, like we did for accepting computations, something 
that is easy to check for?

• That’s what programmers do, isn’t it?

• As we shall see, not really… “outlawing” infinite loops is technically impossible.
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TM Computations

• In summary, given an arbitrary Turing machine M, and a string x, there are three 
possible types of computations:

– M terminates in a final state, in which case we say x is accepted and in L(M).

– M terminates in a non-final state, in which case we say x is not accepted and is not in L(M).

– M goes into an infinite loop, in which case we say x is not accepted and is not in L(M).

• Stated another way, given an arbitrary Turing machine M, and a string x:

– If x is in L(M) then M will halt in a final state.

– If x is not in L(M) then M may enter an infinite loop, or halt in a non-final state.

• By the way, how difficult would it be to simulate an arbitrary TM with a (Java, C++, 
etc) computer program?
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Recursive and Recursively

Enumerable Languages

• Definition: Let L be a language. Then L is recursively enumerable if there exists a TM 
M such that L = L(M).

– If L is r.e. then L = L(M) for some TM M, and

• If x is in L then M halts in a final (accepting) state.

• If x is not in L then M may halt in a non-final (non-accepting) state, or loop forever.

• Definition: Let L be a language. Then L is recursive if there exists a TM M such that 
L = L(M) and M halts on all inputs.

– If L is recursive then L = L(M) for some TM M, and

• If x is in L then M halts in a final (accepting) state.

• If x is not in L then M halts a non-final (non-accepting) state.

Notes:
– The set of all recursive languages is a subset of the set of all recursively enumerable languages.

– Terminology is easy to confuse: A TM is not recursive or recursively enumerable, rather a language is 
recursive or recursively enumerable.
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• By definition:

• But is the inclusion proper?

• As we shall see, it is…

Recursive Languages

Recursively Enumerable Languages

What would it mean for a

language to be here, i.e., r.e. – r?
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• The Language Hierarchy (so far):

Regular Languages - ε

Context-Free Languages - ε

Context-Sensitive Languages

Recursive Languages

Recursively Enumerable Languages
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• Let L be a language.

• Saying that L = L(M) tells us:
– For any string in L, M will halt and accept

– For any string not in L, M will not halt and accept; in other words, M might halt in a non-final state or 
go into an infinite loop.

• In that sense, saying L = L(M) tells us more about accepted strings.

• Keep that in mind throughout the following…
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• Observation: Let L be an r.e. language. Then there is an infinite list M0, M1, … of TMs such 
that L = L(Mi).

– Many of these are trivial modifications of each other.

– Some of these contain infinite loops on non-accepted strings (recall the modifications to TM #1).

– Some of these might halt on all inputs, in which case L is also recursive.

– Conceivably, none of these halt on all inputs, in which case L is in r.e.-r

• Observation: Let L be a recursive language. Then there is an infinite list M0, M1, … of TMs 
such that L = L(Mi).

– Many of these are trivial modifications of each other.

– Some of these also contain infinite loops on non-accepted strings (recall the modifications to TM #1).

– However, at least one will halt on all inputs, by definition (in fact, an infinite number do).



29

• Question: Let L be a recursive language. Then there is a list M0, M1, … of TMs such 
that L = L(Mi). Choose any i>=0. Does Mi always halt?

• Answer: Maybe, maybe not, but at least one in the list does.

• Question: Let L be a recursive enumerable language. Then there is a list M0, M1, … of 
TMs such that L = L(Mi). Choose any i>=0. Does Mi always halt?

• Answer: Maybe, maybe not. Depending on L, none might halt or some may halt.

– If L is also recursive, which it could be, then it might.

• Question: Let L be a recursive enumerable language that is not recursive (L is in r.e. –
r). Then there is a list M0, M1, … of TMs such that L = L(Mi). Choose any i>=0. Does 
Mi always halt?

• Answer: No! If it did, then L would not be in r.e. – r, it would be recursive.
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• Let M be a TM.

– Question: Is L(M) well-defined?

– Answer: Given any string w, either w is in L(M) or not, so in that sense, it is.

– Question: Is L(M) r.e.?

– Answer: Yes! By definition it is!

– Question: Is L(M) recursive?

– Answer: Don’t know, we don’t have enough information.

– Question: Is L(M) in r.e – r?

– Answer: Don’t know, we don’t have enough information.
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• Let M be a TM that halts on all inputs:

– Question: Is L(M) recursively enumerable?

– Answer: Yes! By definition it is!

– Question: Is L(M) recursive?

– Answer: Yes! By definition it is!

– Question: Is L(M) in r.e – r?

– Answer: No! It can’t be. Since M always halts, L(M) is recursive.
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• Let M be a TM.

– As noted previously, L(M) is recursively enumerable, but may or may not be recursive.

– Question: Suppose that L(M) is also recursive. Does that mean that M always halts?

– Answer: Not necessarily. However, some other TM M’ must exist such that L(M’) = 

L(M) and M’ always halts (recall  TM #1 and it’s modified version).

– Question: Suppose that L(M) is in r.e. – r. Does M always halt?

– Answer: No! If it did then L(M) would be recursive and therefore not in r.e. – r.



33

• Let M be a TM, and suppose that M loops forever on some string x.

– Question: Is L(M) recursively enumerable?

– Answer: Yes! By definition it is.

– Question: Is L(M) recursive?

– Answer: Don’t know. Although M doesn’t always halt, some other TM M’ may 

exist such that L(M’) = L(M) and M’ always halts.

– Question: Is L(M) in r.e. – r?

– Answer: Don’t know.
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Modifications of the Basic TM Model

• Other (Extended) TM Models:

– One-way infinite tapes

– Multiple tapes and tape heads

– Non-Deterministic TMs

– Multi-Dimensional TMs (n-dimensional tape)

– Multi-Heads

– Multiple tracks

All of these extensions are “equivalent” to the basic TM model*

*In terms of the languages accepted, but not necessarily in terms of performance.
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Closure Properties for Recursive and 

Recursively Enumerable Languages

• TMs Model General Purpose Computers: (Church-Turing Thesis)

– If a TM can do it, so can a GP computer

– If a GP computer can do it, then so can a TM

If you want to know if a TM can do X, then some equivalent question are:

– Can a general purpose computer do X?

– Can a C/C++/Java/etc. program be written to do X?

For example, is a given language L recursive?

– This equates to - can a C/Java/etc. program be written that always halts and accepts L?

– Is 0n1n2m3n4m recursive?
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One More Time!

• If you want to know if a TM can do X, then some equivalent question are:

– Can a general purpose computer do X?

– Can a C/C++/Java/etc. program be written to do X?

Another example:

– Is 0n1m2n3m4n+m recursive?

Can a C/C++/Java/etc. program be written that always halts and accepts it?
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• TM Block Diagrams:

– If L is a recursive language, then a TM M that accepts L and always halts can be 
pictorially represented by a “chip” that has one input and two outputs.

– If L is a recursively enumerable language, then a TM M that accepts L can be 
pictorially represented by a “chip” that has one output.

– Conceivably, M could be provided with an output for “no,” but this output cannot 
be counted on. This would make the following proofs more complicated, so 
consequently, we leave it off.

w

yes

no

M

w

yes

M

The Chip Metaphor
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• Theorem: The recursive languages are closed with respect to complementation, i.e., if L is a 
recursive language, then so is

• Proof: Suppose L is recursive, and let M be a TM such that L = L(M) where M always halts.

Construct TM M’ as follows:

• Note That:

– M’ accepts iff M does not

– M’ always halts since M always halts

From this it follows that the complement of L is recursive. •

• Question: How is the construction achieved? Do we simply complement the final states in the TM?

– No! In fact, given our requirement that there be no transitions out of a final state, the resulting 
machine is not even a TM.

– Even if we revert back to the original definition of a TM, it is easy to show that this 
construction doesn’t work (exercise).

LL −= *

w

yes

noM

yes

no

M’
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• Theorem: The recursive languages are closed with respect to union, i.e., if L1 and L2 are recursive 

languages, then so is

• Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) where M1 and M2 always halt. 

Construct TM M’ as follows:

• Note That:

– L(M’) = L(M1) U L(M2)

• L(M’) is a subset of L(M1) U L(M2)

• L(M1) U L(M2) is a subset of L(M’)

– M’ always halts since M1 and M2 always halt

It follows from this that                           is recursive. •

213 LLL =

213 LLL =

w

yes

no

M1

yes

noM2

start

M’
yes

no
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• Theorem: The recursive enumerable languages are closed with respect to union, i.e., if 
L1 and L2 are recursively enumerable languages, then so is

• Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct M’ as 
follows:

• Note That:

– L(M’) = L(M1) U L(M2)

• L(M’) is a subset of L(M1) U L(M2)

• L(M1) U L(M2) is a subset of L(M’)

– M’ halts and accepts iff M1 or M2 halts and accepts

It follows from this that                               is recursively enumerable. •

• Question: How do you run two TMs in parallel? Could you do it with a Java program?

213 LLL =

213 LLL =

w

yes

M1

yes

yes

M2

M’
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• Theorem: If L and      are both recursively enumerable then L (and therefore     ) is 
recursive.

• Proof: Let M1 and M2 be TMs such that L = L(M1) and      = L(M2). Construct M’ as 
follows:

• Note That:

– L(M’) = L

• L(M’) is a subset of L

• L is a subset of L(M’)

– M’ always halts since M1 or M2 halts for any given string

It follows from this that L (and therefore its’ complement) is recursive. •

LL

L

w

yes

M1

yes

yes

M2

M’

no
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• Corollary: Let L be a subset of Σ*. Then one of the following must be true:

– Both L and       are recursive.

– One of L and       is recursively enumerable but not recursive, and the other is not 

recursively enumerable, or

– Neither L nor      is recursively enumerable,

L

L

L
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• In terms of the hierarchy: (possibility #1)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L
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• In terms of the hierarchy: (possibility #2)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L
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• In terms of the hierarchy: (possibility #3)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L

L
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• In terms of the hierarchy: (Impossibility #1)

Recursive Languages

Recursively Enumerable Languages

L L
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• In terms of the hierarchy: (Impossibility #2)

Recursive Languages

Recursively Enumerable Languages

L

L
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• In terms of the hierarchy: (Impossibility #3)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L

L
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• We would now like to show that some languages are not recursive.

• Additionally, we would also like to show that some languages are not even 

recursively enumerable.

• Sometimes showing that a language is not recursive is a bit tricky…

• The previous slides give us three indirect approaches for showing that a 

language is not recursive, which is sometimes easier:
– Show that the language’s complement is not recursive

– Show that the language’s complement is recursively enumerable but not recursive

– Show that the language’s complement is not recursively enumerable
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The Halting Problem - Background

• Definition: A decision problem is a problem having a yes/no answer:

– Given a number x, is x even?

– Given a list of numbers, is that list sorted?

– Given a C program, does that C program contain any syntax errors?

– Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that interesting.  

However, from a theoretical perspective they are for the following two reasons:

– Decision problems are more convenient/easier to work with when proving complexity results.

– Non-decision counter-parts are typically at least as difficult to solve.

– Decision problems can be encoded as languages.

• Going forward, note that the following terms and phrases are analogous:

Algorithm - A halting TM program

Decision Problem - A language

(un)Decidable - (non)Recursive
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Statement of the Halting Problem

• Practical Form: (P0)

Input: Program P.

Question: Does P contain an infinite loop?

• Theoretical Form: (P1)

Input: Turing machine M with input alphabet Σ.

Question: Does there exist a string w in Σ* such that M does not halt on w?

Another version…

• Practical Form: (P3)

Input: Program P and input I.

Question: Does P terminate on input I?

• Theoretical Form: (P4)

Input: Turing machine M with input alphabet Σ and string w in Σ*.

Question: Does M halt on w?
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Statement of the Halting Problem

• A Related Problem We Will Consider First: (P5)

Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*.

Question: Is w in L(M)?

• Analogy:

Input: DFA M with input alphabet Σ and string w in Σ*.

Question: Is w in L(M)?

Is this problem (the DFA version, that is) decidable? Yes!
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• Over-All Approach:

– We will show that a language Ld is not recursively enumerable

– From this it will follow that       is not recursive

– Using this we will show that a language Lu is not recursive

– From this it will follow that the halting problem is undecidable.

• As We Will See:

– P5 will correspond to the language Lu

– Proving P5 (un)decidable is equivalent to proving Lu (non)recursive

dL
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Converting the Problem to a Language

• Let M = (Q, Σ, Γ, δ, q1, B, {qn}) be a TM, where

Q = {q1, q2, … , qn}

Σ = {x1, x2} = {0, 1}

Γ = {x1, x2, x3} = {0, 1, B}

• Encode:

δ(qi, xj) = (qk , xl, dm) where qi and qk are in Q

xj and xl are in Σ,

and dm is in {L, R} = {d1, d2}

as:

0i10j10k10l10m
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• Less Formally:

– Every state, tape symbol, and movement symbol is encoded as a sequence of 0’s:

q1, 0 

q2, 00

q3 000

:

0 0

1 00

B 000

L 0

R 00

– Example:

δ(q2, 1) = (q3 , 0, R)

Is encoded as:

00100100010100

– Note that 1’s have a special role as a delimiter.
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• A complete TM M can then be encoded as:

111code111code211code311 … 11coder111

where each code i is one transitions’ encoding.  Let this encoding of M be denoted by <M>.



58

0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

1110101010100110100101001001101000100100010110010100010100111

01100001110001

111111

Similarly, we could encode DFAs, NFAs, or any machine model for that matter.
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0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

1110101010100110100101001001101000100100010110010100010100111

01100001110001

111111

Similarly, we could encode DFAs, NFAs, or any machine model for that matter.



60

• Definition:

Ltm = {x | x is in {0, 1}* and x encodes a TM}

– Question: Is Ltm recursive?

– Answer: Yes.

– Question: Is Ltm decidable:

– Answer: Yes (same question).

• Definition: (similarly)

Ldfa = {x | x is in {0, 1}* and x encodes a DFA}

– Question: Is Ldfa recursive?

– Answer: Yes.

– Question: Is Ldfa decidable:

– Answer: Yes (same question).
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The Universal Language

• Define the language Lu as follows:

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

• Let x be in {0, 1}*.  Then either:

1. x doesn’t have a TM prefix, in which case x is not in Lu

2. x has a TM prefix, i.e., x = <M,w> and either:

a) w is not in L(M), in which case x is not in Lu

b) w is in L(M), in which case x is in Lu
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• Recall:

0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

• Which of the following are in Lu?

111010101010011010010100100110100010010001011001010001010011101110

111010101010011010010100100110100010010001011001010001010011100110111

1110101010100110100101001001101000100100010110010100010100111 

01100001110001

01100001110000
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• Compare P5 and Lu:

(P5):

Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*.

Question: Is w in L(M)?

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

• Notes:

– Lu is P5 expressed as a language

– Asking if Lu is recursive is the same as asking if P5 is decidable.

– We will show that Lu is not recursive, and from this it will follow that P5 is un-

decidable.

– Note that Lu-dfa is recursive if M is a DFA.



64

• Define another language Ld as follows:

Ld = {x | x is in {0, 1}* and either x is not a TM or x is a TM, call it M, (1)

and x is not in L(M)}

• Let x be in {0, 1}*.  Then either:

1. x is not a TM, in which case x is in Ld

2. x is a TM, call it M, and either:

a) x is not in L(M), in which case x is in Ld

b) x is in L(M), in which case x is not in Ld
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• Recall:

0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

• Which of the following are in Ld?

1110101010100110100101001001101000100100010110010100010100111

01100001110001

111010101010011010010100100110100010010001011001001000100100111

How about the string representing TM #2?
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• Lemma: Ld is not recursively enumerable:

• Proof: (by contradiction)

Suppose that Ld were recursively enumerable. In other words, that there existed a TM M such that:

Ld = L(M) (2)

Now suppose that wj is a string encoding of M.

Case 1) wj is in Ld (3)

By definition of Ld given in (1), either wj does not encode a TM, or wj does encode a TM, call it M, and wj is not in 

L(M). But we know that wj encodes a TM (that’s were it came from). Therefore:

wj is not in L(M) (4)

But then (2) and (4) imply that wj is not in Ld contradicting (3). 

Case 2) wj is not in Ld (5)

By definition of Ld given in (1), wj encodes a TM, call it M, and:

wj is in L(M) (6)

But then (2) and (6) imply that wj is in Ld contradicting (5).

Since both case 1) and case 2) lead to a contradiction, no TM M such that Ld = L(M) can exist. Therefore Ld is not 

recursively enumerable. •
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• As a small sanity check, what would happen if you tried to write a Java, C or C++ program for Ld ?
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• Now consider          :

= {x | x is in {0, 1}*, x encodes a TM, call it M, and x is in L(M)}

• Which of the following are in       ?

1110101010100110100101001001101000100100010110010100010100111

01100001110001

111010101010011010010100100110100010010001011001001000100100111

How about the string representing TM #2?

dL

dL

dL
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• Corollary: is not recursive.

• Proof: If       were recursive, then Ld would be recursive, and therefore recursively enumerable, a 

contradiction. 

• Question: Is       recursively enumerable?

dL

dL

dL
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• Theorem: Lu is not recursive.

• Proof: (by contradiction)

Suppose that Lu is recursive. Recall that:

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

Then Lu = L(M’) where M’ is a TM that always halts. Construct an algorithm (i.e., a TM that always 

halts) for       as follows:

Suppose that M’ always halts and Lu = L(M’).  It follows that:

– M’’ always halts

– L(M’’) = 

would therefore be recursive, a contradiction. •

dL

dL

dL

Yes

No

Yes

No

Let M be the TM

that w encodes. M’

Yes

No

<M,w>

(i.e., <w,w>)

Is w a TM?
w

M’’
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• The over-all logic of the proof is as follows:

1. If Lu is recursive, then so is 

2. is not recursive

3. It follows that Lu is not recursive.

The second point was established by the corollary.

The first point was established by the theorem on the preceding slide.

This type of proof is commonly referred to as a reduction. Specifically, the problem of 

recognizing was reduced to the problem of recognizing Lu

dL

dL

dL
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• Stated a slightly different way:

1. If M’ exists, then so M’’

2. M’’ does not exist

3. It follows that M’ does not exist.
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• Define another language Lh:

Lh = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and M halts on w}

Note that Lh is P4 expressed as a language:

(P4):

Input: Turing machine M with input alphabet Σ and string w in Σ*.

Question: Does M halt on w?
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• Theorem: Lh is not recursive.

• Proof: (by contradiction)

Suppose that Lh is recursive. Recall that:

Lh = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and M halts on w}

and

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

Suppose that Lh = L(M’) where M’ is a TM that always halts. Construct an algorithm (i.e., a TM that 

always halts) for Lu as follows:

Suppose that M’ always halts and Lh = L(M’).  It follows that:

– M’’ always halts

– L(M’’) = Lu

Lu would therefore be recursive, a contradiction. •

Yes

No

Yes

No
Simulate M

On w

Yes

NoM’
x

M’’

start
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• The over-all logic of the proof is as follows:

1. If Lh is recursive, then so is Lu

2. Lu is not recursive

3. It follows that Lh is not recursive.

The second point was established previously.

The first point was established by the theorem on the preceding slide.

This proof is also a reduction. Specifically, the problem of recognizing Lu was reduced to the 

problem of recognizing Lh.
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• Define another language Lt:

Lt = {x | x is in {0, 1}*, x encodes a TM M, and M does not contain an infinite loop}

Or equivalently:

Lt = {x | x is in {0, 1}*, x encodes a TM M, and there exists no string w in {0, 1}*

such that M does not terminate on w}

Note that:

= {x | x is in {0, 1}*, and either x does not encode a TM, or it does encode a TM, call it M,

and there exists a string w in {0, 1}* such that M does not terminate on w}

Note that the above languages correspond to the problem P0:

Input: Program P.

Question: Does P contain an infinite loop?

Using the techniques discussed, what can we prove about Lt or its’ complement?

tL
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• Define another language Lt: (slightly different)

Lt = {x | x is in {0, 1}*, x encodes a TM M, and M contains an infinite loop}

Or equivalently:

Lt = {x | x is in {0, 1}*, x encodes a TM M, and there exists a string w in {0, 1}*

such that M does not terminate on w}

Note that:

= {x | x is in {0, 1}*, and either x does not encode a TM, or it does encode a TM, call it M,

and there exists no string w in {0, 1}* such that M does not terminate on w}

Note that the above languages correspond to the problem P0:

Input: Program P.

Question: Does P contain an infinite loop?

Using the techniques discussed, what can we prove about Lt or its’ complement?

tL


