
Beyond Classical Search

Chapter 4, Sections 4.1-4.2

Chapter 4, Sections 4.1-4.2 1

Outline

♦ Hill-climbing

♦ Simulated annealing

♦ Genetic algorithms (briefly)

♦ Local search in continuous spaces (briefly)

Chapter 4, Sections 4.1-4.2 2

Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search

Chapter 4, Sections 4.1-4.2 3

Example: Traveling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities

Chapter 4, Sections 4.1-4.2 4

Example: n-queens

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n=1million

Chapter 4, Sections 4.1-4.2 5

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])

loop do

neighbor← a highest-valued successor of current

if Value[neighbor] ≤ Value[current] then return State[current]

current← neighbor

end

Chapter 4, Sections 4.1-4.2 6

Hill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima (eventually a good
initial state)

Random sideways moves escape from shoulders loop on flat maxima

Chapter 4, Sections 4.1-4.2 7

Ridges

Chapter 4, Sections 4.1-4.2 8

Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature”

local variables: current, a node

next, a node

T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])

for t← 1 to ∞ do

T← schedule[t]

if T = 0 then return current

next← a randomly selected successor of current

∆E←Value[next] – Value[current]

if ∆E > 0 then current← next

else current← next only with probability e∆ E/T

Chapter 4, Sections 4.1-4.2 9

Properties of simulated annealing

At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗

because e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT ≫ 1 for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Chapter 4, Sections 4.1-4.2 10

Local beam search

Idea: k random initial states; choose and keep top k of all their successors

♦ Not the same as k hill climbing searches run in parallel!

♦ Searches that find good states recruit other searches to join them

♦ However, if the successors from an initial state are not selected, the
search starting from that state is effectively abandoned.

Problem: quite often, all k states end up on same local hill

Idea: ?

Chapter 4, Sections 4.1-4.2 11

Local Beam Search

Idea: k random initial states; choose and keep top k of all their successors

♦ Not the same as k hill climbing searches run in parallel!

♦ Searches that find good states recruit other searches to join them

♦ However, if the successors from an initial state are not selected, the
search starting from that state is effectively abandoned.

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones (Stochastic
Beam Search)

Observe the close analogy to natural selection!

Chapter 4, Sections 4.1-4.2 12

Genetic algorithms

= stochastic beam search + generate successors from pairs of states

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

Chapter 4, Sections 4.1-4.2 13

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

+ =

GAs 6= evolution: e.g., real genes encode replication machinery!

Chapter 4, Sections 4.1-4.2 14

Continuous state spaces

♦ Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f (x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Chapter 4, Sections 4.1-4.2 15

Continuous state spaces–Discretization

♦ Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f (x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

♦ Discretization methods turn continuous space into discrete space

♦ each state has six discrete variables (e.g. ±δ miles, where δ is a constant)
[or grid cells]

♦ each state has how many possible successors?

Chapter 4, Sections 4.1-4.2 16

Continuous state spaces–Discretization

♦ Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f (x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

♦ Discretization methods turn continuous space into discrete space

♦ each state has six discrete variables (e.g. ±δ miles, where δ is a constant)
[or grid cells]

♦ each state has how many possible successors?

• 12 [book] (action: change only one variable—x or (“xor”) y of one airport)

• 36 − 1 (action: change at least one variable)

♦ what is the algorithm?

Chapter 4, Sections 4.1-4.2 17

Continuous state spaces–No Discretization

♦ Gradient (of the objective function) methods compute

∇f =









∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3









♦ To increase/reduce f , e.g., by x← x + α∇f (x)

♦ Sometimes can solve for ∇f (x) = 0 exactly (e.g., only one airport).

♦ Otherwise, Newton–Raphson (1664, 1690) iterates x← x−H−1f (x)∇f (x)
to solve ∇f (x) = 0, where Hij = ∂2f/∂xi∂xj

Chapter 4, Sections 4.1-4.2 18

Contrast and Summary

♦ Ch. 3

♦ Ch. 4.1-2

♦ What is the key difference?

Chapter 4, Sections 4.1-4.2 19

Contrast and Summary

♦ Ch. 3: “It is the journey, not the destination.” (optimize the path)

♦ Ch. 4.1-2: “It is the destination, not the journey” (optimize the goal)

♦ Different problem formulation, do we still need:

• Initial state (state space): ?

• Successor function (actions): ?

• Step (path) cost: ?

• Goal test: ?

Chapter 4, Sections 4.1-4.2 20

Contrast and Summary

♦ Ch. 3: “It is the journey, not the destination.” (optimize the path)

♦ Ch. 4.1-2: “It is the destination, not the journey” (optimize the goal)

♦ Different problem formulation, do we still need:

• Initial state (state space): yes [but different kind of states]

• Successor function (actions): yes [but different kind of actions]

• Step (path) cost: no [not the journey]

• Goal test: no [optimize objective function]

♦ The n-queen and TSP problems can be forumluated in either way, how?

Chapter 4, Sections 4.1-4.2 21

Skipping the rest

Chapter 4, Sections 4.1-4.2 22

Searching with Non-deterministic Actions

♦ performing an action might not yield the expected successor state

♦ Suck can clean one dirty square, but sometimes an adjacent dirty square
as well

♦ Suck on a clean square can sometimes make it dirty

Chapter 4, Sections 4.1-4.2 23

Erratic Vacuum World

1 2

87

5 6

3 4

♦ not just a sequence of actions, but backup/contingency plans

♦ from State 1: [Suck, if State = 5 then [Right, Suck] else []]

Chapter 4, Sections 4.1-4.2 24

And-Or Search Tree

LeftSuck

RightSuck

RightSuck

6

GOAL

8

GOAL

7

1

2 5

1

LOOP

5

LOOP

5

LOOP

Left Suck

1

LOOP GOAL

8 4

♦ every path reaches a goal, a repeated state, or a dead end

Chapter 4, Sections 4.1-4.2 25

Slippery floor

Suck Right

6

1

2 5

Right

♦

Chapter 4, Sections 4.1-4.2 26

Sensorless problems

♦ No sensor—the agent does not know which state it is in

♦ Is it hopeless?

Chapter 4, Sections 4.1-4.2 27

Belief States

♦ Each “belief” state is a collection of possible “physical” states.
L

R

L R

S

L R
S S

S S

R

L

S S

L

R

R

L

R

L

♦ 12 “reachable” belief states (out of 255 possible belief states)

♦ If the actions have uncertain outcomes, how many belief states are there?

Chapter 4, Sections 4.1-4.2 28

Contingency problems

♦ Environment is partially observable

♦ Fixed sequence: [Suck, Right, Suck]

♦ Actions have uncertain outcomes

♦ Addtional percepts during execution: [Suck, Right, if [R Dirty] then Suck]

♦ More in Chapter 12 (Planning)

♦ Adversarial environment (e.g., games): Chapter 6

Chapter 4, Sections 4.1-4.2 29

