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Outline

♦ Learning agents

♦ Inductive learning

♦ Decision tree learning

♦ Measuring learning performance
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Learning

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance
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Learning element

Design of learning element is dictated by
♦ what type of performance element is used
♦ which functional component is to be learned
♦ how that functional compoent is represented
♦ what kind of feedback is available

Example scenarios:

Performance element

Alpha−beta search

Logical agent

Simple reflex agent

Component

Eval. fn.

Transition model

Transition model

Representation

Weighted linear function

Successor−state axioms

Neural net

Dynamic Bayes netUtility−based agent

Percept−action fn

Feedback

Outcome

Outcome

Win/loss

Correct action

Supervised learning: correct answers for each instance
Reinforcement learning: occasional rewards
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Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)

f is the target function

An example is a pair x, f(x), e.g.,
O O X

X

X

, +1

Problem: find a(n) hypothesis h

such that h ≈ f

given a training set of examples

(This is a highly simplified model of real learning:

– Ignores prior knowledge

– Assumes a deterministic, observable “environment”

– Assumes examples are given

– Assumes that the agent wants to learn f—why?)
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Ockham’s razor: maximize a combination of consistency and simplicity
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Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)
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Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

Chapter 18, Sections 1–3 14

Expressiveness

Decision trees can express any boolean function of the input attributes.
E.g., for Boolean attributes, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T  T

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

Prefer to find more compact decision trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

Each attribute can be in (positive), in (negative), or out
⇒ 3n distinct conjunctive hypotheses

More expressive hypothesis space
– increases chance that target function can be expressed
– increases number of hypotheses consistent w/ training set
⇒ may get worse predictions
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Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return Mode(examples)

else

best←Choose-Attribute(attributes, examples)

tree← a new decision tree with root test best

for each value vi of best do

examplesi←{elements of examples with best = vi}

subtree←DTL(examplesi,attributes− best,Mode(examples))

add a branch to tree with label vi and subtree subtree

return tree
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Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?
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Information Theory

♦ Consider communicating two messages (T and F) between two parties

♦ Bits are used to measure message size

♦ If P (T ) = 1 and P (F ) = 0, how many bits are needed?

♦ If P (T ) = .5 and P (F ) = .5, how many bits are needed?
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♦ Bits are used to measure message size

♦ If P (T ) = 1 and P (F ) = 0, how many bits are needed?

♦ If P (T ) = .5 and P (F ) = .5, how many bits are needed?

♦ Information: I(P (v1), ...P (vn)) = ∑n
i=1−P (vi) log2 P (vi)

♦ I(1, 0) = 0 bit

♦ I(0.5, 0.5) = −0.5× log2 0.5− 0.5× log2 0.5 = 1 bit
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Information Theory

♦ Consider communicating two messages (T and F) between two parties

♦ Bits are used to measure message size

♦ If P (T ) = 1 and P (F ) = 0, how many bits are needed?

♦ If P (T ) = .5 and P (F ) = .5, how many bits are needed?

♦ Information: I(P (v1), ...P (vn)) = ∑n
i=1−P (vi) log2 P (vi)

♦ I(1, 0) = 0 bit

♦ I(0.5, 0.5) = −0.5× log2 0.5− 0.5× log2 0.5 = 1 bit

♦ I measures the information content for communication (or uncertainty
in what is already known)

♦ The more one knows, the less to be communicated, the smaller is I

♦ The less one knows, the more to be communicated, the larger is I
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Using Information Theory

♦ (P (pos), P (neg)): probabilities of positive (“message T”) and negative
(“message F”)

♦ Attribute color: black (1,0), white (0,1)

♦ Attribute size: large (.5,.5), small (.5,.5)
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Before adding an attribute

♦ How much uncertainty/confusion before adding an attribute (e.g., color)?

• p = number of positive examples, n = number of negative examples

• Estimating probabilities: P (pos) = p
p+n

, P (neg) = n
p+n

• Before() = I(P (pos), P (neg))
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After adding an attribute

♦ How much uncertainty/confusion after adding an attribute (e.g., color)?

• pi = number of positive examples for value i (e.g., black), ni = number
of negative ones

• Estimating probabilities for value i: Pi(pos) = pi
pi+ni

, Pi(neg) = ni
pi+ni

• Uncertainty from value i: I(Pi(pos), Pi(neg))

• But we have v values for attribute A (e.g., 2 for color)

• How do we combine the uncertainty from the different attribute values?
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After adding an attribute

♦ How much uncertainty/confusion after adding an attribute (e.g., color)?

• pi = number of positive examples for value i (e.g., black), ni = number
of negative ones

• Estimating probabilities for value i: Pi(pos) = pi
pi+ni

, Pi(neg) = ni
pi+ni

• Uncertainty from value i: I(Pi(pos), Pi(neg))

• But we have v values for attribute A (e.g., 2 for color)

• How do we combine the uncertainty from the different attribute values?

• Remainder(A) = After(A) = ∑v
i=1

pi+ni
p+n

I(Pi(pos), Pi(neg)) [expected

uncertanity]
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Choosing an Attribute

♦ “Information Gain” (reduction in uncertainty)

• Gain(A) = Before()− After(A)

•Why Before()− After(A), not After(A)−Before() ?
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Choosing an Attribute

♦ “Information Gain” (reduction in uncertainty)

• Gain(A) = Before()− After(A)

•Why Before()− After(A), not After(A)−Before() ?

• Before() should have more uncertainty

• Choose attribute A with the largest Gain(A)
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Example contd.

Decision tree learned from the 12 examples:

No  Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis isn’t jus-
tified by small amount of data
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Performance measurement

How do we know that h ≈ f?
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Performance measurement

How do we know that h ≈ f?

How about measuring the accuracy of h on the examples that were used to
learn h?
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Performance measurement

How do we know that h ≈ f? (Hume’s Problem of Induction)

1. Use theorems of computational/statistical learning theory

2. Try h on a new test set of examples

• use same distribution over example space as training set

• divide into two disjoint subsets: training and test sets

• prediction accuracy: accuracy on the (unseen) test set
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Performance measurement

Learning curve = % correct on test set as a function of training set size
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Learning curve

• realizable (can express target function) vs. non-realizable
non-realizability can be due to:

– missing attributes

– and/or restricted hypothesis class (e.g., thresholded linear function)

• redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

# of examples

1

nonrealizable

redundant

realizable
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Irrelevant Attributes

• Consider adding the attribute: Date (month and day)

• How can it affect the learned tree?
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Overfitting

•More attributes ⇒ larger hypothesis space

• Larger hypothesis space can lead to more hypotheses that represent mean-
ingless “regularity/patterns”

• Overfitting: high accuracy on training set, but low accuracy on test set—
low prediction accuracy

• Select the attribute with the largest information gain

– however, is the gain significant?

– (statistical) significance test

• Pruning

– do not include the attribute if information gain is not statistically sig-
nificant

– potentially, less than 100% accurate on the training set, why?

– however, improved prediction accuracy on the test set
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Significance Test

• “Null hypothesis” (in statistics): attribute is irrelevant (gain is not sig-
nificant)

• “Alternative hypothesis”: attribute is relevant

• Calculating the deviation

– expected p̂i = p× pi+ni
p+n

– expected n̂i = n× pi+ni
p+n

– Deviation (from expected):

D =
v∑

i=1

(pi − p̂i)
2

p̂i

+
(ni − n̂i)

2

n̂i

– D is χ2 (chi-squared) distributed with v − 1 degrees of freedom

– χ2 Test in statistics

•With a confidence level (e.g. 95%), if D > χ2 value, attribute is relevant
(Null hypothesis is rejected)
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Additional Issues

♦ Missing attribute values.

♦ Gain() biases to attributes with more values.

♦ Continuous-valued (numeric) attributes have infinite number of values.
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Learning as search

♦ What is the state space in learning decision trees?

♦ State-space formulation
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Learning as search

♦ What is the state space in learning decision trees?

♦ State-space formulation

• State: a decision tree

• Initial state: an empty decision tree

• Action: add an attribute to the tree

• Goal test: all examples in each leaf have the same classification

♦ What kind of search is DTL?
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Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning method depends on type of performance element, available
feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis
that is approximately consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set

Chapter 18, Sections 1–3 47


