Pros and cons of propositional logicFIRST-ORDER LOGIC \bigcirc Propositional logic is declarative: pieces of syntax correspond to facts \bigcirc Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases) \bigcirc Propositional logic is compositional:
meaning of $B_{1,1} \land P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$ \bigcirc Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context) \bigcirc Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say "pits cause breezes in adjacent squares"
except by writing one sentence for each square

Chapter 8 3

Outline

 \diamond Why FOL?

- \diamondsuit Syntax and semantics of FOL
- \diamondsuit Fun with sentences
- \diamond Wumpus world in FOL

First-order logic

Whereas propositional logic assumes world contains **facts**, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of

Logics in general

Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Atomic sentences

Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

Chapter 8 5

Syntax of FOL: Basic elements

Chapter 8 7

Complex sentences

Complex sentences are made from atomic sentences using connectives

- $\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2$
- **E.g.** $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$ > $(1, 2) \lor \leq (1, 2)$ > $(1, 2) \land \neg > (1, 2)$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for constant symbols \rightarrow objects predicate symbols \rightarrow relations

function symbols \rightarrow functional relations

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the objects referred to by $term_1, \ldots, term_n$ are in the relation referred to by predicate

Truth example

Consider the interpretation in which $Richard \rightarrow$ Richard the Lionheart $John \rightarrow$ the evil King John $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Chapter 8 9

Models for FOL: Example

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We **can** enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating FOL models is not easy!

Universal quantification

 $\forall \langle variables \rangle \ \langle sentence \rangle$

Everyone at Berkeley is smart:

 $\forall x \ At(x, Berkeley) \Rightarrow Smart(x)$

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

 $\begin{array}{l} (At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn)) \\ \land \ (At(Richard, Berkeley) \Rightarrow Smart(Richard)) \\ \land \ (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley)) \\ \land \ \dots \end{array}$

Existential quantification

 $\exists \langle variables \rangle \langle sentence \rangle$

Someone at Stanford is smart: $\exists x \ At(x, Stanford) \land Smart(x)$

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

 $(At(KingJohn, Stanford) \land Smart(KingJohn))$ $\lor (At(Richard, Stanford) \land Smart(Richard))$

 \lor (At(Stanford, Stanford) \land Smart(Stanford))

 \vee ...

Chapter 8 15

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \land as the main connective with \forall :

 $\forall x \; At(x, Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Another common mistake to avoid

Typically, \land is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists x \; At(x, Stanford) \Rightarrow Smart(x)$

is true if there is anyone who is not at Stanford!

$\exists x \neg At(x, Stanford) \lor Smart(x)$

just needs one person not at Stanford to make the sentence true.

Properties of quantifiers

 $\forall x \ \forall y$ is the same as $\forall y \ \forall x$

 $\exists x \exists y \text{ is the same as } \exists y \exists x$

 $\exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$

 $\exists x \ \forall y \ Loves(x,y)$

"There is a person who loves everyone in the world"

 $\forall y \; \exists x \; Loves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

 $\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$

 $\exists x \ Likes(x, Broccoli) \qquad \neg \forall x \ \neg Likes(x, Broccoli)$

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

Chapter 8 19

Fun with sentences

Brothers are siblings

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x,y \;\; Mother(x,y) \; \Leftrightarrow \; (Female(x) \wedge Parent(x,y)).$

A first cousin is a child of a parent's sibling

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g., $\forall x \ \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable 2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent: $\forall x, y \; Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \; \neg(m = f) \land$ $Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Chapter 8 21

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \;\; Mother(x, y) \; \Leftrightarrow \; (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\begin{array}{ll} \forall x,y \;\; FirstCousin(x,y) \; \Leftrightarrow \; \exists p,ps \;\; Parent(p,x) \land Sibling(ps,p) \land \\ Parent(ps,y) \end{array}$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists a \ Action(a, 5))$

I.e., does KB entail any particular actions at t = 5?

Answer: *Yes*, $\{a/Shoot\} \leftarrow$ substitution (binding list)

Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x, y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

"Perception"

 $\begin{array}{ll} \forall b,g,t \ \ Percept([Smell,b,g],t) \Rightarrow \ Smelt(t) \\ \forall s,b,t \ \ Percept([s,b,Glitter],t) \Rightarrow \ AtGold(t) \end{array}$

Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already?

 $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

Holding(Gold, t) is not a percept

 \Rightarrow keeping track of change is essential

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Chapter 8 25

Chapter 8 27

Deducing hidden properties

Properties of locations:

 $\forall x, t \; At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x) \\ \forall x, t \; At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect $\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x,y)$

Causal rule—infer effect from cause $\forall x, y \; Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

```
Definition for the Breezy predicate:
\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]
```