Formal Languages and Automata Theory Homework # 2

Prove each of the following. Exercises to be handed in included 1, 11, and give 16 a try.

- 1. Prove that the set $\{x \mid x \ge 1 \text{ and } x \text{ is odd}\}$ is countably infinite.
- 2. Prove that the set $\{x \mid x \leq 0\}$ is countably infinite.
- 3. Prove that the set of all integers is countably infinite.
- 4. Let $\Sigma = \{0, 1\}$. Prove that the set Σ^* is countably infinite.
- 5. Let Σ be any fixed, finite alphabet. Prove that the set Σ^* is countably infinite.
- 6. Let $\Sigma = \{0, 1\}$. Prove that the set of all *finite* subsets of Σ^* is countable.
- 7. Prove that the set of all rational numbers is countable. In other words, the set $\{\frac{m}{n} \mid m, n \in \aleph \{0\}\}$.
- 8. Prove that the union of two countable sets is countable.
- 9. Prove that the Cartesian product of two countable sets is countable.
- 10. Prove that the set of finite-length sequences consisting of elements of a nonempty countable set is countably infinite.
- 11. Let $\Sigma = \{0, 1\}$. Prove that the set of all subsets of Σ^* is uncountable.
- 12. Prove that the set of real numbers in the interval [0, 1] is uncountable.
- 13. Prove that the set of all (total) functions from \aleph to \aleph is uncountable.
- 14. Prove that the set of all (total) functions from \aleph to $\{0,1\}$ is uncountable.
- 15. A (total) function f from \aleph to \aleph is said to be nonrepeating if $f(n) \neq f(n+1)$, for all $n \in \aleph$. Otherwise, f is said to be repeating. Prove that there is an uncountable number of nonrepeating functions. Also prove that there is an uncountable number of repeating functions.
- 16. A (total) function f from \aleph to \aleph is said to be monotone increasing if f(n) < f(n+1) for all $n \in \aleph$. Prove that there is an uncountable number of monotone increasing functions.