BEYOND CLASSICAL SEARCH
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I Outline

<& Hill-climbing
¢ Simulated annealing
& Genetic algorithms (briefly)

¢ Local search in continuous spaces (briefly)
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|| Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
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| Example: Traveling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-

sands of cities
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[ Example: n-queens |

Put n queens on an n x n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

=

h=5 h=2 h=0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n.= lmillion
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Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor<— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current <— neighbor

end
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|| Hill-climbing contd. |

Useful to consider state space landscape

objective function lobal maximum

shoulder

local maximum

"flat" local maximum

state space
current s

state

Random-restart hill climbing overcomes local maxima (eventually a good
initial state)

Random sideways moves (©)escape from shoulders loop on flat maxima
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|| Ridges )
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|| Simulated annealing ||

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current <— MAKE-NODE(INITIAL-STATE[problem])
for t< 1to oo do
T < schedule]1]
if 7= 0 then return current
next < a randomly selected successor of current
AE < VALUE[next] — VALUE[current]
if AE > 0 then current < next

else current < next only with probability e2 £/7
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|| Properties of simulated annealing |

At fixed “temperature” T, state occupation probability reaches
Boltzman distribution

E(z)
p(x) = e T

T decreased slowly enough = always reach best state x*
E(z*) |, E(z) E(z*)—E(x)
because ¢ i7" JerT =e¢ i > 1 for small T’

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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l Local beam search |

Idea: k random initial states; choose and keep top k of all their successors
& Not the same as k hill climbing searches run in parallel!
> Searches that find good states recruit other searches to join them

{> However, if the successors from an initial state are not selected, the
search starting from that state is effectively abandoned.

Problem: quite often, all & states end up on same local hill

Idea: ?
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l Local Beam Search |

Idea: k random initial states; choose and keep top k of all their successors
& Not the same as k hill climbing searches run in parallel!
> Searches that find good states recruit other searches to join them

{> However, if the successors from an initial state are not selected, the
search starting from that state is effectively abandoned.

Problem: quite often, all & states end up on same local hill

Idea: choose k successors randomly, biased towards good ones (Stochastic
Beam Search)

Observe the close analogy to natural selection!
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|| Genetic algorithms |

= stochastic beam search + generate successors from pairs of states

[ 32752411 >_<| 32748552 || 32748[Ip2 |

| 24748552 | 24752411 | —~| 24752411 |

24415124 | 20 26% ~[ 32752411 | 82752124 | —~| 32b2124
32543213 11 14% ~[ 24415124 [ 24415411 || 24415417
Fitness  Selection Pairs Cross-Over
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|| Genetic algorithms contd. |

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

GAs # evolution: e.g., real genes encode replication machinery!
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|| Continuous state spaces |

¢ Suppose we want to site three airports in Romania:
— 6-D state space defined by (1, v2), (22, y2), (23, y3)
— objective function f(2:1, 1o, 29, Yo, T3, y3) =
sum of squared distances from each city to nearest airport
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( Continuous state spaces—Discretization |

¢ Suppose we want to site three airports in Romania:
— 6-D state space defined by (1, v2), (22, y2), (73, y3)
— objective function f (21, 1o, 0, Yo, T3, y3) =
sum of squared distances from each city to nearest airport

¢ Discretization methods turn continuous space into discrete space

{> each state has six discrete variables (e.g. 0 miles, where ¢ is a constant)
[or grid cells]

¢ each state has how many possible successors?
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( Continuous state spaces—Discretization |

¢ Suppose we want to site three airports in Romania:
— 6-D state space defined by (11, 12), (29, 12), (3, 73)
— objective function f (21, 1o, 29, Yo, T3, y3) =
sum of squared distances from each city to nearest airport

¢ Discretization methods turn continuous space into discrete space

{> each state has six discrete variables (e.g. ¢ miles, where ¢ is a constant)
[or grid cells]

¢ each state has how many possible successors?

e 12 [book] (action: change only one variable—x or (“xor”) y of one airport)

e 3V — 1 (action: change at least one variable)

¢ what is the algorithm?
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| Continuous state spaces—No Discretization |

¢ Gradient (of the objective function) methods compute
Ox1 Oy Oy Oyo Oxz Oy3
& To increase/reduce [, e.g., by x < x + oV f(x)
¢ Sometimes can solve for V f(x) = 0 exactly (e.g., only one airport).

¢ Otherwise, Newton-Raphson (1664, 1690) iterates x < x—H ' (x)V f(x)
to solve V f(x) = 0, where H,, = 0° f /Ox,0x;
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|| Contrast and Summary ||

& Ch. 3
& Ch. 412
& What is the key difference?
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|| Contrast and Summary ||

¢ Ch. 3: "It is the journey, not the destination.” (optimize the path)
¢ Ch. 4.1-2: "It is the destination, not the journey” (optimize the goal)
¢ Different problem formulation, do we still need:

e Initial state (state space): ?

e Successor function (actions): ?

e Step (path) cost: ?
e Goal test: ?
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|| Contrast and Summary ||

¢ Ch. 3: "It is the journey, not the destination.” (optimize the path)
¢ Ch. 4.1-2: "It is the destination, not the journey” (optimize the goal)
{ Different problem formulation, do we still need:

e Initial state (state space): yes [but different kind of states]

e Successor function (actions): yes [but different kind of actions]

e Step (path) cost: no [not the journey]

e Goal test: no [optimize objective function]

& The n-queen and TSP problems can be forumluated in either way, how?
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|| Skipping the rest |
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| Searching with Non-deterministic Actions |

¢ performing an action might not yield the expected successor state

> Suck can clean one dirty square, but sometimes an adjacent dirty square
as well

> Suck on a clean square can sometimes make it dirty
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|| Erratic Vacuum World |

| |=H 2 =4
2B | 8B BB | BR
3 =] 4 =4
SR SR
=M
ek R
7 =4 8 =)

¢ not just a sequence of actions, but backup/contingency plans

¢ from State 1: [Suck, if State = 5 then [Right, Suck] else [] ]
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[ And-Or Search Tree |

[#e]
Suck Right
P-4 .
S I e
GOAL Suck Right Lefi Suck
g 99 A
Loop Loop S L' Loor GOAL

> every path reaches a goal, a repeated state, or a dead end
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|| Slippery floor I
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|| Sensorless problems |

¢ No sensor—the agent does not know which state it is in

& s it hopeless?
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[ Belief States |

{ Each "belief” state is a collection of possible “physical” states.

¢ 12 “reachable” belief states (out of 255 possible belief states)

> If the actions have uncertain outcomes, how many belief states are there?
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|| Contingency problems |

¢ Environment is partially observable

¢ Fixed sequence: [Suck, Right, Suck]

{> Actions have uncertain outcomes

¢» Addtional percepts during execution: [Suck, Right, if [R Dirty] then Suck]
& More in Chapter 12 (Planning)

¢ Adversarial environment (e.g., games): Chapter 6
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