Iterative improvement algorithms

In many optimization problems, **path** is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find **optimal** configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Chapter 4, Sections 4.1-4.2 3

Chapter 4, Sections 4.1-4.2 1

Outline

BEYOND CLASSICAL SEARCH

CHAPTER 4, SECTIONS 4.1-4.2

 \diamond Hill-climbing

- $\diamondsuit~$ Simulated annealing
- ♦ Genetic algorithms (briefly)
- \diamond Local search in continuous spaces (briefly)

Example: Traveling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: *n*-queens

Put n queens on an $n\times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves *n*-queens problems almost instantaneously for very large *n*, e.g., n = 1million

Chapter 4, Sections 4.1-4.2 5

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

Hill-climbing contd.

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima (eventually a good initial state)

Random sideways moves Sescape from shoulders Sloop on flat maxima

Chapter 4, Sections 4.1-4.2 7

Simulated annealing

ldea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

 $\begin{array}{ll} \textbf{function SIMULATED-ANNEALING(} problem, schedule) \ \textbf{returns} \ \textbf{a} \ \textbf{solution state} \\ \textbf{inputs:} \ problem, \ \textbf{a} \ \textbf{problem} \\ schedule, \ \textbf{a} \ \textbf{mapping} \ \textbf{from time to "temperature"} \\ \textbf{local variables:} \ current, \ \textbf{a} \ \textbf{node} \\ next, \ \textbf{a} \ \textbf{node} \\ T, \ \textbf{a} \ "temperature" \ controlling \ \textbf{problem}. of \ downward \ steps \\ current \leftarrow MAKE-NODE(INITIAL-STATE[problem]) \\ \textbf{for } t \leftarrow 1 \ \textbf{to} \infty \ \textbf{do} \\ T \leftarrow schedule[t] \\ \textbf{if } T = 0 \ \textbf{then return } current \\ next \leftarrow \textbf{a} \ \textbf{randomly selected successor of } current \\ \Delta E \leftarrow VALUE[next] - VALUE[current] \\ \textbf{if } \Delta E > 0 \ \textbf{then } current \leftarrow next \\ \textbf{else } current \leftarrow next \ only \ with \ probability \ e^{\Delta \ E/T} \end{array}$

Chapter 4, Sections 4.1-4.2 9

Properties of simulated annealing

At fixed "temperature" $T,\,{\rm state}$ occupation probability reaches Boltzman distribution

$p(x) = \alpha e^{\frac{E(x)}{kT}}$

T decreased slowly enough \Longrightarrow always reach best state x^* because $e^{\frac{E(x^*)}{kT}}/e^{\frac{E(x)}{kT}}=e^{\frac{E(x^*)-E(x)}{kT}}\gg 1$ for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Local beam search

Idea: k random initial states; choose and keep top k of all their successors

 \diamond Not the same as k hill climbing searches run in parallel!

 \diamondsuit Searches that find good states recruit other searches to join them

 \diamondsuit However, if the successors from an initial state are not selected, the search starting from that state is effectively abandoned.

Problem: quite often, all k states end up on same local hill

Idea: ?

Chapter 4, Sections 4.1-4.2 11

Local Beam Search

Idea: k random initial states; choose and keep top k of all their successors

 \diamond Not the same as k hill climbing searches run in parallel!

 \diamondsuit Searches that find good states recruit other searches to join them

 \diamondsuit However, if the successors from an initial state are not selected, the search starting from that state is effectively abandoned.

Problem: quite often, all k states end up on same local hill

ldea: choose k successors randomly, biased towards good ones (Stochastic Beam Search)

Observe the close analogy to natural selection!

Genetic algorithms

= stochastic beam search + generate successors from **pairs** of states

24748552 2	4 31%	32752411	32748552 32748152
32752411 2	3 29%	24748552	24752411 24752411
24415124 2	0 26%	32752411	32752124 32252124
32543213 1	1 14%	24415124	24415411 24415417

Mutation

Chapter 4, Sections 4.1-4.2 13

Fitness Selection Pairs Cross-Over

Continuous state spaces

 \diamondsuit Suppose we want to site three airports in Romania:

- 6-D state space defined by (x_1, y_2) , (x_2, y_2) , (x_3, y_3)
- objective function $f(x_1,y_2,x_2,y_2,x_3,y_3) = \\$ sum of squared distances from each city to nearest airport

Chapter 4, Sections 4.1-4.2 15

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

GAs \neq evolution: e.g., real genes encode replication machinery!

Continuous state spaces–Discretization

- \diamond Suppose we want to site three airports in Romania:
 - 6-D state space defined by (x_1, y_2) , (x_2, y_2) , (x_3, y_3)

- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$ sum of squared distances from each city to nearest airport

- \diamondsuit Discretization methods turn continuous space into discrete space
- \diamond each state has six discrete variables (e.g. $\pm \delta$ miles, where δ is a constant) [or grid cells]
- \diamond each state has how many possible successors?

Continuous state spaces–Discretization

- \diamondsuit Suppose we want to site three airports in Romania:
 - 6-D state space defined by $(x_1,y_2)\text{, }(x_2,y_2)\text{, }(x_3,y_3)$
 - objective function $f(x_1,y_2,x_2,y_2,x_3,y_3) = \\$ sum of squared distances from each city to nearest airport
- \diamondsuit Discretization methods turn continuous space into discrete space

 \diamondsuit each state has six discrete variables (e.g. $\pm\delta$ miles, where δ is a constant) [or grid cells]

- \diamondsuit each state has how many possible successors?
- 12 [book] (action: change only one variable—x or ("xor") y of one airport)
- $3^6 1$ (action: change at least one variable)
- \diamondsuit what is the algorithm?

Chapter 4, Sections 4.1-4.2 17

Continuous state spaces–No Discretization

 \diamondsuit Gradient (of the objective function) methods compute

 $\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$

- \diamond To increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$
- \diamondsuit Sometimes can solve for $\nabla f(\mathbf{x}) = 0$ exactly (e.g., only one airport).
- \diamond Otherwise, Newton-Raphson (1664, 1690) iterates $\mathbf{x} \leftarrow \mathbf{x} \mathbf{H}_f^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x}) = 0$, where $\mathbf{H}_{ij} = \partial^2 f / \partial x_i \partial x_j$

Contrast and Summary

- ♦ Ch. 3
- \diamondsuit Ch. 4.1-2
- \diamondsuit What is the key difference?

Chapter 4, Sections 4.1-4.2 19

Contrast and Summary

- \diamond Ch. 3: "It is the journey, not the destination." (optimize the path)
- \diamond Ch. 4.1-2: "It is the destination, not the journey" (optimize the goal)
- \diamondsuit Different problem formulation, do we still need:
- Initial state (state space): ?
- Successor function (actions): ?
- Step (path) cost: ?
- Goal test: ?

Contrast and Summary

- \diamondsuit Ch. 3: "It is the journey, not the destination." (optimize the path)
- \diamondsuit Ch. 4.1-2: "It is the destination, not the journey" (optimize the goal)
- $\diamondsuit~$ Different problem formulation, do we still need:
- Initial state (state space): yes [but different kind of states]
- Successor function (actions): yes [but different kind of actions]
- Step (path) cost: no [not the journey]
- \bullet Goal test: no [optimize objective function]
- \diamondsuit The n-queen and TSP problems can be forumluated in either way, how?

Searching with Non-deterministic Actions

 \diamondsuit performing an action might not yield the expected successor state

 \diamondsuit Suck can clean one dirty square, but sometimes an adjacent dirty square as well

 \diamondsuit Suck on a clean square can sometimes make it dirty

Chapter 4, Sections 4.1-4.2 23

Chapter 4, Sections 4.1-4.2 21

Skipping the rest

Erratic Vac	uum World	
	2	
3	4 e	
5	6	
7	8	

 \diamondsuit not just a sequence of actions, but backup/contingency plans

 \diamondsuit from State 1: [Suck, if State = 5 then [Right, Suck] else []]

And-Or Search Tree

 \diamondsuit every path reaches a goal, a repeated state, or a dead end

Chapter 4, Sections 4.1-4.2 25

 \diamond

Sensorless problems

- \diamondsuit No sensor—the agent does not know which state it is in
- \diamondsuit Is it hopeless?

Chapter 4, Sections 4.1-4.2 27

Belief States

 \diamondsuit Each "belief" state is a collection of possible "physical" states.

 \diamond 12 "reachable" belief states (out of 255 possible belief states)

 \diamond If the actions have uncertain outcomes, how many belief states are there?

Contingency problems

- \diamondsuit Environment is partially observable
- \diamond Fixed sequence: [Suck, Right, Suck]
- \diamondsuit Actions have uncertain outcomes
- \diamondsuit Addtional percepts during execution: [Suck, Right, if [R Dirty] then Suck]
- \diamond More in Chapter 12 (Planning)
- \diamondsuit Adversarial environment (e.g., games): Chapter 6

Chapter 4, Sections 4.1-4.2 29