
CSE 4301/5290 Homework 2
Due: Sep 30, Wed, 5pm

Submit Server: class = ai , assignment = hw2

For programming problems (lisp/java/c/c++/python):

• Submit:

– all files that are needed to compile and run (and ex-
ecutable)

– README.txt with compilation and run instructions

• Your program should compile and run on code.fit.edu

(Linux, remote access via ssh)

1. Q3.6b, p113, 3Ed (Q3.7b, p90, 2Ed). Consider a 10x10x8
(WxDxH) grid/discrete world. (a) Define states as a set of
variables and their possible values. (b) Derive the number
of possible states. (c) Successor function: for each action,
discuss the input/parent and output/child state. (d) De-
fine goal test with respect to states in (a).

2. Consider Deep Blue can evaluate 200 million positions a
second. Assume at each move, a pawn can go to 2 possible
positions, a rook 14, a knight 8, a bishop 14, a queen 28,
and a king 8. Each side has 8 pawns, 2 rooks, 2 knights, 2
bishops, a queen and a king. Under standard regulations,
each side makes 40 moves within the first 2 hours (or 3
minutes a move on the average).

(a) Using the breadth-first search algorithm, how many
levels can Deep Blue evaluate (visit) before each move
(in 3 minutes)?

(b) To examine 20 levels in 3 minutes, how many posi-
tions Deep Blue needs to evaluate (visit) in a second?

3. Simplified from Q3.6d, p114, 3Ed (Q3.7d, p90, 2Ed).
There are two jugs, one can hold 3 and the other 5 gal-
lons of water. Allowed actions with the jugs: fill one from
the faucet, empty one to the drain, and pour from one to
the other until either the receiving jug is full or the pour-
ing jug is empty. The objective is to devise a sequence of
actions that will produce 4 gallons of water in the larger
jug. Only integer values of water are used.

(a) Explain and derive the number of possible states.

(b) Devise and explain an admissible heuristic function
(h) [not the trivial h(n) = 0]. The cost of an action
is defined as 1 unit for performing the action, an ad-
ditional 1 unit for “moving” each gallon of water (fill,
empty, pour), and an additional 1 unit for wasting
each gallon of water (empty). The path cost (g) is
the sum of the cost of all the actions.

(c) For each of these algorithms:

i. breadth-first search,
ii. depth-first search,

iii. uniform-cost search,
iv. greedy search, and
v. A*,

assume both jugs are initially empty, construct a
search tree, and provide:

i. the order of nodes visited with their cost values
ii. the solution path in sequence of actions.

Use your heuristic function h in Part b. The “left to
right” order of actions is fill-small (FS), fill-large (FL),
empty-small (ES), empty-large (EL), pour-small-to-
large (PSL), pour-large-to-small (PLS).

(d) Programming (stated in lisp):

;prints the states while they are *visited* (not generated),
; total number of visited states, and cost of solution path
;returns the solution path in a sequence of actions in a list
(defun general-search (insert-fn initial-state goal-test-fn

successor-fn step-cost-fn heuristic-fn) ... )

;returns t if the node is a goal state
(defun jug-goal-test (node) ...)

;returns a list of legal successor nodes (generated dynamically)
;heuristic-fn could be nil
;the "left to right" order of actions is: ...
(defun jug-successor (node step-cost-fn heuristic-fn) ...)

;returns the step cost of applying an action at a certain node
(defun jug-step-cost (node action) ...)

;returns the (admissible) heuristic value of node (Part b)
(defun jug-heuristic (node) ...)

;returns the updated frontier with the successors inserted into
;the frontier according to the UCS algorithm
(defun ucs-insert (frontier successors) ...)

;returns the updated frontier with the successors inserted into
;the frontier according to the A* algorithm
(defun astar-insert (frontier successors) ...)

For testing different initial states, provide in Lisp:

(defun test-jug (jug-init-state alg)
(cond
((equal alg ’ucs)
(general-search #’ucs-insert jug-init-state #’jug-goal-test

#’jug-successor #’jug-step-cost nil))
((equal alg ’astar)
(general-search #’astar-insert jug-init-state #’jug-goal-test

#’jug-successor #’jug-step-cost
#’jug-heuristic))

(t (format t "Error: unknown algorithm ~a~%" alg))
)

)

or in java/c/c++/python 3 command-line arguments:
small-start, large-start, alg; for exmaple: java

TestJug 0 0 astar and print the solution path re-
turned by general-search.

CSE 5290 only

4. Explain and derive the number of *reachable* states in
Problem 3 with both jugs empty initially.

5. Q3.9, p115, 3Ed (Q3.9, p90, 2Ed). Missionaries and Can-
nibals (MC) problem. Name the banks of the river as left
and right, and the missionaries and cannibals are initially
on the left bank.

(a) Q3.9a. Cost: one unit to move a missionary and two
units to move a cannibal on the boat from one bank
to the other.

(b) Programming: Using the same general-search in
Problem 3d, add mc- functions that can solve the
MC problem using UCS and A* search. For A*, de-
scribe why your heuristic function is admissible in the
comments. For testing different initial states, provide
the test-mc function (similar to test-jug). Describe
and give an example of test-mc parameters (Lisp) or
command-line arugments (java,c,c++/python) in the
comments.


