Formal Languages and Automata Theory
 Homework \# 1

Prove each of the following by induction. You should explicitly state the basis, inductive hypothesis, and the inductive step in each proof. Also indicate whether $1^{\text {st }}$ (weak) or $2^{\text {nd }}$ (strong) form is used or required. Exercises to be handed in include 4,6 and 8. Homework is due at the beginning of class.

1. $n!>2^{n}$ for all $n \geq 4$.
2. The number of leaves in a complete binary tree with height h is 2^{h}.
3. The number of vertices in a complete binary tree with height at most h is at most $2^{h+1}-1$.
4. The number of vertices in a binary tree with height h is at most $2^{h+1}-1$.
5. $\sum_{i=1}^{n} 2^{i}=2^{n+1}-2$, for all $n \geq 1$.
6. $\sum_{i=1}^{n}(3 i-1)=\frac{n(3 n+1)}{2}$, for all $n \geq 1$.
7. $1+2^{n}<3^{n}$, for all $n>2$.
8. Prove that 3 is a factor of $n^{3}-n+3$, for all $n \geq 0$.
9. The number of leaves in a binary tree of height h is at most 2^{h}.
10. The number of vertices in a strictly binary tree with n leaves is $2 n-1$ (recall that a strictly binary tree is a binary tree where every node has zero or two children).
