BEYOND CLASSICAL SEARCH

CHAPTER 4, SECTIONS 4.1-4.2

Chapter 4, Sections 4.1-4.2

1

I Outline

<& Hill-climbing
¢ Simulated annealing
& Genetic algorithms (briefly)

¢ Local search in continuous spaces (briefly)

Chapter 4, Sections 4.1-4.2

2

|| Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search

Chapter 4, Sections 4.1-4.2

3

| Example: Traveling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-

sands of cities

Chapter 4, Sections 4.1-4.2

1

[Example: n-queens |

Put n queens on an n x n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

=

h=5 h=2 h=0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n.= lmillion

Chapter 4, Sections 4.1-4.2 5

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor<— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current <— neighbor

end

Chapter 4, Sections 4.1-4.2 6

|| Hill-climbing contd. |

Useful to consider state space landscape

objective function lobal maximum

shoulder

local maximum

"flat" local maximum

state space
current s

state

Random-restart hill climbing overcomes local maxima (eventually a good
initial state)

Random sideways moves (©)escape from shoulders loop on flat maxima

Chapter 4, Sections 4.1-4.2 7

|| Ridges)

Chapter 4, Sections 4.1-4.2 8

|| Simulated annealing ||

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current <— MAKE-NODE(INITIAL-STATE[problem])
for t< 1to oo do
T < schedule]1]
if 7= 0 then return current
next < a randomly selected successor of current
AE < VALUE[next] — VALUE[current]
if AE > 0 then current < next

else current < next only with probability e2 £/7

Chapter 4, Sections 4.1-4.2 9

|| Properties of simulated annealing |

At fixed “temperature” T, state occupation probability reaches
Boltzman distribution

E(z)
p(x) = e T

T decreased slowly enough = always reach best state x*
E(z*) |, E(z) E(z*)—E(x)
because ¢ i7" JerT =e¢ i > 1 for small T’

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Chapter 4, Sections 4.1-4.2 10

l Local beam search |

Idea: k random initial states; choose and keep top k of all their successors
& Not the same as k hill climbing searches run in parallel!
> Searches that find good states recruit other searches to join them

{> However, if the successors from an initial state are not selected, the
search starting from that state is effectively abandoned.

Problem: quite often, all & states end up on same local hill

Idea: ?

Chapter 4, Sections 4.1-4.2 11

l Local Beam Search |

Idea: k random initial states; choose and keep top k of all their successors
& Not the same as k hill climbing searches run in parallel!
> Searches that find good states recruit other searches to join them

{> However, if the successors from an initial state are not selected, the
search starting from that state is effectively abandoned.

Problem: quite often, all & states end up on same local hill

Idea: choose k successors randomly, biased towards good ones (Stochastic
Beam Search)

Observe the close analogy to natural selection!

Chapter 4, Sections 4.1-4.2 12

|| Genetic algorithms |

= stochastic beam search + generate successors from pairs of states

[32752411 >_<| 32748552 || 32748[Ip2 |

| 24748552 | 24752411 | —~| 24752411 |

24415124 | 20 26% ~[32752411 | 82752124 | —~| 32b2124
32543213 11 14% ~[24415124 [24415411 || 24415417
Fitness Selection Pairs Cross-Over

Chapter 4, Sections 4.1-4.2 13

|| Genetic algorithms contd. |

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

GAs # evolution: e.g., real genes encode replication machinery!

Chapter 4, Sections 4.1-4.2 14

|| Continuous state spaces |

¢ Suppose we want to site three airports in Romania:
— 6-D state space defined by (1, v2), (22, y2), (23, y3)
— objective function f(2:1, 1o, 29, Yo, T3, y3) =
sum of squared distances from each city to nearest airport

Chapter 4, Sections 4.1-4.2 15

(Continuous state spaces—Discretization |

¢ Suppose we want to site three airports in Romania:
— 6-D state space defined by (1, v2), (22, y2), (73, y3)
— objective function f (21, 1o, 0, Yo, T3, y3) =
sum of squared distances from each city to nearest airport

¢ Discretization methods turn continuous space into discrete space

{> each state has six discrete variables (e.g. 0 miles, where ¢ is a constant)
[or grid cells]

¢ each state has how many possible successors?

Chapter 4, Sections 4.1-4.2 16

(Continuous state spaces—Discretization |

¢ Suppose we want to site three airports in Romania:
— 6-D state space defined by (11, 12), (29, 12), (3, 73)
— objective function f (21, 1o, 29, Yo, T3, y3) =
sum of squared distances from each city to nearest airport

¢ Discretization methods turn continuous space into discrete space

{> each state has six discrete variables (e.g. ¢ miles, where ¢ is a constant)
[or grid cells]

¢ each state has how many possible successors?

e 12 [book] (action: change only one variable—x or (“xor”) y of one airport)

e 3V — 1 (action: change at least one variable)

¢ what is the algorithm?

Chapter 4, Sections 4.1-4.2 17

| Continuous state spaces—No Discretization |

¢ Gradient (of the objective function) methods compute
Ox1 Oy Oy Oyo Oxz Oy3
& To increase/reduce [, e.g., by x < x + oV f(x)
¢ Sometimes can solve for V f(x) = 0 exactly (e.g., only one airport).

¢ Otherwise, Newton-Raphson (1664, 1690) iterates x < x—H ' (x)V f(x)
to solve V f(x) = 0, where H,, = 0° f /Ox,0x;

Chapter 4, Sections 4.1-4.2 18

|| Contrast and Summary ||

& Ch. 3
& Ch. 412
& What is the key difference?

Chapter 4, Sections 4.1-4.2 19

|| Contrast and Summary ||

¢ Ch. 3: "It is the journey, not the destination.” (optimize the path)
¢ Ch. 4.1-2: "It is the destination, not the journey” (optimize the goal)
¢ Different problem formulation, do we still need:

e Initial state (state space): ?

e Successor function (actions): ?

e Step (path) cost: ?
e Goal test: ?

Chapter 4, Sections 4.1-4.2 20

|| Contrast and Summary ||

¢ Ch. 3: "It is the journey, not the destination.” (optimize the path)
¢ Ch. 4.1-2: "It is the destination, not the journey” (optimize the goal)
{ Different problem formulation, do we still need:

e Initial state (state space): yes [but different kind of states]

e Successor function (actions): yes [but different kind of actions]

e Step (path) cost: no [not the journey]

e Goal test: no [optimize objective function]

& The n-queen and TSP problems can be forumluated in either way, how?

Chapter 4, Sections 4.1-4.2 21

|| Skipping the rest |

Chapter 4, Sections 4.1-4.2 22

| Searching with Non-deterministic Actions |

¢ performing an action might not yield the expected successor state

> Suck can clean one dirty square, but sometimes an adjacent dirty square
as well

> Suck on a clean square can sometimes make it dirty

Chapter 4, Sections 4.1-4.2 23

|| Erratic Vacuum World |

| |=H 2 =4
2B | 8B BB | BR
3 =] 4 =4
SR SR
=M
ek R
7 =4 8 =)

¢ not just a sequence of actions, but backup/contingency plans

¢ from State 1: [Suck, if State = 5 then [Right, Suck] else []]

Chapter 4, Sections 4.1-4.2 24

[And-Or Search Tree |

[#e]
Suck Right
P-4 .
S I e
GOAL Suck Right Lefi Suck
g 99 A
Loop Loop S L' Loor GOAL

> every path reaches a goal, a repeated state, or a dead end

Chapter 4, Sections 4.1-4.2 25

|| Slippery floor I

Chapter 4, Sections 4.1-4.2 26

|| Sensorless problems |

¢ No sensor—the agent does not know which state it is in

& s it hopeless?

Chapter 4, Sections 4.1-4.2 27

[Belief States |

{ Each "belief” state is a collection of possible “physical” states.

¢ 12 “reachable” belief states (out of 255 possible belief states)

> If the actions have uncertain outcomes, how many belief states are there?

Chapter 4, Sections 4.1-4.2 28

|| Contingency problems |

¢ Environment is partially observable

¢ Fixed sequence: [Suck, Right, Suck]

{> Actions have uncertain outcomes

¢» Addtional percepts during execution: [Suck, Right, if [R Dirty] then Suck]
& More in Chapter 12 (Planning)

¢ Adversarial environment (e.g., games): Chapter 6

Chapter 4, Sections 4.1-4.2 29

