Formal Languages and Automata Theory Homework \# 2

Prove each of the following. Exercises to be handed in included 1, 11, and give 16 a try.

1. Prove that the set $\{x \mid x \geq 1$ and x is odd $\}$ is countably infinite.
2. Prove that the set $\{x \mid x \leq 0\}$ is countably infinite.
3. Prove that the set of all integers is countably infinite.
4. Let $\Sigma=\{0,1\}$. Prove that the set Σ^{*} is countably infinite.
5. Let Σ be any fixed, finite alphabet. Prove that the set Σ^{*} is countably infinite.
6. Let $\Sigma=\{0,1\}$. Prove that the set of all finite subsets of Σ^{*} is countable.
7. Prove that the set of all rational numbers is countable. In other words, the set $\left\{\left.\frac{m}{n} \right\rvert\, m, n \in\right.$ $\aleph-\{0\}\}$.
8. Prove that the union of two countable sets is countable.
9. Prove that the Cartesian product of two countable sets is countable.
10. Prove that the set of finite-length sequences consisting of elements of a nonempty countable set is countably infinite.
11. Let $\Sigma=\{0,1\}$. Prove that the set of all subsets of Σ^{*} is uncountable.
12. Prove that the set of real numbers in the interval $[0,1]$ is uncountable.
13. Prove that the set of all (total) functions from \aleph to \aleph is uncountable.
14. Prove that the set of all (total) functions from \aleph to $\{0,1\}$ is uncountable.
15. A (total) function f from \aleph to \aleph is said to be nonrepeating if $f(n) \neq f(n+1)$, for all $n \in \aleph$. Otherwise, f is said to be repeating. Prove that there is an uncountable number of nonrepeating functions. Also prove that there is an uncountable number of repeating functions.
16. A (total) function f from \aleph to \aleph is said to be monotone increasing if $f(n)<f(n+1)$ for all $n \in \aleph$. Prove that there is an uncountable number of monotone increasing functions.
