Serializability Summary

- As transactions execute concurrently, we must guarantee isolation, i.e., we only want to allow "good" schedules.
- "Good" schedules, or rather, schedules that guarantee isolation, means that the resulting schedules are equivalent to some serial schedule.
- Any schedule that is *conflict serializable* is equivalent to some serial schedule.
- Any schedule that is *view serializable* is equivalent to some serial schedule.
- Schedules exist which are neither view nor conflict serializable, but are equivalent to some serial schedule.
- Schedules exist which are view serializable but not conflict serializable.
- Concurrency control schemes/algorithms are required that ensure either conflict or view serializability.

Testing for View Serializability

- Let *S* be a schedule consisting of transactions $\{T_1, T_2, ..., T_n\}$.
- Construct a *labeled precedence graph* as follows.
- First, add two more "dummy" transactons T_b and T_{f} .
 - T_b issues write(Q) for each Q accessed in S.
 - T_f issues read(Q) for each Q accessed in S.
 - T_b is inserted at the beginning of *S*.
 - T_f is inserted at the end of S.

Testing for View Serializability, Cont.

- 1. Add an edge $\begin{array}{c} 0\\ T_i \to T_j \end{array}$ if transaction T_j reads the value of data item Q written by transaction T_i .
- 2. Remove all the edges incident on useless transactions. A transaction T_i is useless if there exists no path, in the precedence graph, from T_i to transaction T_f .
- 3. For each data item Q such that T_j reads the value of Q written by T_i , and T_k executes write(Q) and $T_k \neq T_b$, do the following:

a) If
$$T_i = T_b$$
 and $T_j \neq T_f$, then insert the edge $\begin{array}{c} 0\\ T_j \rightarrow T_k \end{array}$ in the labeled precedence graph.

b) If
$$T_i \neq T_b$$
 and $T_j = T_f$, then insert the edge $\frac{0}{T_k \rightarrow T_i}$ in the labeled precedence graph.

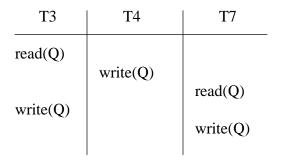
c) If $T_i \neq T_b$ and $T_j \neq T_f$, then insert the pair of edges $\frac{p}{T_k \rightarrow T_i}$ and $\frac{p}{T_j \rightarrow T_k}$ in the labeled precedence graph where *p* is a unique integer larger than 0 that has not been used earlier for labeling edges.

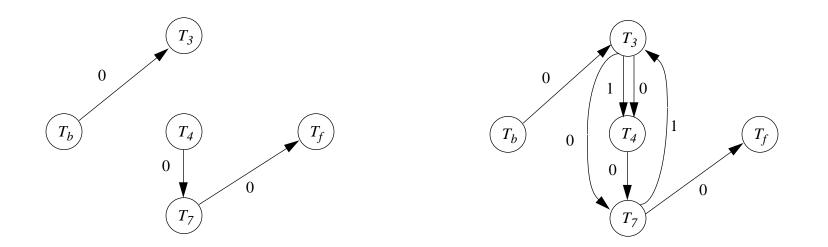
Testing for View Serializability, Cont.

- Meaning of rules 3a-3c:
 - Rule 3a) ensures that if a transaction reads an initial value of Q in schedule S, then it also reads that same value in any view-equivalent schedule.
 - Rule 3b) ensures that if a transaction writes the final value of Q in schedule S, then it also writes that same value in any view-equivalent schedule.
 - Rule 3c) ensures that if a transaction T_i writes a data item that T_j reads, then any transaction T_k that writes the same data item must either come before T_i or after T_j in any view-equivalent schedule.

<u>Testing for View Serializability</u> <u>Example #1</u>

• Consider the following schedule:





<u>Testing for View Serializability - Example #2</u>

• Consider the following schedule:

T3	T4	T7	T8	Т9	T10
read(Q)	write(Q)	read(Q)	write(A)	read(A)	
write(Q)		write(Q)		write(A)	
			write(B)		
					read(A)
					write(A)

